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Preface

This book looks at computers, the most complex machines ever created,
and at the even more complex programs that those machines execute.
In a sense, though, it is complexity itself, rather than the machines and
programs, that is the book’s real subject. The methods for creating
and understanding such complexity are at the core of the field known as
computer science, and are the major lesson you will take away from
what you read here.

As an introduction to computer science, The Most Complex Machine
is a bit unusual in that it does not follow either of the two most common
patterns for such an introduction. It is not designed to teach you to
program, nor does it seek to make you an expert computer user. Instead,
it attempts to introduce you to the fundamental ideas and principles on
which the field is built. It was written to be used in a survey course
directed mainly to students not currently majoring in computer science.
It provides an overview of the field that is appropriate for such students
whether or not they continue their study of computer science.

This book might also be used as a supplement in a first course in
programming, to broaden student’s exposure to the ideas of computer
science. It might even make a good required introduction to the major,
particularly for students with little previous experience with computer
science. Finally, it should also be useful to the individual reader who
wants to understand something of what really goes on inside a computer.

There are very few prerequisites for reading The Most Complex Ma-
chine. I do assume that you have some familiarity with computers, and
it would certainly be useful for you to have had some experience using
a computer. But all you really need to know is that a computer is a
machine that can run programs. A program is a set of instructions for
a computer to execute; you can make a computer do a wide variety of
different things by giving it different programs. Even if you are fuzzy on
these basic ideas, they should become more clear to you as you read.
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Some of the discussion in the book is mathematical; some of it is
rather technical. But I try to cover everything at a level that can be
followed with very little previous mathematical or technical experience—
at least if you are willing to do some careful reading and thinking.

The first chapter, titled “What Computers Do,” is really an introduc-
tion to the subject of complexity. This chapter is fundamental, in that
it introduces many of the ideas that are covered more fully in the rest of
the book. So, while you don’t need to understand in detail everything
in this chapter the first time through, you should pay close attention to
the main ideas.

The next two chapters explain how computers can be built, step-by-
step, out of very simple components. By the end of Chapter 3, you will
understand how a physical object can be built to execute an arbitrarily
complex set of program instructions. This is the most technical part
of the book. If you decide to skip over it, you will not be at a great
disadvantage for the rest of the text. However, you will miss some really
neat ideas, and I encourage you to browse through at least Section 2.1
and the beginnings of Sections 3.1 and 3.3 at least. And of course, you
can read the chapter summaries.

Chapter 4, on “Theoretical Computers,” shows that all computers,
from the simple model computer constructed in Chapter 3 to the most
advanced supercomputer, are really equally powerful except for their
speed and the amount of memory they have. Furthermore, they are all
subject to certain surprising limitations on the problems they can solve.
The idea of “computational universality,” covered in Section 4.1, is quite
important; the rest of the chapter is interesting but not vital to later
chapters.

The next chapter turns for the first time to real computers. It surveys
their history, examines their social impact, and discusses how practical
machines differ from the simplified model computers considered in the
previous chapters.

Chapters 6, 7, and 8 cover computer programming. Chapter 6 intro-
duces the basic concepts, such as variables, loops, and decisions. Chap-
ter 7 concentrates on methods for writing very large or complex pro-
grams. And Chapter 8 finishes by looking at some of the many different
languages available for writing programs.

The last chapters of the book, Chapters 9 through 12, deal with
applications of computing. After a general survey of applications in
Chapter 9, the next three chapters cover three of the most important
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and exciting areas of computer science: computer graphics, parallel and
distributed processing, and artificial intelligence. These four chapters
can be read in any order.

* * *

The book is supplemented with a set of computer programs and with
lab worksheets based on those programs. The programs are currently
available only for Macintosh computers, but I am working to make them
available to run under Windows as well. The programs are closely tied
to the ideas covered in the text. They are not essential to understanding
the material in the book, but the hands-on experience they give could
certainly help to make some of the ideas presented here more accessible.
(They are also, as far as I can judge them myself, rather fun.) The
programs include:

e zLogicCircuits, which lets you build and run simulated circuits made
from AND, OR, and NOT gates, like those discussed in Chapter 2;

e xComputer, which implements the model computer, xComputer,
constructed in Chapter 3;

o zTuringMachine, in which you can enter rule tables for Turing Ma-
chines, as discussed in Chapter 4, and watch them as they move along
their tapes and perform the computations you have programmed;

o zTurtle, a programming environment for the programming language
xTurtle, which is discussed in Chapters 6, 7, and 10;

e xSortLab, a program for experimenting with the sorting algorithms
mentioned in Chapter 9; and

e xModels2D and zModels3D, programs for simple geometric mod-
eling and animation, based on the material on computer graphics in
Chapter 11.

The programs and the lab worksheets are available free on the Inter-
net for personal, private use, and they can be freely used in courses that
have adopted The Most Complex Machine as a textbook. I stipulate
that they cannot be used in other courses. You should be able to find
the programs in standard Macintosh FTP sites and bulletin boards. If
you have access to the World Wide Web, you can get more information
at the URL:

http://math.hws.edu/TMCM.html

My electronic mail address is eck@hws.edu. I can also be reached by
regular mail at the address: David Eck, Department of Mathematics
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and Computer Science, Hobart and William Smith Colleges, Geneva NY
14456. 1 encourage comments, questions, and general communication
(but do not guarantee a response to every message I receive).

* * *

The chapters of the book are divided into numbered sections, which
are in turn divided into subsections. When I refer to “Subsection 3.2.4,”
I mean the fourth subsection of the second section in Chapter 3. If I refer
simply to “Section 2,” I mean the second section in the current chapter.
Figures are also numbered within chapters, so that “Figure 3.7” means
the seventh figure in Chapter 3.

There is an annotated bibliography at the end of the book. Bibli-
ographic references within the text are indicated by the author’s name
enclosed in brackets, with a page number if appropriate. For example,
[Eck, p. 42] would refer to page 42 of a book in the bibliography by
someone whose last name is Eck.

Each chapter ends with a set of questions. Almost all of the ques-
tions are meant to be thought-provoking and to require more than short,
straightforward answers. The questions are part of the book and are
meant to be read and pondered. My answers to most of the questions
can be found in the last section of the book. You should read these
answers—after thinking about the questions on your own—since they
often provide more perspective on the ideas covered in the chapter itself.

* * *

I gratefully acknowledge the help and the encouragement of Kevin
Mitchell and Richard Palais, who read large parts of this book when
it was less readable than it is now and whose comments have certainly
made it a better book than it would have been otherwise. (And you
should obviously assume that any parts you don’t like are among the
parts they didn’t get to read in advance.) I would also like to thank
the copyeditor, Seth Maislin, and the people at A K Peters Ltd: Joni
McDonald, Alexandra Benis, and Klaus Peters.



Chapter 1

Introduction:
What Computers Do

WHAT COMPUTERS DO, of course, is compute. That is not the end of
the story, though. The real question is, how can computers do all the
remarkable things that they do, just by computing?

The essence of computing is the mechanical manipulation of
symbols. When people compute, in the ordinary sense, the symbols
are numbers, which are mechanically manipulated according to the rules
of arithmetic. For example, a person who memorizes a fairly small set of
rules and applies them correctly can multiply numbers of any size. The
rules include basic facts about the sum and product of any two digits,
along with a procedure that determines the steps to be carried out in
doing the multiplication: “Write down the numbers, one beneath the
other, with the rightmost digits lined up, and draw a line beneath them.
Multiply the top number by the rightmost digit of the bottom number,
writing the result under the line....”

This example reveals several important aspects of computation. First
of all, it is very boring. There are rules to be followed. They tell you
exactly what to do. No creativity. No fun. One small mistake and the
answer will be wrong. (This is what we mean when we say that compu-
tation is mechanical.) It is no surprise that people find it so difficult to
get through a large multiplication problem without error. Computers,
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on the other hand, have no such difficulty. They follow the rules without
error and without complaint.

Second, computation is, in itself, meaningless. This is hard for people
to understand, because people generally compute for a reason. A person
who multiplies 16 by 127 is likely to be doing it to find out how much 16
light bulbs cost at $1.27 each or how many calories are in 127 potato chips
if each one contains 16. But doing the multiplication involves following
the rules, putting aside all thought of calories or light bulbs. It may
be that the number “127” being multiplied represents 127 potato chips,
but those chips are external and irrelevant to the computation. This is
what we mean when we say that a computation manipulates symbols. A
symbol is something that, while meaningless in itself, can stand in for
some sort of external meaning. It is the nature of computation, however,
that any external meaning is irrelevant to the computation. Again, this
tends to make computation difficult for people, who deal naturally with
meaning and find it hard to ignore it.

It is important to understand one other aspect of computation from
the start. Although the term commonly refers to the arithmetical ma-
nipulation of numbers, it can refer to the manipulation of any sort of
symbols according to definite, mechanical rules. For example, the editor
who counts the number of words in a book, or who checks each word to
see whether it can be found in an official dictionary, is computing in this
sense. The symbols being manipulated in this case are words, and the
editor’s activities are examples of the type of “word processing” that can
be done more easily and more accurately by a computer, since counting
words or looking them up in a dictionary can be done by applying simple
rules that require no understanding of the words’ meanings.

All this is just the beginning of an explanation of what computation
is, but it is enough to introduce the questions which will occupy us for
the remainder of this book: How can a machine be built that can carry
out complex computations? How can those computations accomplish
things that seem to be much more than the mechanical manipulation of
symbols? And what are the limits to what can be accomplished, just by
computing?

1.1. Bits, Bytes, etc.

We can start with the question of what sort of symbols it is that comput-
ers manipulate. When people do arithmetic, the basic symbols are the
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digits 0 through 9. It is important to realize that the particular symbols
used are arbitrary. It makes no difference, for example, if the symbol 2
is replaced by %, as long as the rules are also changed in an appropriate
way (“6 times % is 1%”), and as long as you remember what % stands
for when it comes time to interpret an answer (“%03% is an awful lot of
calories!”).

For a computer, the basic symbols are the two digits 0 and 1. Since
there are just two of them, zero and one in this context are called binary
digits, which is almost always abbreviated to bits. Again, it makes no
difference if we use different symbols. We might, for example, decide
to represent the two possible bits as % and #, or by 7 and 3 for that
matter. Since there are two binary digits, they tend to be represented
as things that naturally come in pairs, such as true/false, on/off, and
black/white. We will use whatever representation seems most natural in
context.

Now, two symbols don’t seem to give us a lot to work with. For
that matter, the ten symbols of ordinary arithmetic might seem a bit
inadequate to cover the infinite range of numbers that can be represented.
You know how this dilemma is resolved: Any number of digits chosen
from 0 through 9 can be strung together to give a compound symbol,
such as 2032. By stringing together basic symbols, we can represent any
number whatsoever. The same principle works when there are only two
basic symbols. When we have more than two things to represent, we
can turn to strings of bits, such as 10011, to provide us with as many
different (compound) symbols as we need. If we are careful, we can
represent anything that a computer might have to deal with.

1.1.1. Binary Numbers. Among the most important things com-
puters deal with are numbers. As our first exercise in combining bits,
we can construct representations for the most basic type of numbers,
the counting numbers, or nonnegative integers. Using the digits zero
through nine, we write these numbers as

0,1,2, ...,9, 10, 11, 12, ..., 99, 100, ....

This way of writing numbers is called the base ten or decimal repre-
sentation, since ten digits are used and since the number ten plays such
an important role. It is useful to visualize counting in the base ten by
thinking of the way a car’s odometer keeps track of the number of miles
traveled. In a brand new car, the odometer reads all zeros: 000000. Ev-
ery time the car travels one mile, the rightmost digit increases by one,
from 000000 to 000001, up to 000009. At this point you run out of digits;
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the rightmost digit goes back to zero and the digit next to it increases
by one. This takes you up to 000099. At that point, you've run out of
digits in both the first and second places, so the zero in the third place
changes to one, giving 000100. (Ordinarily, of course, we don’t write the
zeros on the left—for one thing, there would be the problem of just how
many of them we should write!)

When we use just the two binary digits, 0 and 1, we are working in
the base two or binary system. To avoid confusion, I will subscript any
binary number with a 2, so you can tell the difference between 101105
(base two) and 10110 (base ten). To count in binary, you just need to
imagine an odometer with only zeros and ones: start with Oy, then 15—
oops, ran out of digits, so the last digit becomes 0 and the next digit
rolls over—105, 11o—ran out of numbers in both places this time—1005,
1015, 1104, 1115, 10004, 10015, .... We obtain a translation between
binary and decimal simply by matching up the numbers in each system
as we count:

01 2 3 4 ) 6 7 8 9 10 11
02 1 102 115 1002 1015 1105 1115 10002 1001y 10102 1011,

This is not a very satisfactory way to find a translation for, say, the
binary number 10011101015. However, a little analysis provides a more
satisfactory mechanism. I will work through the details of this analysis
not because the details are important, but because it shows how a simple
idea can be developed into a more complicated, but more efficient, com-
putational procedure. If you are not interested in this, you can safely
skip ahead to Subsection 1.1.2.

The first step in our analysis is to find out how many binary numbers
there are that are made up of k (or fewer) bits. For k = 1, there are only
two such one-bit numbers, 0y and 15. For & = 2, there are four two-bit
numbers: 002, 012, 105, and 115. (It will useful to write some extra zeros
on the left, so that each number in the list is a sequence of exactly k bits.
If you leave off the leading zeros, you have a list of numbers with “k bits
or fewer.”) Let’s consider the case k = 3 more carefully. A sequence
of three bits must begin with a 0 or with a 1, so we can divide such
sequences into two groups:

Starting with zero: 0005 001 0105 0115
Starting with one: 100, 1015 1105 1115

You can get the numbers in the first group by taking the list of all two-
bit numbers (00, 01, 10, and 11) and tacking a zero onto the beginning
of each. If you tack on a one instead, you get the second group.
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Now, there are two groups of numbers here. Each group contains
just as many members as there are two-bit numbers. This is just a way
of saying that there are exactly two times as many three-bit numbers as
there are two-bit numbers. By the same argument, there are exactly
sixteen four-bit numbers—just twice as many as the number of three-
bit numbers. We can list the four-bit numbers in two groups of eight

numbers each as
0000, 0001, 00105 00115 01005 01015 0110, 0111,
10005 10015 10109 10115 1100, 11015 11105 11114

This argument works for any number of digits. For any number k, there
are twice as many (k + 1)-bit binary numbers as there are k-bit binary
numbers. There are 2 one-bit numbers, 2 x 2 two-bit numbers, 2 x 2 x 2
three-bit numbers, and so on. In general there are 2% k-bit numbers,
where 2% is the kth power of 2, that is, 2 x 2 x --- x 2, with k factors
of 2.

Now, let’s return to the problem of trying to convert a binary number
to the base ten. First, note that the binary number consisting of a one
followed by k zeros represents the number 2¥. You can see this by noting
that, for example, in order to count up to 1003 you have to count past
the four two-bit numbers, so that 100, corresponds to 4—that is, to 22.
(It corresponds to 4, rather than 5, because you start counting with zero;
the first four numbers are 0, 1, 2, 3.) Similarly, to get up to 100005, you
have to count past the 2% four-bit numbers, so 100005 corresponds to 24,
or 16. (Note that the rule works even for k = 0 or k = 1, using the facts
that 2! =2 and 2° = 1.)

The more complicated number 10110, corresponds to 2% + 22 4 21
This can be justified directly by considering how you count up to 101105.
You must count past 24 numbers to get to 100005, then past another 22
to get to 101005 and finally past 2 more to get to 10110,. Alternatively,
you could anticipate the meaning of addition for binary numbers and
write

101105 = 100005 4+ 1005 + 10, = 2* + 22 + 21 =16+ 4 + 2 = 22.

The general rule for converting a binary number to the base ten is to
add up the powers of two corresponding to each 1 in the binary number.
To find the appropriate power, simply count bits from the right, starting
from 0 for the rightmost bit. As a final example, we can compute

10011101015 = 22 426 425 424 4 22 4 20
=5124+64+324+16+4+1
= 629.
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Binary Number Power of 2 | Decimal Number
1o 20 1
102 2! 2
1004 22 4
10002 23 8
100002 24 16
1000002 2° 32
10000002 26 64
100000004 27 128
1000000004 28 256
10000000002 29 512
100000000002 210 1024
10000000000000000< 216 65,536
10000000000000000000000004 224 16,777,216
1000000000000000000000000000000004 232 4,294,967,296

Figure 1.1. Some powers of two and their representations as binary
and as decimal numbers. Adding a zero onto the end of a base-two
number multiplies that number by 2, just as adding a zero to the end
of a base 10 number multiplies it by 10.

After all that, you might be wondering why computers use binary
numbers instead of just sticking to the more familiar decimal numbers.
In fact, it’s sort of an accident. Early mechanical calculating devices
generally represented numbers with wheels or gears that could be in one
of ten positions, one for each decimal digit. Such calculators worked
directly in the base ten. Modern computers are made out of electronic
components—for very good reasons involving speed and reliability. The
most natural “positions” for a wire in a circuit are on and off, which
correspond in a natural way to the two binary digits. Although it might
be possible to represent ten digits by using ten different voltage levels
in a wire, such a scheme would have two disadvantages: The inevitable
inaccuracy in measuring a voltage would lead to a much higher proba-
bility of error than occurs when only the difference between on and off
must be detected. And the complex circuits necessary to work with such
a representation would be very difficult to design and build.

1.1.2. Text. If you are like most people, there is something that
might be bothering you at this point. You might reasonably point out
that you have been working quite happily with computers for years—
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typing papers, drawing pictures, or whatever—without ever having heard
or thought of binary numbers. Although bits and binary numbers are
an essential aspect of the internal workings of computers, it’s true that a
person who simply wants to use a computer can do so without knowing
anything about them. Nevertheless, as you sit there typing on your
computer, everything that the computer does is in fact accomplished by
manipulating bits. We need to understand how so much can be done
with just the two values zero and one.

Let’s start with the simple question of how a computer can represent
the characters you type as binary numbers. The answer is also sim-
ple: Each possible character is assigned a unique binary code number.
Most computers use a code called ASCIT (American Standard Code for
Information Interchange). In this code, each character is represented by
an eight-bit binary number. For example, the lowercase letter ‘a’ corre-
sponds to 011000015, while the comma °,” is represented by 00101100,.
As we saw above, there are 28, or 256, different strings of eight bits, so
the ASCII code allows for 256 different characters. Only the first 128
of these are assigned standard meanings; on a particular computer, the
extra code numbers are either not used or are used for special charac-
ters such as the accented e, ‘¢’. Of the 128 standard codes, not all of
them stand for characters that might appear on your computer screen.
Some are used for so-called “nonprintable” or “control” characters, such
as a tab or carriage return (which have codes 000010015 and 000011015,
respectively).

An eight-bit binary number is also called a byte, so that it takes ex-
actly one byte to specify one character in ASCII. Data is often measured
in bytes rather than bits. For example, a document stored on the com-
puter might contain 10,000 bytes. That is another way of saying that it
contains 10,000 characters, or 80,000 bits.

Now, any ASCII code number could just as easily be written as a
decimal number somewhere in the range from 0 to 255. In base ten, the
codes for ‘a’, comma, and tab are 97, 44, and 9, respectively. In some
sense, though, the binary numbers are closer to reality. When you press
the letter ‘a’ on your keyboard, the eight bits 0, 0, 1, 0, 1, 1, 0, O are
transmitted to the computer. If the computer is storing the letter ‘a’,
then somewhere inside it that sequence of bits is stored in some way. As
a user of the computer, you don’t have to be aware of any of this—as far
as you are concerned, the computer simply understands the letter you
type. However, its “understanding” is all based on pushing bits around,
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and the people who design computers (or who try to understand them)
must sometimes deal with things on that level.

The particular code number used for each letter is arbitrary; the
code is a symbol for the character, whose meaning is established only by
convention. As long as everyone knows what convention is being used,
no problems arise. In fact, some computers use codes other than ASCII
internally, but ASCII is currently used for most communication between
computelrs.1

Once individual characters are coded as binary numbers, the step
up to representations for words, sentences, or longer pieces of text is
easy. To represent a word such as ‘cat’, just string together the codes
for the individual letters ‘c’, ‘a’, and ‘t’. Using the ASCII codes for
the individual letters, this would give 0100001101100001011101005. An
entire document in a word processor could be represented simply as a
(very long) string of bits. Special features, such as the beginning of a
new paragraph, might be indicated by inserting ASCII codes for non-
printing characters. Admittedly, this is not the only, or even the best,
way to encode a large document. In fact, each word-processing program
tends to use its own encoding. Once again, the person using the program
doesn’t need to know what that encoding is.

1.1.3. Everything Else. Counting numbers, characters, and text
represent only a few of the types of data that computers must deal with.
A partial list of other data types would include negative integers, decimal
numbers, fractions, dates and times, sounds, pictures, animated images,
chess boards, airline flight schedules, computer programs, and textbooks
about computers. No matter what type of data is being considered, it
must be represented in the computer as a pattern of bits.

For example, when I look at the letter ‘t’ displayed on my computer’s
screen, what I actually see is a picture of a ‘t’. If I look closely, I can see

! This might change. A new standard code called Unicode has been proposed
(and has been adopted for the new Microsoft operating system Windows NT).
Unicode uses a sixteen-bit code number for each character. Thus, Unicode takes
up twice as much space as ASCII, but it provides for 26, or 65,536, different
characters. It includes standard code numbers for all the characters available in
ASCII as well as the Arabic, Hebrew, and Cyrillic alphabets, complete sets of
Japanese, Korean, and Chinese characters, and many mathematical and other
special symbols, with room for much more [Custer, p. 42-44]. (As an exercise in
developing your “number sense,” you might consider how merely doubling the
size of the representation gives such a huge increase in the number of different
things that can be represented.)
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that that picture is just a grid of black and white dots. In fact, the entire
screen is simply a grid of dots, each of which can be either off (black)
or on (white). The individual dots are called pixels, short for “picture
elements.” The computer controls what is displayed on the screen by
turning each individual pixel on or off.?

This off/on distinction should remind you of the 0/1 of binary num-
bers, and in fact, the state of each pixel on the screen can be represented
by a single bit. From there, representing the entire screen is easy—it can
be represented by a string of bits, with one bit for each pixel. On my
Macintosh SE/30, with its 512 by 342 grid of pixels, that’s a 175,104-bit
number! The number that represents the current image displayed on
the screen is actually stored somewhere inside the computer, in what we
might call video memory. When the computer needs to change the
image displayed on the screen, it modifies the number in video memory
in the appropriate way. (The changes made to this memory are auto-
matically reflected on the screen; we won’t worry for now about how this
happens.)

For example, to display a ‘t’ on the screen, the bits representing a
picture of a ‘t’ are copied to the appropriate place in video memory,
depending on where on the screen the ‘t’ is to be displayed. Figure 1.2
shows how ‘t” might be represented as a grid of pixels, and how that grid
is in turn equivalent to a binary number.

Any image that consists of just two colors (black and white) can be
represented in the same way. Of course, the amount of detail that can
be shown is limited by the size of a pixel. On a typical computer screen,
individual pixels are clearly visible. But if small enough pixels are used,
the result appears to the eye as a continuous image. The process of
representing an image as a string of binary digits is called digitizing
the image. Color pictures and pictures consisting of shades of gray can
also be digitized. Each shade to be used in the image is assigned a
binary code number, so that the color of each pixel can be indicated by
specifying one of the possible codes. The full image is then represented
by stringing together all the codes for the pixels.

2 Most computers now have color screens. Instead of being restricted to of f
or on, each pixel can be set to one of some specified number of colors. On one
common type of system, each pixel can be one of 256 different colors. Since 256
is 28, the color of each pixel can be represented by an 8-bit binary number; we
say that such a color image requires one byte per pixel. Systems that use 24,
216 or 224 different colors are also common. Can you guess why the number of
colors is generally a power of two?
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Figure 1.2. A picture of the letter ‘t’, represented as a grid of (big)
pizels, as the corresponding grid of bits, and as a binary number. The
40-bit number is obtained by stringing together the rows in the grid of
bits.

You should now see how representations can be built for just about
any data using only binary numbers. For data whose possible values are
not already numbers, there are really only three basic methods that are
needed: combination, enumeration, and digitization.

To represent something that breaks down naturally into a finite num-
ber of pieces, find a representation for each of the pieces and combine
them to represent the whole. This is how we dealt with words—by
stringing together codes for each individual character in the word. And
to represent a date, we can combine separate codes for the month, the
day, and the year.

When you encounter a type of data whose possible values can be
listed, you can simply enumerate those values and assign each a code
number. The ASCII code is just such an enumeration of characters.
Similarly, we often represent the months of the year by the numbers 1
through 12. On a somewhat more abstract level, suppose you want to
represent the contents of a square on a checkerboard. There are five pos-
sible values, which can be enumerated as: empty, red piece, black piece,
red king, and black king. One possible binary representation is obtained
by encoding “empty” as 02, “red piece” as 1z, and so forth. (Then, of
course, given that a checkerboard consists of 64 squares, you can repre-
sent a complete board position by combining the 64 code numbers that
represent the contents of the individual squares.)

The third method of representation, digitization, is used when there
is an unreasonably large, or even infinite, number of possibilities to be
dealt with. A perfect representation of a picture would specify the color
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of each of its infinitely many mathematical points; as we have seen,
though, specifying the color of points in a finite grid gives an adequate
approximation. Note that this can be seen as an approximate application
of the first representation method, combination, to the case where the
data has an infinite number of parts. If the data has an infinite number
of possible values, then an approximate version of enumeration can be
used. This is what we do when we encode only a selected finite number
of colors out of the theoretically infinite range. Thus, a digitized color
image involves both types of approximation.

As a final example, consider digital sound recording, which is used to
produce the disks used in compact disk players. A sound can be specified
by giving its intensity, or amplitude, at each instant of time. Digitizing
the sound involves two approximations: The intensity is recorded at only
a finite sample of points in time, and the recorded intensity is limited to
only a finite number of possible values. For a compact disk the intensity
is sampled 44,000 times per second, and each intensity measurement
is encoded as a 16-bit binary number (so a full hour of music on such
a disk requires about two-and-a-half billion bits). The fact that the
recorded sound is only an approximation has little practical effect. Any
recording method will introduce some error, and the errors introduced
by digitization are very small and (according to most people) inaudible.

1.1.4. Structured Complexity. We have now seen how all the
data to be used by a computer can be represented as a collection of bits,
which can then be directly manipulated by the computer. However, we
have been sweeping under the rug the issue of how that collection of bits
is organized.

Suppose I were to point to some particular sequence of bits inside
a computer and ask what it represents. Without further information,
the answer could be almost anything—the current date, the color of
some particular pixel on the screen, the board position in a game of
computer chess, Joe DiMaggio’s batting average in 1939.... What it
actually means is determined not just by the sequence of bits but also
by the physical structure of the computer itself, by the overall structure
of the data encoded in the computer, by the program that is running,
and by the intentions of the person using the computer. All these things,
except perhaps the intentions of the user, are subjects of study in com-
puter science. At this point, you might be thinking that it is hopeless
to try to understand such complexity, but in fact, our discussion of data
representation holds some clues to how such understanding is possible.
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The key is that the data in a computer is not really just a massive
jumble of bits. Instead, the data is carefully organized into complex
structures. The structure is a natural result of the way that complex
representations are made by combining simpler representations.

Consider the problem of representing an airline’s flight schedule. Such
a schedule could be simply a list of data for individual flights. The data
for each flight in turn has a certain structure, perhaps including the date
and time of the flight, the names of the cities where the flight originates
and terminates, and the flight number. The name of each city is in turn
a string of characters, which can be represented in ASCII code. The date
consists of a month, a day and a year, and so forth. Furthermore, the
flight schedule will itself be only part of an airline’s database, which will
have its own complex structure. The meaning of any particular part of
this structure depends on its role in larger components of the data. Thus,
a particular group of bits would represent the year 1993 because it is a
certain part of the representation of a date; that date would represent
the departure date for a particular airline flight because it happens to
be stored in the proper corner of the data for that flight; the flight data
can be recognized as such because it occupies a particular place in the
list of data for all flights.

In practice, complex data can be managed because it can be viewed
as being made up of simpler “chunks,” which are combined together in
some reasonably straightforward way to give the whole. Of course, each
chunk might be made up of even simpler pieces. Eventually, though, the
process bottoms out in simple data, such as single characters or numbers,
that can be represented directly. Although the overall structure is very
complex, it is comprehensible because the chunking that occurs on each
level is manageable.

The theme of levels of structured complexity is one that will come up
over and over again in this text (starting with the next section). Indeed,
it is in some ways the central theme of computer science.

1.2. Transistors, Gates, etc.

What makes a computer such a remarkable machine is its versatility. A
single computer can perform any number of different tasks. From another
point of view, though, a computer does only one thing: It executes
programs. A program is nothing but a list of instructions for performing
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Figure 1.3. A crude illustration of a computer, showing two of its ma-
jor components: the memory and the central processing unit. Mem-

ory holds data and programs in a sequence of numbered locations. The

CPU reads and executes the programs stored in memory. Three connec-
tions exist for communication between the CPU and the memory. The

first two carry data and program instructions back and forth. The third
s used by the CPU to specify which location in the memory it wants to
access. A much fuller depiction of a computer is given in Chapter 3.

a particular task. To get a computer to perform a new task, you just
have to give it a new program to execute.

A computer is built to execute programs. From the moment it is
turned on, it mindlessly follows instruction after instruction, and it does
so because that’s the way it is physically put together. In order to
understand what is meant by this, you need to have some idea of the
main parts of a computer and how they operate. For now, it is enough to
know about the computer’s memory and its central processing unit
(CPU).

The memory holds a large collection of bits, representing both the
data and the programs currently available to the computer, encoded as
patterns of bits. Memory is organized as a sequence of locations, with
each location holding some fixed number of bits. (On most computers,
each location holds eight bits, so that the memory can be considered to
be a long sequence of bytes.) Each location is identified by a number,
which must be specified whenever the contents of that location are to be
read or changed.
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The central processing unit is the active part of the computer; it ac-
tually executes a program stored in memory. The program, remember,
is simply a list of instructions stored in a sequence of memory loca-
tions. The CPU executes the program by repeating the same two-step
procedure over and over: It reads the next instruction from memory
and then executes the instruction. This process is called the fetch-
and-execute cycle. The CPU has a small internal memory called the
program counter in which it keeps track of which memory location
contains the next instruction to be executed. The program counter is
automatically updated as part of the fetch-and-execute cycle, so when-
ever it needs to fetch a new instruction, the CPU simply needs to read
the contents of the memory location indicated by the program counter.
(If you imagine yourself as the CPU following a list of instructions, the
program counter is like a finger that you run down the list to keep track
of your place. When you are ready for a new instruction, you just look
to where your finger is pointing; after reading that instruction, you move
your finger down to the next one on the list.)

Like anything else stored in memory, an instruction read into the
CPU is really just a binary number, that is, a pattern of zeros and
ones. The CPU doesn’t think about what the instruction means or
interpret it in any way—it is just constructed in such a way that it
will physically react to the pattern by performing the action which the
instruction represents. The patterns of zeros and ones understood by
the CPU are called the machine language of the computer. Each type
of computer has its own machine language, and any program for that
computer must ultimately be encoded into machine language before it
can be executed. Each machine language instruction is very simple and
accomplishes very little. The power of the computer comes from its
ability to execute millions of such instructions per second.

This short description is a start at understanding how a computer
works, but it is by no means obvious how a pile of electronic components
can be assembled into a device that will “execute instructions” when
it is turned on. It is not easy to design such a device, even when the
instructions to be executed are kept very simple. Fortunately, we have
already encountered a way of dealing with such complexity: Instead of
trying to understand everything at once, we try to see how it can be
built up, level by level, out of simpler chunks. We will begin on the very
lowest level.
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1.2.1. Switches. It is a nice visual image to imagine the processing
of data and programs inside a computer as a swirl of zeros and ones being
moved around in complex patterns. Of course, in reality the zeros and
ones are represented by the absence or presence of currents on wires.?
Moving the zeros and ones around really means switching the currents
on and off. This switching is the fundamental operation on which the
overall operation of the computer is based. In modern computers, the
switches are transistors.

You can think of a transistor as a box connected to three wires: one
for input, one for output, and one to control the switch. (What’s inside
the box is a subject for physics rather than computer science and need
not concern us here.) Each wire can be either on or off. The transistor
acts like a gate. When the control wire is off, the gate is open, and
whatever current is on the input wire will flow through to the output
wire; if the control wire is on, the gate is closed, and the output will
be off regardless of the state of the input. It is probably more useful
to think in terms of a flow of information rather than a flow of current.
The input wire carries information (a 0 or 1) into the transistor. If the
control wire is off, that information flows through to the output. If it
is on, no information about the input gets through—the output will be
off, representing a 0, but this will be true regardless of the input, so that
looking at the output gives no information about the state of the input.
(Remember that turning the control wire on closes the gate and blocks
the information.)

Note that the input, output, and control of the transistor are really
all the same sort of thing—wires that can be either off or on, represent-
ing zeros and ones. This has profound implications. It’s what makes it
possible for patterns of bits to act either as data (input and output) in
computations or as instructions in a program (which control the compu-
tations). In fact, there is nothing to stop you from hooking up the output
of one transistor to the control of another, which is the basis for allowing
computations to be controlled by data. The distinction between data
and programs becomes a matter of point-of-view, rather than a matter
of fact. The same bits that are at one moment being manipulated as data
might at the next moment be controlling the manipulation of other bits.

3 This is not quite true. It would be more correct to talk about the “elec-
tric potential on the wire being set to —5 or 5 volts” (or some other values).
Note also that other physical representations for a bit are possible, such as
a static electric charge or the orientation of a magnetic field, and that such
representations are used in certain types of computer memory.
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Figure 1.4. Schematic representations of a transistor, shown with the
control wire turned off on the left and on on the right. These drawings
are meant to illustrate that turning the control wire on will break the
connection between input and output, cutting off the flow of informa-
tion.

We can now form a (slightly) clearer idea of what happens as the CPU
executes an instruction. Loading an instruction from memory means
turning certain wires in the CPU on or off, according to the pattern of
bits in the instruction. This is supposed to bring about the computation
that the instruction represents. The computation is performed by tran-
sistors, generally in a number of stages. The wires encoding the instruc-
tion, along with wires encoding any data to be manipulated by the in-
struction, are connected to the inputs and controls of transistors, and the
resulting outputs from those transistors represent the first stage in the
computation. The output wires are connected to other transistors which
continue the computation, until eventually the instruction has been com-
pleted. While we are still a long way from really understanding this pro-
cess, this description shows what it means to say that the CPU executes
instructions mechanically, simply because of the way it is put together.

As we start building circuits, we need a way of drawing transistors.
The picture I will use is not based in the least on the way transistors
actually look or work, nor is it the picture used in electrical engineering;
rather, it is intended to depict the function of the transistor in a trans-
parent way. Figure 1.4 shows a transistor as we will draw it in its two
possible states, with the control wire either on or off.

Since we are so little concerned with the physical nature of transistors,
you might guess that other physical objects that have similar behavior
could also be used to build computers. You would be right. Some very
early computers were built out of relays, mechanical devices that really
do look a lot like our schematic illustrations of transistors.* Computer

41n a relay, turning on the control wire activates an electromagnet which
pulls a metal rod into a position that physically closes the connection between
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Figure 1.5. A NOT gate constructed from a single transistor. This
circuit has one input and one output. The output is determined by the
rule that the output is off whenever the input is on, and vice versa.

designers soon turned to electronic devices, which can be switched on
and off more quickly than relays. The first electronic computers used
vacuum tubes as their switching element. The basic ideas are the same
whether they are implemented in relays, vacuum tubes, or transistors.
As we design new circuits, keep in mind that it is the rules that govern
the behavior of their components that are important, not the physical
details of their construction.

1.2.2. Circuit Building. It’s time to descend from generalities
to considerations of how we can actually put transistors together into
circuits that perform useful computations. We start by building basic
circuits for some very simple operations. Later, we will see how to build
more complex circuits from these basic building blocks.

The first circuits we consider have one or two input wires and one
output wire. The value on the output wire is determined by some fixed
rule from the input bits. For a single input and a single output, there
are only two possible rules: Either the output is the same as the input,
or it is the reverse of the input (on when the input is off and off when
the input is on). The first case is rather boring, since the “circuit” could
be nothing but a wire connecting the input to the output. A circuit that
reverses its input, however, is very useful. It can be built from a single
transistor.

Such a circuit is diagramed in Figure 1.5. Note that the input to
the circuit is used as the control wire for the transistor. The transistor’s
input is connected to a wire that is permanently on. This wire must
be connected to the computer’s power source, which of course must be

input and output. This is different from transistors, in which a signal on the
control wire breaks the connection, but this difference forces only minor changes
in circuit design.
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turned on before the circuit can do anything. (All of the circuits we build
have such internal connections to a power source, which are not counted
as inputs to the circuits since their values never change; they provide the
power that drives the computer, but they do not carry information.)

We should check that this circuit behaves as advertised. If the cir-
cuit’s input is off, then the transistor’s control is off, so the transistor’s
input passes through to its output wire; since its input is on, so is the
output, as desired. Turning the circuit’s input on will turn on the tran-
sistor’s control wire, which will cause its output to be off, again as
desired.

The circuit we have built is called a NOT gate. The use of the term
“gate” here is standard, but has nothing to do with gates that open and
close, except in the sense that the output can be on or off. The word
“NOT” can be justified if we think of a bit as having one of the two
possible logical values, true or false, instead of a numerical value, one
or zero. In logic, “NOT” reverses the truth of a statement: NOT true is
false, and NOT false is true. We will have a lot more to say about
the relationship between logic and circuits in the next chapter.

We turn now to circuits that have two inputs and one output. Since
each input can be separately set to be on or off, there are exactly four
possible states that the input can be in: on/on, on/off, off /on, and off/off.
The behavior of the circuit is determined by what output it gives in each
of these four cases. One such circuit is the AND gate, which follows
the rule that the output is on if both inputs are on and is off in the other
three cases. (The output is on exactly when input 1 is on “AND” input 2
is on.) An AND gate can be constructed from four transistors, as shown
in Figure 1.6.

The last basic circuit that we need is the OR gate, which also has
two inputs and one output. The output of an OR gate is on if either the
first input is on, OR the second input is on, OR both are on. The output
is off only if both inputs are off. An OR gate can be constructed from
three transistors. You might want to construct a table and diagram for
an OR gate like those given in Figure 1.6 for an AND gate.

We could go on indefinitely building more and more complex circuits
from transistors, but as it turns out we don’t have to. In fact, transistors
will hardly be mentioned again in this book. The AND, OR, and NOT
gates we have built from them will provide the basis for all further work.
These gates can already be said to perform simple computations, in the
sense that they manipulate bits according to certain rules. We will see
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First Input Second Input Output of AND Gate
on on on
on off off
off on off
off off off
T oNe |
First | |
Input | |
| ' |
| ONe |
Second |
Input | | Output
[
| |
| |
| I
[ ONe - | - |
L = ] I

Figure 1.6. A table specifying the behavior of an AND gate, a circuit
with two inputs and one output. The diagram shows how an AND gate
can be constructed from four transistors. In the diagram, the first input
is on, the second is off, and the output is off, as specified in the table.
You can check that the other three lines in the table are also satisfied.

that every computation that a computer needs to do can be performed
by a circuit put together out of AND, OR, and NOT gates.

The circuits we will build will be very complex. Fortunately, their
complexity is structured; that is, complex circuits (like complex data
structures) can be viewed as made up of simpler components, which can
themselves be made of even simpler components and so on, until the
process bottoms out on a level where the components are trivial. In the
case of data, the trivial components are individual bits; for circuits, the
trivial components are transistors. We have already taken the first step
towards complexity by assembling transistors into gates. In Chapters 2
and 3, we will build more and more complex circuits, one (reasonably)
easy step at a time, until in the end we see how to build an entire
computer.

For now, you should carry away a sense that what’s going on inside
a computer is a complex flow of zeros and ones, representing data, being
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manipulated by circuits under the control of other zeros and ones, rep-
resenting program instructions, with all this activity adding up to useful
and meaningful computations—and you should at least be starting to
believe that eventually you’ll be able to understand the whole process.

1.3. Instructions, Subroutines, etc.

If computers are complex circuits that manipulate data under the di-
rection of programs, then there is one more topic that belongs in this
introductory chapter: What are programs and how can they be con-
structed?

We have already encountered the rather vague idea that programs
are lists of instructions, and we have seen that the most primitive pro-
gram instructions are patterns of bits called machine language. To really
understand programs you need to know (1) what types of things ma-
chine language instructions can do and (2) what methods are available
for building complex programs, starting with simple machine language
instructions as a base.

1.3.1. Instructions, Decisions, and Loops. Although different
computers can have very different machine languages, there are certain
generalizations that can be made. Every machine language, for example,
must include instructions that tell the CPU to perform basic operations
such as addition and subtraction. Also required are instructions that
move data back and forth between memory, where it is stored, and the
CPU, where all calculations are performed. These commands need some
way of picking out particular pieces of data in memory. Recall that
memory is made up of numbered locations, so picking out data just
means specifying which memory location it is in. Typically, a machine
language instruction has two parts, a binary code number specifying
what operation is to be performed, and a number (also represented in
base two) indicating the location of the data to be operated on.

While it is not universal, one common way of building a CPU is
to provide it with an accumulator. The accumulator provides memory
inside the CPU for one piece of data. (Here, “piece of data” means a cer-
tain number of bits; the number depends on the computer but is typically
thirty-two or sixteen.) An instruction for moving data from memory into
the CPU would then say, in effect, “Copy the data from memory loca-
tion N into the accumulator,” where N is the location number included
as part of the instruction. Similarly, the machine language would have
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an instruction that says, “Copy the contents of the accumulator into the
memory at location N (replacing what’s there now).”

Instructions for arithmetic operations also use the accumulator. An
addition instruction, for example, specifies just one address in memory,
where one of the numbers to be added is to be found; it is assumed that
the other number to be added is already in the accumulator. After the
numbers are added, the answer replaces the former value in the accumu-
lator. Thus, adding two numbers together requires three instructions:
one to copy the first number from memory into the accumulator, one to
add the second number to the accumulator, and finally one to copy the
answer from the accumulator back into memory. (The name of the accu-
mulator comes from the fact that it is used to “accumulate” the answer
in a step by step computation.)

Besides instructions to move data around and instructions to perform
operations on data, there is just one more essential type of machine
language instruction that you need to know about: Instructions that
change the value in the program counter.

Recall that the CPU uses the program counter to keep track of where
it is in the program it is executing. The program counter contains the lo-
cation in memory of the next instruction in the program to be executed.
Now, if all the CPU could do is move down the program at the rate of a
few million instructions per second, it would run out of program pretty
quickly! It must be able to reuse the same set of instructions over and
over. In fact, much of the power of a computer comes from this ability to
repeat a task over and over without human intervention. A list of instruc-
tions that the computer cycles through more than once is called a loop.

The solution is simple. The machine language can include a jump
instruction whose effect is to change the value stored in the program
counter. Since the only way the CPU knows which instruction to exe-
cute next is to look at the value stored in the program counter, a jump
instruction—by changing that value—says in effect, “Take the next in-
struction to be executed from memory location N,” where N is the (bi-
nary) number included as part of the jump instruction. The execution
of the program will then continue automatically from the new location,
at least until another jump instruction is encountered. A loop can be
implemented by putting a jump instruction at the end of the loop to
transfer execution back to its beginning.®

5 Note again the mechanicalness of all this. Although we might say that the
jump instruction means “jump to a new location,” the way the jump happens
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A variation of the jump instruction called a conditional jump pro-
vides another of the computer’s essential abilities, by allowing a program
to make decisions between alternative courses of actions, depending on
circumstances. A conditional jump changes the value of the program
counter only if a certain condition holds. The condition to be tested is
built into the instruction, so that a different instruction must be included
in the machine language for each type of test it allows. The tests are of a
very simple type, such as checking whether the value in the accumulator
represents a binary number greater than zero. Such a conditional jump
instruction would mean, “If the number in the accumulator is greater
than zero, then take the next instruction to be executed from memory
location N (and otherwise continue as usual).”

Such a test can be more useful than it might appear at first, if the
number in the accumulator is the result of some meaningful calculation.
On your tax return, you might see the instructions, “Subtract line 60
from line 53. If the result is greater than zero, send in a check for this
amount; otherwise you are entitled to a refund.” This could easily be
paraphrased in three machine language instructions as something like:
“Get the number from memory location 53; subtract the number in
location 60; if the answer is greater than zero, then go to the instruction
in location number 1375 (or wherever the program for sending in a check
is to be found).”®

Conditional jumps also play an important role in loops. If they did
not exist, the computer would have to continue in the loop forever. In
practice, the instructions in the loop would include at least one con-
ditional jump to some memory location outside the loop. Each time
through the loop, the condition will be checked; if the test is satisfied,
the jump will take place, and the computer will break out of the loop.

1.3.2. Building Programs. The capabilities of individual ma-
chine language instructions are extremely limited. Building a program
to perform some complex task from such primitive components seems a

is entirely automatic. The jump instruction is fetched from memory into the
CPU; the resulting activity in the CPU causes a new value to replace the current
value of the program counter; when the CPU goes to fetch the next instruction
to execute, it takes that instruction from the location indicated by the program
counter, just as it always does. The CPU doesn’t “know” that it has jumped
to a new location.

6 Perhaps people have trouble filling out tax returns because the instruc-
tions for them are more appropriate for computers. People, fortunately for our
dinner-table conversation, don’t think much like computers.
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daunting prospect. I'm sure by now you can guess the solution: Complex
tasks can be decomposed into simpler tasks, which themselves might be
capable of further decomposition, until the process bottoms out in triv-
ial operations. Although you might find it unlikely now, for any task
that can be performed by a computer, this process of decomposition ul-
timately must bottom out at just the sort of trivial operations provided
by machine language.

Loops and decisions provide two ways by which instructions can be
“chunked” into larger, meaningful structures. From one point of view,
a loop is just a bunch of bits, in which the bits at the end happen to
encode a jump instruction. But to the person who designed the program,
the instructions inside the loop perform some meaningful task, and the
loop as a whole performs the slightly more complicated task: “Do this
[the inside of the loop] over and over.” Similarly, decisions can be used
to build program chunks that say: “If such-and-such a condition holds,
then do this; otherwise do that,” where this and that are simpler
chunks that perform some meaningful tasks.

Most machine languages provide one other mechanism, subroutines,
to support the construction of programs through chunking. It is in-
evitable that a programmer will think of certain sequences of instructions
in a program as performing certain subtasks in the overall operation of
the program. Without subroutines, this breakdown of tasks into sub-
tasks would exist only in the mind of the programmer; with subroutines,
it can be reflected in the physical structure of the program.

A subroutine is a list of instructions, which is stored beginning at
some location in memory. (It could hardly be anything else.) What
makes it special is the availability of a machine language instruction,
which we can call jump-to-subroutine, that says in effect, “Go exe-
cute the subroutine that starts at memory location N, and after it is
finished, return to the current location in the program and continue on
from there.” That is, when a jump-to-subroutine instruction occurs, the
entire subroutine will be executed, and then the computer will return to
the location in the program where the jump-to-subroutine instruction is
located and continue on from there.”

7 A jump-to-subroutine is similar to a simple jump to the start of the subrou-
tine except that before the jump is executed, the current value of the program
counter is stashed somewhere where it can be found when needed. Restoring
the program counter to this value will, in effect, send the computer back to
where it was when the subroutine was called. The subroutine must end with
another new instruction called return-from-subroutine. The effect of this
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Note what is happening here: The single jump-to-subroutine instruc-
tion acts as a stand-in for the entire subroutine. You can think of that
single instruction as performing the entire task specified by the subrou-
tine, no matter how complicated. It’s almost as if a new instruction for
performing that task has been added to the machine language. And of
course, that’s just how the programmer should think of it—the subrou-
tine is a meaningful chunk which, once constructed, can be used as a
building block in more complex structures.

Although machine language is the native language of the computer,
most computer programmers never write a program in machine language.
They write instead in what are called high-level languages, such as
BASIC and Pascal. The programs they write must be translated into
machine language before the computer can execute them, but the trans-
lation is itself an automatic process that is done by computer programs
called compilers. So, the programmer really has no contact with ma-
chine language at all—any more than a person using a word processor
has contact with the structure of bits that represent a document in the
computer.

Machine language tends to be a concern for people designing—or,
like you, trying to understand—computers, rather than people who just
use them or write programs for them. This book deals with machine
language mostly in Chapter 3, where computer design is discussed. In
Chapters 6 and 7, we will turn to programming itself as an object of
study, and in those chapters we will use a high-level language. Even when
we get to that point, though, your experience with machine language
won’t be wasted. Although high-level languages are much easier to work
with than machine language, they are based on the same capabilities we
have been discussing in this section, including moving data around, basic
arithmetic operations, loops, decisions, and subroutines.

1.4. Handling Complexity

Computers are among the most complicated artifacts that people
have ever constructed, and the programs that they execute can be even

instruction is to get the stashed program counter value and to restore the pro-
gram counter to that value; this accomplishes the jump back to proper location.
Note that since the computer “remembers” where it is supposed to return to
after the subroutine finishes, the same subroutine can be called from several
different places in the program. The computer will always to manage to return
to the right place.
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more complex. Any attempt to understand computers and programs
on more than a superficial level must acknowledge that complexity, and
must have some method for dealing with it.

We have now seen the same method in three different areas: comput-
ers, programs, and complex data structures. In fact, the method we have
used may well be the only way people have for dealing with complexity.®
A person seeking to build or to understand a complex structure must
approach it at many different levels, one level at a time. These levels
form a hierarchy of increasing complexity. Except for the bottommost
level, items on each level are built from items on the level below. The
step from one level up to the next must be simple enough to be eas-
ily grasped. The final result—on the top level—can be vastly complex
yet still comprehensible. The applicability of this approach extends far
beyond computer science.

On the bottom level of the hierarchy are things that are not con-
structed from components simpler than themselves, such as the bits that
make up data structures, the transistors that make up computer circuits,
or the machine language instructions that make up programs. Every-
thing on higher levels is built out of these fundamental parts, but it is
the way that the parts are structured, not just the parts themselves, that
makes comprehension possible.

But wait—what’s this about machine language instructions being on
the bottom level? Aren’t machine language instructions made up of bits?
So can’t they be decomposed into simpler parts? Actually, in practice,
what constitutes the bottom level is a matter of choice. You are free
to choose where to stop analyzing things into simpler parts, and you
stop when you judge that further analysis is not necessary or helpful.
In this chapter, I chose to take machine language instructions as the
fundamental building blocks of programs, because I was interested in
the way programs are actually executed by computers. Such a point of
view would not be useful to someone writing a program in a high-level
language; that person would rightly consider the instructions of the high-
level language as basic, even though from the computer’s point of view,
such instructions must be further decomposed into machine language
instructions before they can be executed.

8 All right, I admit to exaggerating here. I can think of at least one other
important method for dealing with complexity, that is, by explaining it as
arising from the action of simple, generally mathematical laws. This is the
canonical approach in physics, for example, but its application elsewhere, even
in the other sciences, is more limited than is often appreciated.
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The whole idea of levels of complexity is a resource available to you
when you need it, not a rigid rule handed down from above that you
are forced to obey. Using it well takes practice and ingenuity but offers
rewards of great intellectual satisfaction. I think you will find that this
is a source of much of the fascination that computers hold.

Chapter Summary

A computer computes by executing a program, which is a list of machine
language instructions. All that the computer does is fetch an instruction
from its memory, execute it, and then repeat the same process over and
over. It does this mechanically: An instruction is a binary number, a
pattern of zeros and ones, that causes certain wires in the computer to be
turned on and off. These wires turn other wires on and off and so forth,
until the net result is that an instruction has been executed—without
any awareness or thought about what the instruction means.

Each individual machine language instruction is almost absurdly sim-
ple, and the only way that complex programs can be composed from such
simple parts is by grouping together instructions into meaningful—to the
programmer not the computer!~—components, which can themselves be
used as parts to build even more complex components, and so forth until
programs of extraordinary complexity have been created. The methods
available for building structures of instructions include loops, decisions,
and subroutines.

This type of structured complexity has many applications besides pro-
gramming. The data manipulated by a computer are one such applica-
tion. On one level, all data are made up entirely of zeros and ones. But
these are combined into meaningful structures of many different types,
including binary numbers, text, pictures, and sounds.

The computer itself is another application. In one sense, a computer
is just a pile of almost absurdly simple components, such as transistors,
that individually can do very little. But these components are organized
into more complex components, such as AND, OR, and NOT gates. As
you we will see in the next two chapters, these can in turn be assembled,
step-by-step, into a complete computer.

At the beginning of this chapter, I said that what computers do is
compute. That should mean a lot more to you now than it did then.
In a sense, the rest of this book is just filling in details in the picture
presented in this chapter. That doesn’t mean it will always be easy, but
I hope you will find it to be a grand adventure.
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Questions

1. The problem of converting a base 10 number to base 2 was not
covered in the text. Here is an example of one method. Consider the
number 53. Our object is to write 53 as a sum of powers of 2, with each
power appearing at most once. Being familiar with the powers of 2 (see
Figure 1.1), you recognize that 32 is the largest power of 2 that is less
than or equal to 53, so that 53 = 324 21. Similarly, we see that 16 is the
largest power of 2 that is less than or equal to 21, so that 21 = 16 + 5.
Finally, 5 =4 + 1. To put it all together,

53 =32+16+4+1
=925 494492490
= 1000005 + 100005 + 1005 + 15

= 1101015.
Apply this procedure to several other base 10 numbers. Discuss why this
method works. Why is it necessary at each step to choose the largest
possible power of two?

2. When we counted the number of binary numbers with k bits,
including possible leading zeros, we found that there are 2¥ of them. To
be sure you understand this analysis, you might consider a related prob-
lem from biology. A molecule of DNA is simply a sequence of simpler
molecules called nucleotides. There are four nucleotides, represented as
A, T, C, and G. A complete DNA molecule corresponds to a string of
such letters, such as AATCCGAC. The number of molecules of DNA
containing exactly k nucleotides is thus the same as the number of se-
quences of k letters, where each letter is A, T, C, or G. How many such
sequences are there, and why?

3. In a circuit with two inputs and one output, there are four ways
to set the input values: on/on, on/off, off/on, and off/off. A table to
describe the behavior of such a circuit therefore has four rows, with each
row specifying the output for one of these combinations of inputs. Now
consider a circuit with k input wires and one output wire. How many
different possible ways are there to set the k input wires, and why?
Again, if you want to make a table describing the behavior of such a
circuit, this is how many rows you will need. Now, here is a harder
question: How many different ways are there to fill in the output values
in such a table? That is, counting only their input/output behavior, how
many different circuits are there with &k inputs and one output?
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4. A three-input AND gate is a circuit with three input wires
and one output wire which behaves as follows: If all three of the inputs
are on, then the output is on; in all other cases, the output is off. Show
how such a circuit can be built directly from six transistors. It is also
possible to build the circuit from two normal, two-input AND gates; try
to figure out how. Discuss advantages and disadvantages of these two
approaches: building the circuit directly from transistors, or building it
from two-input AND gates.

5. A subroutine is just a list of machine language instructions. It is
possible for that list to include a jump-to-subroutine instruction, which
will cause the second subroutine to be executed as if it were part of the
first. This possibility makes it a bit tricky to find a place to stash the
old program counter value while the subroutine is executing. Why is
that? Can you think of any solution? Explain why it is essential for a
subroutine to be able to make use of other subroutines, given the role
that subroutines play in building complex programs.

6. Computer science is by no means the only field where complexity
is dealt with by breaking complex structures into simpler components. In
music, for example, every piece of music is made up of individual notes,
but there are several levels of structure between these two extremes:
measures, themes, and movements, for example. Make a list of different
fields and terms they use to describe levels of structured complexity.



Chapter 2

Teaching Silicon to Compute

IN THE NINETEENTH century, an English mathematician named Charles
Babbage designed what would have been the first computer, if it had ever
been built. It would have been made from metal parts—rods, levers,
gears—and powered by steam. Babbage did produce a working auto-
matic calculator, similar in conception to his grand design. One of his
colleagues said of it that “the wondrous pulp and fibre of the brain had
been substituted by brass and iron; he had taught wheelwork to think”
[Swade, p. 88].

Modern computers are built from transistors rather than “wheel-
work,” and the foundation of their calculating ability is the silicon from
which those transistors are made, rather than brass and iron. But we
can still understand the awe that a person might feel on first encoun-
tering a mechanical device that displays capabilities similar to our own
highest reasoning skills. Whether or not such devices actually think,
they certainly perform difficult computations. The controversial ques-
tion of thinking machines is left to a later chapter on artificial intelli-
gence. For now, we consider how it can be that silicon can be taught to
compudte.

Over the course of the next two chapters, we will answer this question
by designing a working computer. The device we design will be much
simpler than real computers in use today, though not all that much sim-
pler than the first working computers built in the 1940s. In this chapter,
starting from the three types of logic gates introduced in Chapter 1, we

29
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will build an arithmetic-logic unit—a circuit that can perform addi-
tion, subtraction, and other operations on binary numbers. Later we will
see how logic gates also can be used to construct memory circuits. The
circuits we build in this chapter will be used in the computer designed
in Chapter 3.

The design of circuits built from logic gates has surprising connections
to a branch of mathematics called propositional logic or Boolean
algebra. We will use some basic ideas and notation from this branch of
mathematics, without covering it in full detail.

2.1. Logical Circuitry

In the common usage of the term, a logical person is someone who,
like Sherlock Holmes or Star Trek’s Mr. Spock, reasons from facts to
conclusions using infallible laws of deduction (rather than fallible human
emotion). If the facts are true and the rules are followed correctly, there
can be no doubt that the conclusions are true.

As shown by the image of the emotionless Mr. Spock, there is some-
thing machinelike about logic, and it is perhaps no surprise that logic
should have some role in the operation of computers. More surprising,
perhaps, is the extent of the role. In a very real sense, logic is all that
computers do.

In its simpler applications, logic is easy. Suppose I were to tell you
that the statements “Mozart wrote operas” and “Venus is heavier than
the Earth” are both true. You could then immediately draw the logical
conclusions that the statement “Mozart did not write operas” is false,
and that “Mozart wrote operas and Venus is heavier than the Earth”
is true. If I then confessed that I lied and that actually, Venus is not
heavier than Earth, you would reverse your second conclusion.

Now, these are not great feats of intellect, but having read the pre-
vious chapter, you know that very complex structures can be built from
trivial beginnings.

Suppose we start with any two statements whose truth or falsity is
already known. Rather than pick specific examples, let’s just give them
names, say A and B. (If you like, you can think of A as standing for
“Mozart wrote operas” and B for “Venus is heavier than Earth.”) We
can then form the statements “A AND B” and “A OR B.” Playing a
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A B AAND B | AORB | NOT A
true true true true false
true false false true false
false true false true true
false false false false true

A B AAND B | AORB | NOT A

on on on on off

on off off on off
off on off on on
off off off off on

A B AAND B | AORB | NOT A

1 1 1 1 0

1 0 0 1 0

0 1 0 1 1

0 0 0 0 1

Figure 2.1. The logical operations and, or and not, defined in three
equivalent tables. The top table is given in terms of the usual logical
values true and false. The second table, simply replaces these with
on and off, which are appropriate for logic gates thought of as physical
circuits. Finally, the third table uses the zeros and ones that are appro-
priate for logic gates as manipulators of bits inside a computer. You
should be able to switch easily among these points of view.

little loosely with English grammar, we will also say that “NOT A” is a
statement, meaning, “It is not the case that A.”!

Since we know the truth or falsity of A and B, we can immediately
deduce whether A AND B is true or false. There are only four cases to
consider. Either A and B are both true, A is true and B is false, A is
false and B is true, or both are false. Only in the first of these cases is

L A reminder about the power of mathematics, even in something as simple
as notation: By using arbitrary names like A and B instead of specific examples,
we can deal with all the infinitely many different possible examples at once.
Furthermore, since nothing is known about A and B except whether they are
true or false, it is made perfectly clear that for the purposes of propositional
logic, all true statements are equivalent, as are all false statements.
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the compound statement A AND B true. The statements A OR B and
NOT A can be dealt with similarly. The truth values for these statements
in all possible cases are shown in the first table in Figure 2.1. This table
is worth memorizing. (The English word “or” is a source of some possible
confusion. As shown in the table, we take A OR B to be equivalent to
“A or B or both.”)

2.1.1. Propositional Logic. We have here the whole foundation
for propositional logic. A proposition is a statement that can be either
true or false. Propositional logic deals with atomic propositions, rep-
resented by individual symbols such as A or B, and all the compound
propositions that can be constructed from them using the operators
AND, OR, and NOT.? Complexity arises because compound propositions,
once formed, can then be used as pieces in larger compound propositions.

In ordinary English, from the three statements “Today is Monday,”
“Today is Friday,” and “I can’t work,” any number of compound state-
ments can be formed. For example:

e Today is Monday or today is Friday, and I can’t work.

e Today is not Monday and I can’t work.

e Today is Monday and today is Friday and I can’t work.

e Today is Monday and I can’t work, or today is not Friday and I
can’t work.

If we represent the three original statements by A, B, and C, then these
compound statements can be expressed as the compound propositions

e (A OR B) AND C

e (NOT A) AND C

e A AND B AND C

e (A AND C) OR ((NOT B) AND C)

The parentheses are used here to avoid ambiguity; they indicate which
part of the expression should be evaluated first. There is a difference
between the statements “(A OR B) AND C” and “A OR (B AND C).”
(If it happens to be Monday and I can work, the first of these would be
false, while the second would be true.) English has no foolproof method
of avoiding such ambiguity. In the sentences above, I have tried to use
punctuation to indicate the intended meaning. Logic has no room for
such ambiguity.

2 Statements of the form “If A then B” play an important role in logic.
However, we can do without such statements since, in propositional logic, “If A
then B” is defined to be equivalent to “(NOT A) OR B.”
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Mathematicians typically avoid ambiguity in a rather curious way.
They say that officially, parentheses are always required, but then they
immediately give rules for leaving them out in certain cases. The rules
determine which operations are done first when parentheses are omit-
ted; in such cases, NOT has first precedence, followed by AND, with
OR having the lowest precedence. For example, given the proposition
NOT A AND (', the operator NOT has precedence, so the proposition
means “(NOT A) AND C” rather than “NOT (A AND C).”3 Similarly, in
the fourth example above, all the parentheses could be omitted without
changing the meaning. On the other hand, the parentheses in (A OR B)
AND (' are required; without them, A OR B AND C would be interpreted
as A OR (B AND (), since AND has precedence over OR. Generally, it is
better to avoid confusion by putting in parentheses even when they are
not required.

As a final technical point, consider A AND B AND C. Should this
mean “(A AND B) AND C” or “A AND (B AND C)”? Here, it turns
out that the ambiguity doesn’t matter. The two alternatives give the
same answer, no matter what the values of A, B, and C. The answer
is true only when all three of A, B, and C are true; it is false in all
other cases. The general rule is that when AND’s are strung together,
the order in which they are evaluated doesn’t matter. The same rule
applies to a string of OR’s. A OR B OR C is true if any one of A, B,
and C' is true, and is false if all three are false.

2.1.2. Gates and Circuits. Now of course, you remember en-
countering AND, OR, and NOT in Chapter 1. In that chapter, they were
used to name certain circuits—the AND gate, OR gate, and NOT gate—
constructed out of transistors. You can now see that when we built
these circuits, we were “teaching silicon” to perform the most elemen-
tary computations of logic. This is just a matter of point of view. Input
and output wires in a circuit have two states, on and off. You have al-
ready seen that on and off can be interpreted as standing for the binary
digits one and zero, but this is just an interpretation. There is nothing
to stop us from decreeing, when it is convenient, that on is going to stand
for the logical value true, while off represents false.

When the inputs and output of an AND gate are interpreted in this
way, it becomes an implementation of the logical meaning of the word
and. Suppose that A is a statement which is known to be true, while B

3 The proposition NOT (A AND C) is hard to express in English. You would
have to say something like “It is not the case that both A and B hold.”
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1> 1> &=

AND gate OR gate NOT gate

Figure 2.2. Standard pictures for the three types of logic gate. Input

wires are shown sticking out of the left side of the gate, output wires to
the right. Larger circuits can be built out of gates by connecting output
wires from some gates to input wires of others.

is a statement known to be false, and suppose you want to know whether
A AND B is true. Instead of working it out for yourself, you can use an
AND gate to compute the answer! Just use the first input of the gate to
represent A and the second to represent B. Since A is true, turn the first
input on, and since B is false, turn the second input off. Sure enough,
the output of the gate will be off, telling you correctly that A AND B
is false. No matter what the truth values of A and B, the AND gate
will give the correct answer. Similarly, OR and NOT gates implement the
words or and not, as shown in Figure 2.1.

Because of their relationship to logic, AND, OR, and NOT gates are
referred to collectively as logic gates, and circuits that are built from
them are called logic circuits. In diagrams of such circuits, standard
pictures are used for the three types of gates. These pictures are shown
in Figure 2.2.

I will admit once again that the computation performed by an in-
dividual gate is not very impressive, but it really is an example of a
computation, defined as the mechanical manipulation of symbols. (It
is mechanical because the output is determined automatically, without
thought, from the inputs. It is dealing with symbols because the inputs
and outputs are really just presence or absence of current on wires; it
is merely an interpretation to say they are standing for the truth or fal-
sity of certain statements.) By combining a number of gates into a larger
circuit, we will be able to teach silicon do more impressive computations.

Circuits can do any computation that can be expressed in proposi-
tional logic. In fact, any compound proposition can be used as a blueprint
for a logic circuit that can compute the value of the proposition. A
compound proposition is built up from atomic propositions using the
operations AND, OR, and NOT. The corresponding circuit is built up in a
parallel way. Each different atomic proposition corresponds to an input
wire of the circuit. These input wires can be turned on or off to indicate
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~ AAND C
L
:W
C (NOT(B AND C))
) BANDGC [~ |NOT(B AND C)

Figure 2.3. The circuit corresponding to the proposition (A AND C)
OR (NOT (B AND C)). The output of each logic gate is labeled with the
expression that the gate computes.

B

true

[\ false
L/

true
false—¢
) false l> true

Figure 2.4. The circuit corresponding to the proposition (A AND C)
OR (NOT (B AND C)), labeled to show the computation it performs
when A is true and both B, and C are false.

false

whether the corresponding atomic propositions are true or false. Each
AND, OR, and NOT in the proposition corresponds to a logic gate in the
circuit. The structure of the expression determines how these logic gates
should be wired together. Finally, the output of the circuit represents
the value computed for the expression, depending on the values of the
inputs.

The only part of this that might give you trouble is figuring out
how to wire together all the logic gates in the circuit. Just remember
that the inputs to each gate represent values already computed; the
output combines these input values into a more complicated expression.
Consider, for example the proposition

(A AND C) OR (NOT (B AND C)).

A circuit to compute this expression is shown in Figure 2.3. The inputs
to this circuit correspond to A, B, and C, the atomic propositions in the
expression. (Note that even though C' occurs twice in the expression,
there is only one input wire for it; a wire can be connected to the inputs
of several gates.) When building such a circuit, it might be easiest to
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work backwards from the output to the input. It is easy to identify the
operator that produces the final answer. (If the expression is fully paren-
thesized, it is the only operator that is not nested inside parentheses.)
In the example, this operator is OR, so the circuit contains an OR gate
whose output is the overall output of the circuit. The inputs to this OR
gate must represent “A AND C” and “NOT (B AND C)”. You can now
build smaller circuits to represent each of these expressions and connect
their outputs to the inputs of the OR gate. Note that in the circuit for
NOT (B AND (), the NOT gate produces the final answer, and it gets its
input from the AND gate.

At this point, given any proposition, you should be able to construct
a circuit that computes it. Also, given specific values for the inputs
to the circuit, you should be able to trace by hand, step by step, the
computation that the circuit performs to produce the resulting value of
the proposition. A sample computation is shown in Figure 2.4. It would
be useful for you to feel comfortable doing such computations whether
the values are expressed as true/false, as on/off, or as 0/1. The tables
in Figure 2.1 contain all the information you need.

2.1.3. Circuits Made to Order. It might be aesthetically pleas-
ing that there is a relationship between circuits and logical expressions;
but to convince you that that relationship is useful, I will have to demon-
strate some application to building practical circuits that might find use
in a computer.

Suppose you know the exact behavior you want in a circuit. That is,
for every possible combination of inputs, you can specify what output
should be produced. Is it always possible to build a circuit with the
desired behavior? The answer is yes. This can be shown using propo-
sitional logic. Furthermore, logic can be used as a tool in designing the
circuit, based on its behavior.

Let’s start with a simple example in which you have an English de-
scription of a circuit’s behavior. Suppose you need a circuit with two
inputs and one output, such that the output is true when the inputs are
the same. Let’s call the inputs A and B. We can rephrase the require-
ment as saying that the output should be true if either A and B are both
true or if A and B are both false. This is starting to sound more like
logic: The output is true if (A is true AND B is true) OR (A is false
AND B is false). Now, here is a slightly subtle point. The statement
“A is true” is equivalent to the statement “A” by itself. (Just check
that they always have the same truth value.) Similarly, “A is false”



A B C output
true true true | false
true true | false | false
true | false | true | false
true | false | false | true
false | true true | false
false | true | false | true
false | false | true true
false | false | false | false
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A AND NOT B AND NOT C

NOT A AND B AND NOT C
NOT A AND NOT B AND C

Figure 2.5. Given any desired input/output behavior for a circuit,
1t 1s possible to construct a circuit with that behavior. Here, the table
specifies the desired behavior for a circuit with three inputs and one
output. Beneath the table is the corresponding circuit. You can check
that it has the specified behavior in all cases. The construction of the
circuit is described in the text. Note: In this and all following dia-
grams, wires that cross each other do not actually intersect unless a
small circle is drawn at the crossing.

is equivalent to “NOT A”. So, finally, we reduce the description of the
circuit to saying that the output is given by

(A AND B) OR ((NOT A) AND (NOT B)).

From this description of the output, the circuit can be built immediately.

Translating from English to logic is not always so easy. And errors
can easily creep in during the translation, so that it is a good idea to
check that any circuit you build in this way gives the desired output

for all possible combinations of inputs.

Fortunately, there is a more

mechanical procedure that is guaranteed to give a correct circuit.
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The behavior of a circuit can be described in a table listing all possible
combinations of inputs and the resulting output that the circuit should
produce in each case. An example of such a table is shown in Figure 2.5.
Here, there are three inputs, but the same principle applies no matter
how many inputs there are.

How can such a table be used to design a circuit that has the in-
put/output behavior specified by the table? It’s just a matter of de-
scribing the table “logically”! We really only have to look at the lines
in which the specified output is true. In English, we could say that the
output should be true whenever the inputs are those specified in any
one of these lines. To make this look more like logic, we would say, in
the example from Figure 2.5, that the output is true if

(the inputs are those on the fourth line)
OR (the inputs are those on the sixth line)
OR (the inputs are those on the seventh line).

All we need to do is translate “the inputs are those on the nth line” into
logic.

Any line in the table specifies that certain of the inputs are true and
others are false. That is, it says something like

A is true and B is false and....
Of course, this can be rephrased in logical notation as
A AND (NOT B) AND....

In Figure 2.5, a translation of the input conditions into a logical ex-
pression is shown to the right of each line where the output is true.
The specification for the entire circuit is obtained by stringing theses
conditions together with OR’s:

(A AND NOT B AND NOT C)
OR (NOT A AND B AND NOT C)
OR (NOT A AND NOT B AND ()

The circuit built from this expression is also shown in Figure 2.5. The
behavior of this circuit happens to have a simple English description:
The output is true if exactly one of the inputs is true. It would be
difficult to translate this description directly into a circuit, but it is easy
to use it to fill in an input/output table and then to use the table as a
guide for building the circuit.

This method can be easily extended to building circuits with more
than one output wire. It is only necessary to design a separate circuit
for each output.
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The important point here is that this method will always work. Given
any input/output table, we can always build a circuit that gives the spec-
ified output for each possible combination of inputs. To convince your-
self that the method works in all cases, consider the expression we con-
structed corresponding to one line of the table (such as “A AND NOT B
AND NOT C” in the example). The circuit specified by this expression is
one whose output is true for one and only one combination of inputs—
the one given in that line of the table. For any other set of inputs, the
output value will be false.

Now, whenever outputs from several circuits are combined through
OR gates, the final output will be true if, and only if, at least one of the
outputs from the smaller circuits is true. The complete circuit we build
from the table is constructed in just this way—from smaller circuits,
corresponding to each line where the desired output is true, with their
outputs combined through OR gates. So the overall output of the circuit
is true precisely for the specified combinations of inputs.

2.1.4. The Laws of Thought. The method described above for
building a circuit with a given behavior will often produce very large cir-
cuits, much larger in fact than they need to be. It is certainly possible for
two circuits that look very different to have the same input/output be-
havior. In practical situations, the circuit that is simpler—for example,
the circuit with fewer gates—would be preferred. In general, finding the
simplest possible circuit with a given behavior is a very difficult problem,
but some help towards simplifying circuits comes from their association
with propositional logic.

In 1854, the mathematician George Boole published a book he called
An Investigation into the Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probability. It is this book that
established logic as a part of mathematics. Boole developed an algebra
of logic, which today is known as Boolean algebra. He designed a
mathematical system in which the logical values true and false would
play a role similar to the role played by numbers in ordinary algebra.

You have already seen the notation of Boolean algebra (somewhat
modified for our purposes): expressions built up out of “variables” like
A and B and the “operators” AND, OR, and NOT. But algebra consists
of more than a notation for writing down expressions. It also includes
rules for manipulating those expressions. These rules are Boole’s “laws
of thought.” It would perhaps have surprised him to find out that his
algebra would one day play a major role in designing circuitry for what
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A A
B B
c o}

Figure 2.6. The circuit on the right is obtained from the one on the
left by applying the distributive law, (P AND Q) OR (P AND R) =

P AND (Q OR R). The circuit on the left corresponds to the expression
(A AND NOT B) OR (A AND C'). In this application, P stands for A,
Q for (NOT B), and R for C. The circuits are equivalent in that they
will always give the same outputs for the same inputs, but the circuit
on the right has one fewer gate.

have been called “thinking machines.” But then again, perhaps not;
Boole would have understood that in giving a mathematical formulation
to logic he was making it possible for logic to be applied mechanically.
His algebra can be seen as an attempt to make it possible to reason by
computing.

Of particular interest to us are rules that can be used to simplify
expressions. Two expressions are equivalent if they have the same value
for all possible values of the atomic propositions they contain. To sim-
plify an expression means to find an equivalent expression that is shorter
than the original. Since the expressions of Boolean algebra correspond to
logic circuits, simplifying an expression is the same as finding a smaller
circuit with the same input/output behavior.

As a trivial example, consider the algebraic fact that for any propo-
sition P, the expression NOT (NOT P) is equivalent to P by itself. Each
NOT reverses the value it is applied to; two consecutive reversals have no
net effect. (Note that this applies whether P is an atomic proposition or
is itself a complicated expression.) When applied to circuits, this means
that two consecutive NOT gates can be eliminated from a circuit—and
replaced by a connecting wire—without changing the behavior of the
circuit.

Another, less obvious, example is the so-called distributive law,
which says that for any propositions P, @), and R,

(P AND @) OR (P AND R) = P AND (Q OR R)

where I have introduced the symbol = to mean “is equivalent to.” You
can check that this rule is valid by checking that it holds for all possible
values of P, ), and R. Figure 2.6 shows an example of applying this
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rule to a circuit. Note that the net effect is a reduction in the size of the
circuit by one AND gate.

There are many other rules of Boolean algebra that can be helpful
in reducing the number of gates in a circuit. I have listed some useful
rules in Figure 2.7, but nothing in the rest of this text will require that
you memorize these rules or that you develop skill in using them. It is
not my purpose here to teach you Boolean algebra. My intent has been
to demonstrate that it is possible in principle to build a circuit with any
specified input/output behavior, and to indicate the power of Boolean
algebra as a tool in building the circuit and as an aid in reducing the
size of the circuit without changing its behavior.*

2.2. Arithmetic

We are now ready to move on to designing real computer circuits. Any
computer must be able to do arithmetic. In this section, we will design
circuits to perform some of the basic arithmetic operations.

Recall that numbers in a computer are represented in the base two.
Up till now, we have mostly thought of the inputs and outputs of circuits
as having the values on and off, or true and false. From now on, it
will be more appropriate to think in terms of ones and zero, since the
circuits we build are meant to manipulate binary numbers.

To understand these circuits, you will have to learn something about
arithmetic with binary numbers. Furthermore, there are certain pecu-
liarities of computer arithmetic that arise because the CPU has a limit
on the size of the numbers it can deal with. For example, the CPU
might be built to work only with sixteen-bit numbers (possibly includ-
ing some leading zeros). If you have ever used a calculator to multiply
two large numbers and gotten the answer Error, you know what this
means: There will be calculations that the CPU cannot do correctly be-
cause the answer is too large. We will need to keep in mind the fact

4 One final note on simplifying circuits, which might amount to stating
the obvious: When an expression occurs more than once as part of a longer
expression, it is not necessary to compute that smaller expression more than
once. For example, in

((A Or B) AND C') OR (NOT (A OR B)),
the subexpression (A OR B) occurs twice. A single OR gate can be used to

compute the value of A OR B, and the output of that gate can be used to
provide this value at both points where it is needed in the circuit.
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Commutative Laws:
PAND Q =Q AND P
PORQ=QORP

Associative Laws:
(P AND Q) AND R = P AND (Q AND R)
(P OR Q) OR R = P OR (Q OR R)

Distributive Laws:
P AND (@ OR R)
P OR (Q AND R)

DeMorgan’s Laws:
NOT (P AND @) = (NOT P) OR (NOT Q)
NOT (P OR ) = (NOT P) AND (NOT Q)
Other Laws:
NOT (NOT P) = P
P AND (NOT P) = false
P OR (NOT P) = true

(P AND Q) OR (P AND R)
(P OR Q) AND (P OR R)

Figure 2.7. Some laws of Boolean algebra. P, @, and R are arbitrary
propositions.

that all calculations are to be done with numbers with a limited, fixed
number of bits. For definiteness, we will assume the number of bits is
sixteen. We could just as easily use eight-bit or thirty-two-bit numbers,
and most real computers allow for all these cases by providing separate
machine language instructions for each type of number.?

I should remark that we know before we begin that it is certainly
possible to build circuits to do arithmetic (assuming we already know

5 The use of sixteen-bit numbers is quite common. This allows only 65,535
different numbers to be represented, which is really not a lot. Some serious
real-world errors have occurred because of failure to take this limited size into
account. Peter G. Neumann in his column Inside Risks in the January 1991
issue of the Communications of the ACM discusses a plague of computer failures
that occurred on September 19, 1989, affecting even the Pennsylvania Wildcard
Lotto computer. It seems that these computers represented the current date as
the number of days after January 1, 1900. On September 19, 1989, they ran out
of bits for this representation. (The Inside Risks column is a regular feature
of the Communications of the ACM and is a good source for cautionary tales
about putting too much trust in computers.)
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how to get the answers by hand). Suppose we want a circuit that adds
two sixteen-bit numbers. That is, we want a circuit whose input repre-
sents the two numbers to be added, and whose output gives the sum of
those two numbers. Our circuit will need thirty-two input wires, one for
each bit of the two numbers to be added, and sixteen output wires to
represent the sixteen-bit sum. Given any possible input, we know (or so
we are assuming) what the output should be. All we need to do is to
fill in a table to represent all the possible inputs and outputs and then
build a circuit from it, as described in the previous section, right?

Right—at least in principle. We know that a working addition circuit
exists because one could be built in the way described. However, in
practice, it is not so easy. With thirty-two input wires, a table that
includes all the possible combinations of input values would have 232
rows. That’s over four billion. Obviously, we need a different approach.
As you should expect after reading Chapter 1, our approach will be to
construct simpler components that will ultimately be assembled into a
complete addition circuit.

2.2.1. Adding Binary Numbers. Before we begin building
circuits that do addition, though, you need to know how to add binary
numbers by hand. The process is really no different from adding base-
ten numbers, except that it’s a lot easier. To add base-ten numbers, you
must first memorize the sum of each pair of decimal digits: “3 4+ 5 is 8,”
“6 49 is 5 and carry 1,” and so forth through all the other ninety-eight
possibilities. In the base two, the only digits are zero and one, and there
are only four basic sums you have to memorize:

02 + 02 =04
024+ 1 =15
1o+ 03 =15

1o+ 15 =102 (or “0 and carry 17).

These are all the rules needed to add two one-bit binary numbers. Note
that the answer can be a two-bit number. It will be convenient to add a
zero to the front of the first three answers above, so that all the answers
have two digits. We call the two digits of the answer the carry-digit
and the sum-digit. In the first three cases, the carry-digit is zero. In
the last case, the sum digit is zero and the carry digit is one.

These rules are very simple, simple enough to implement easily in a
circuit. What we want is a circuit with two inputs, representing the two
digits to be added, and two outputs, representing the two digits of their
sum. Figure 2.8 shows a table of the possible inputs and the outputs
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A B
A | B |Sum | Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1 Carry
Sum

Figure 2.8. A circuit that adds. The table shows the result of adding
all possible pairs of binary digits, A and B. The answer is broken into
two parts, a sum-digit and a carry-digit. The circuit on the right imple-
ments this table. It will compute the sum and carry for any combina-
tion of its two inputs.

they should produce. This table of inputs and outputs is just like the
ones we saw in the previous section, except that the values are given in
terms of 1/0 instead of true/false. Applying the methods developed
in the previous section to this table, we can write the outputs in terms
of the inputs, A and B, as expressions of Boolean algebra:

sum = ((NOT A) AND B) OR (A AND (NOT B))
carry = A AND B.

Using these expressions as blueprints, we can build the desired circuit,
as shown in the figure. The circuit we have built is called a half-adder.
We will use it as a basis for constructing more complicated circuits.

The rules for adding single-digit numbers can be applied to longer
numbers, using the method you learned in grade school: Write the num-
bers one above the other, and add the digits in each column; when the
sum in one column produces a “carry,” the carry should be added into
the next column to the left. For example, you might write out the sum of
the base ten numbers 3735 and 627 like this, writing any carry produced
at the top of the column to which it is added:5

6 Such sums can be computed by purely mechanical rules—which is why
we can teach computers to add. Unfortunately, some people have been taught
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11 1010
3735 3735

627  Or 0627
4362 4362

On the left, T have followed the usual practices of writing carries only
when they are nonzero and of not writing leading zeros in numbers. For
a computer, it is useful to regularize things by writing the zeros, as 1
have on the right.

Binary numbers can be added in the same way. Note that to find the
sum of a column that includes a carry of 1 from the previous column,
you have to know how to add three digits, not just two. The only really
new rule for adding three digits is that 1o + 15 + 1o = 115, or “1 and
carry 1.” With this in mind, here are a few sample additions in the base

two:
0100 01110 11111010

1011 10111 01011101
0010 00011 00110101
1101 11010 10010010

The next step in designing a circuit to perform binary additions is
a full adder, which can compute the sum (and carry) of three binary
digits. One way to build a full adder is from two half-adders. This design
is based on the observation that three digits can be added by adding the
first two digits, then adding the third digit to the result. The resulting
circuit is shown in Figure 2.9. The three inputs represent the three
digits to be added. The third input is called carry-in because it generally
represents a carry from a previous column. The two outputs, sum and
carry-out, represent the sum of the input digits. You should check that
this circuit gives the correct outputs for all possible combinations of
inputs. Note how it works: The first half-adder adds the first two digits,
and then the sum-digit of the result is added to the carry-in by the second

these and other mechanical rules as if there were no meaningful justification for
them. One way to see why the rules for addition work is to write out the sum

as:
3735 + 627 = (3000 + 700 + 30 + 5) + (600 + 20 + 7)

= 3000 + (700 4 600) + (30 4 20) + (5+7)
= 3000 + 1300 + 50 + 12

= 3000 + 1000 4 300 + 50 + 10 + 2

= 4362.

“Carrying” here is seen as rearranging the numbers so that units, tens, hun-
dreds, etc., can be added separately.
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A B
- — — — — “‘ |
I I
: Half-adder :
Carry-out Carry-in
I I
| Half-adder |
I I
l_ |
Sum
First four- Second four-
bit input bit input

Carry-in

<~ Adder || Adder [ Adder | —{ Adder |
! |

R P

Sum digit 3 Sumdigit2 Sumdigit1 Sum digit 0

Figure 2.9. A full adder constructed from two half-adders, and a four-
bit-adder constructed from four full adders.

half-adder. This gives the final sum digit for the full adder. A separate
analysis is needed to determine what the carry-out should be, but you
can check that the three-digit sum produces a carry of 1 exactly when
either the first half-adder or the second half-adder produces a carry of 1.
Thus the carry-out can be computed by an OR gate whose inputs are the
carries from the two half-adders.

We are now, finally, ready to produce circuits to add multi-bit binary
numbers. We will call a circuit that adds two k-bit numbers a k-bit
adder.” A k-bit adder contains k full adders, one for each column in

7 This circuit can be used to add numbers with “k bits or fewer.” As usual,
if a number has fewer than k bits, you just have to add some leading zeros to
bring the number of bits up to k.
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the sum. The first two inputs for each full adder come from digits in the
numbers to be added. The carry-out produced for each column is simply
used as the carry-in for the next column to the left. This leaves the
carry-in for the rightmost full adder and the carry-out for the leftmost
full adder unconnected. When adding two k-bit numbers, the rightmost
carry-in should be set to zero. As for the leftmost carry-out, note that the
sum of two k-bit numbers can contain k + 1 bits, if the carry-digit in the
leftmost column is one. The value of the leftmost carry-out can be used
to check whether this occurs; ordinarily, this would represent an error:
an answer too large to be represented with the number of bits available.

As stated above, we are trying to design a computer that uses sixteen-
bit numbers. That computer will include a 16-bit adder. A 4-bit adder is
shown in Figure 2.9, since it is easier to draw, but clearly a 16-bit adder
could easily be built in the same way. We have completed a significant
step on our way to a working computer!

2.2.2. A Question of Time. When I first saw a multi-bit adder, I
was confused by one point which might be bothering you now. Suppose
all the inputs are zero, so that all the outputs, including the carry-out
wires, are off. Now imagine turning on the appropriate inputs to the
circuit, to represent the two numbers to be added. At the moment you
do so, all the carry-out wires will still be off, so it looks like the circuit
will not compute the proper sum! In order to compute the sum, all the
carries must be set correctly, but in fact, each of them is zero. What’s
wrong?

The problem with this analysis is that it ignores time (as I have been
doing in all of our discussion of circuits so far). A logic gate is a physical
device, which always takes some amount of time to change its state from
on to off or vice versa. If you turn on one of the inputs to an OR gate,
the output does not come on immediately; there is a definite time delay.
A complete description of using an OR gate would say: Set the inputs
to the desired values. Wait long enough for the gate to change its state.
Then read the resulting output.

The same comment applies to any circuit built out of gates. The
longer the path from the inputs to the outputs, the longer you have to
wait to make sure that the effect of changing the input has had time to
filter through to the output. If you check the output too soon, it might
be wrong.

Let’s see what really happens when you set the inputs of a multi-bit
adder. At that moment, the output of the circuit does not necessarily
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represent the correct sum. After a short time, the rightmost adder has
finished its calculation, and both the rightmost digit of the sum and
the rightmost carry-out are correct. It is only now that all three inputs
to the second adder—including its carry-in—are correct. After another
short time for the second adder to finish calculating, the outputs of the
second adder will be correct, and at that point, the third adder from the
right will have the correct inputs. This process continues until all the
digits of the sum have been correctly computed. So, our addition circuit
does work correctly, but it takes some time to do so.

Bringing time into the picture allows us to improve our image of the
activity inside a computer. Every computer has a clock which “ticks”
millions of times per second. (You might have heard the speed of a
computer described as so many megahertz. Each megahertz stands
for one million ticks of the computer’s clock per second.) This clock
does more than keep time; it is the ticking of the clock that makes the
computer go.

Before the clock ticks, all the gates in the computer are in some
definite, steady state. The clock has one output wire, which is connected
to the computer’s circuits. As the clock ticks, it turns this wire on. This
event can set off a whole cascade of activity, as gates connected to the
clock wire change state, then gates connected to those gates change, and
so forth. Eventually, though, the activity dies down, and once again, all
the gates are in a steady state. One step of the computer’s calculation
has just been completed. Then, the clock ticks again, and the next step
begins.®

2.2.3. Subtraction and Negative Numbers. After designing a
circuit to do addition, it is natural to try our hand at subtraction. When
we do so, though, we are faced with an immediate problem. When you
subtract a larger number from a smaller, the answer will be negative.
We have never discussed how negative numbers can be represented in
a computer. There is an obvious representation: Just add an extra bit
to a number to indicate whether it is positive or negative, coding, say,
“4+” as a one and “—” as a zero. As it turns out, the representation we
use is nothing like this.

8 Note that the time between ticks must be long enough for the burst of
activity set off by the clock’s tick to settle down. This is why you can’t make a
computer run faster simply by using a faster clock. If the clock ticks too soon,
the computer will start the next step in the calculation before the results of the
previous step are available.
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Let’s reconsider the analogy between counting and the way a car’s
odometer keeps track of miles traveled. In Chapter 1, we used a “binary
odometer,” whose only digits are zero and one, to count in the base two.
This time, imagine running the odometer backwards: 0001005, 0000115,
0000102, 0000012, 0000002. What happens next? Mathematically, the
next number in the sequence should be —1. The number that actually
shows up on the odometer would be 1111115. Is it possible that 111111,
is —17 Well, not quite. In our computer, numbers are sixteen bits
long, and —1 is represented by 11111111111111115! (There are 16 ones
there; the representation we use for negative numbers depends on the
number of bits available. It we were using thirty-two-bit numbers, the
representation for —1 would be a string of thirty-two ones.) This might
seem silly, but just accept it for the moment and see where it leads.

Starting from —1, we can easily represent other negative numbers.
Remember that we are only dealing with binary numbers that can be
written with sixteen or fewer bits. For any such number N, we can write

~N=(=1—N)+1=(11111111111111115 — N) + 15.

Now, the point here is that 11111111111111115 — N is very easy to
compute. For example, for NV = 221 = 110111015, we could compute:

1111111111111111
—0000000011011101
1111111100100010

What makes this easy is that in each column, the lower digit is no larger
than the upper digit, so it is not necessary to “borrow” from the column
to the left. Furthermore, it is trivial to design a circuit to do the compu-
tation. Note that each digit in the answer is the reverse of the digit in
the number N on the line above. The circuit that reverses a single digit
is the NOT gate. What we want here is a circuit with sixteen inputs and
sixteen outputs, where each output is the reverse of the corresponding
input. The circuit can be built with sixteen separate NOT gates, each
computing one digit of the answer. We call this circuit a 16-bit-NOT
circuzit.

If the input to a 16-bit-NOT circuit represents the binary number N,
note that the output represents —1 — N, not —N. The representation
for — N is obtained by adding one to this output. The output of the 16-
bit-NOT is called the ones-complement of its input. The name comes
from the fact that it is obtained by subtracting each digit of the input
number from 1. When 1 is added to the ones-complement, the resulting
number is called the twos-complement. The name in this case seems to
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refer to the fact that the twos-complement of a sixteen-bit number could
also be obtained by subtracting the number from 2'6. Some computers
actually use the ones-complement to represent negative numbers. Others
use the twos-complement, as do we.

In the above example, where N = 221, taking the twos-complement
gives 11111111001000115 as the representation for —221. Here are two
more examples of forming the ones-complement and twos-complement of
binary numbers, along with translations into the base ten. In the second
example, note that the negative of —221 is 221, as it should be.

1111111111111111 (-1) 1111111111111111 (—1)
—0000000000010100 —(20) —1111111100100011 — (—221)
1111111111101011 (—21) 0000000011011100 (220)
+ 1 + (1) +1 + (1)
1111111111101110 (—20) 0000000011011101 (221)

Now, remember that the representations chosen for data in a com-
puter are arbitrary. They are symbols for the data that are meaningless
in themselves but which can stand for anything we choose. So, we are
free to represent negative numbers as described. The question remains,
though, is it a good idea? As it turns out, the representation chosen for
negative numbers makes subtraction very easy for us. It turns out that
when the twos-complement representation for negative numbers is used,
M — N can be computed by adding the negative of N to M wusing the
same circuit we have already designed for addition of positive numbers,
and ignoring any carry-out that is produced by that circuit.”

Why should this be true? One way to see it is to think about how
addition could be done using a sixteen-bit binary odometer.'® To add
two positive numbers M and N, you could set the odometer reading
to M and then advance the odometer N times (by driving N miles, for
example). Assuming that M + N is not too large to be represented with
the number of digits available on the odometer, the reading would then
be the sum of M and N.

9 In the usual base-ten representation, you need a completely new method to
do subtraction. While it is still true that M — N = M + (—N), this is used to
convert a sum involving a negative number into a subtraction problem, rather
than the reverse.

10 For those with more mathematical background than I am assuming: If you
know about “clock arithmetic” or “arithmetic modulo N,” you might recognize
that all that’s going on here is arithmetic modulo 2!6. The point is that if you
start the odometer at zero and advance it 2'¢ times, it will be back to zero
again.
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Now consider M — N. Assume for definiteness that they are both
positive and that M > N. (If you like, you can check all other cases as
an exercise. )

One way to compute M — N would be to set the odometer to zero,
advance it M times, and then turn it back N times. This is essentially
the ordinary way of doing subtraction. However, suppose we start with
the odometer at zero, first turn it back N times, and then advance it
M times. Clearly, the order in which these operations are done doesn’t
matter, so the answer will be the same for either order. Doing the
operations in the latter order corresponds exactly to adding M to the
twos-complement representation of —/N. This is because when you start
the odometer at zero and turn it back N times, the number on the
odometer will be the twos-complement representation of —N. Then,
advancing the odometer M times is just adding M to this in the usual
way. (Note that, since M > N, the odometer will roll over from all ones
to all zeros at some point while you are advancing it M times. This
corresponds to the fact that a carry from the leftmost bit is produced
when M and the twos-complement representation of —N are added. In
this case, the carry does not mean that the sixteen-bit answer is incorrect,
which is why I said above that it should be ignored.)

It is now easy to build a subtraction circuit. We start with a sixteen-
bit addition circuit, but we feed each digit of the second sixteen-bit
input number through a NOT gate to compute its ones-complement. We
should add one to this to get the twos-complement before doing the
addition. However, we can take care of that extra one with a rather
cute trick. Recall that the sixteen-bit addition circuit had a carry-in
input to the rightmost bit which was unused. If this carry-in is turned
on while the subtraction is being performed, the extra one being carried
into the rightmost column will add one to the answer. This takes care
of the extra one that we needed for the twos-complement. A subtraction
circuit constructed in this way is shown in Figure 2.10.

Before leaving the topic of subtraction, it might be a good time to
consider the consequences of restricting ourselves to sixteen-bit num-
bers. There are only 2'¢ different strings of sixteen binary digits, so
no matter what we do, we cannot hope to represent more than 2'6 dif-
ferent numbers. But we do have a choice of which numbers we want
to represent. It might seem that the most natural choice would be to
represent the numbers from zero through 2'¢ — 1. In this case, a string
of sixteen ones corresponds to the number 2! — 1, or 65,535. How-
ever, if we do this, we have no negative numbers to work with at all.
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First four-bit input Second four-bit input

| N N R I - - /1

Carry-out
Four-bit Adder —*ON

Four-bit Difference

Figure 2.10. A subtraction circuit, drawn for four-bit inputs rather
than sixteen-bit. It uses the addition circuit that was designed previ-
ously. Note that the carry-in input of the addition circuit is set to on.
This is required for the subtraction to be done correctly.

Another choice is to use half of the available representations for neg-
ative numbers and half for positive numbers. If we make this choice,
we can decree that a string of sizteen bits represents a negative number
if the leading bit is a one. Thus, bit-patterns from 0000000000000000
to 0111111111111111 correspond to numbers from zero to 32,767, while
the patterns 1000000000000000 through 1111111111111111 correspond
to the negative numbers from —32,768 to —1, represented using the twos-
complement.

In fact, though, we are free to imagine that we are using either of
these representations. The computer we are designing will work exactly
the same way in either case. If you tell it to add or subtract two num-
bers, it will do so by feeding those numbers through the appropriate
circuit. The bits in the result will be the same, no matter what repre-
sentation you imagine you are using. However, your interpretation of the
answer will be different. Suppose, for example, that your program tells
the computer to subtract 5 from 3. The answer, as a pattern of bits,
will be 1111111111111110. If your intention is to represent both positive
and negative numbers, then this is the correct answer, —2, represented
as its twos-complement. If, however, your intention is to represent only
positive numbers, then the correct answer cannot be represented at all,



Section 2. Arithmetic 53

and the actual result represents 65,534, which is certainly not correct.
If you find it confusing to talk about the result of a computation in the
computer depending on the user or programmer’s intentions, it might be
because you are forgetting that the symbols manipulated by the com-
puter never have any meaning in themselves!

2.2.4. Multiplication and Division. Besides addition and sub-
traction, the other arithmetic operations that a computer must be able
to do are multiplication and division. Note once again that circuits
to perform these operations can certainly be built, since in principle it
would be possible to make a table of inputs and desired outputs. Indeed,
some computers do include circuits to perform multiplication and divi-
sion. The machine languages of such computers include multiplication
and division instructions.

Our model computer will not include multiplication and division cir-
cuits. However, it will include circuits for certain other simple operations
that will make it possible to write subroutines to perform multiplication
and division.

The method for multiplying binary numbers by hand is the same
as that used for ordinary base-ten numbers. It is much easier, though,
because the only digits you need to multiply by are zeros and ones. Here
are examples of multiplication of base-ten and base-two numbers:

2731 1101
x 508 x 101
21848 1101
0000 0000
13655 1101
1387348 1000001

The numbers between the two lines are shifted to the left to line up
the digits properly, and then they are added together to give the final
answer. (Although it is not written, you should imagine that a zero is
added to the end of a number when it is shifted left.) In the case of binary
multiplication, note that each of the numbers being added is either zero
or is equal to the top number that is being multiplied, suitably shifted
to the left.

It follows that a computer that can perform additions and left shifts
can be programmed to do multiplication. It turns out that binary divi-
sion can be similarly reduced to subtraction, left shifts, and right shifts.
We already have circuits to do addition and subtractions. Circuits that
do left and right shifts are trivial to design, as shown in Figure 2.11.
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Four-bit Input Four-bit Input

A

Figure 2.11. The rather trivial circuits that perform left and right
shifts on four-bit numbers. When a number is shifted left, a zero is
added to the right end, and one bit is lost from the left end. An extra
output from the circuit, labeled “flag” in the diagram, can be used to
check whether this lost bit was a zero or one. Similar comments apply
to a right shift.

Our model computer will include 16-bit left-shift and right-shift circuits.
With these circuits, we now have in hand everything a computer needs
to do all arithmetic operations.

2.2.5. Logical Operators. Besides the usual arithmetic op-
erations on sixteen-bit numbers, our computer will also do the logical
operations AND, OR, and NOT on sixteen-bit numbers. Ordinarily, these
three operators act on single bits. We have already seen that the ones-
complement of a number can be computed by applying a NOT operation
to each of its bits. Similarly, we can extend AND or OR to apply to a pair
of sixteen-bit numbers by applying the operation to each corresponding
pair of bits. For example,

0001110101011110 0001110101011110
AND 1011000001110101 OR 1011000001110101
0001000001010100 1011110101111111

Here, the answer in each column is computed separately, by applying
AND or OR to the two top bits in that column.

It is, of course, easy to build sixteen-bit AND and OR circuits to
do such computations. These circuits have two sixteen-bit numbers as
inputs and one sixteen-bit output. Each bit of the output is computed
by a separate AND or OR gate.

2.2.6. An Arithmetic-Logic Unit. As a final step in teaching
silicon to compute arithmetic and logic operations, we can assemble all
the circuits we have developed into a single unit. The resulting multi-
purpose circuit is called an arithmetic-logic unit, or ALU. The ALU is
the part of the central processing unit that actually performs arithmetic
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First sixteen-bit Input Second sixteen-bit Input
LT LT

Select-Add —
Select-Subtract —— 16-bit Add 16-bit Subtract
Select-Shift-Left —— | 1g.pit Shift-left 16-bit Shift-right

Select-Shift-Right —

Select-AND — 16-bit AND 16-bit OR

Select-OR — _

Select-NOT —— 16-bit NOT

Flag Ouptput  Sixteen-bit Output

Figure 2.12. An arithmetic-logic unit that can perform each of the
seven basic arithmetic and logical operations. None of the internal
wiring is shown here. The input wires along the left side are used to
determine which operation it actually performs. When one of these
wires is turned on, the result of the corresponding operation is output
by the circuit. The extra single-bit output labeled “flag” will represent
the carry-out of an addition or subtraction operation, or the “lost bit”
of a shift operation.

and logical calculations. The inputs to the ALU will include two sixteen-
bit numbers. It will be able to compute the sum, difference, logical AND
or logical OR of those two numbers. It will also be able to compute
the logical NOT of the first input, shift that input left, or shift it right.
We have designed circuits to do each of these operations. The ALU
contains a copy of each of these circuits, with their inputs connected to
the corresponding inputs of the ALU.

The ALU outputs a single sixteen-bit result. Since it can do seven
different operations, we need some way of telling it which one to do. We
do this by adding seven more input wires, one for each operation. These
wires are used to control the circuit, as opposed to the other inputs,
which are used to provide data for the operation to be performed. From
now on, it will be useful to distinguish between data inputs and control
inputs to circuits. We can say, then, that the ALU has two sixteen-bit
data inputs and seven (one-bit) control inputs.

The method for using the ALU is to put the input data for the op-
eration on the data inputs, and at the same time to turn on the control
input that corresponds to the desired operation. The answer will appear
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from NOT Circuit
from OR Circuit
from AND Circuit
from Shift-right Circuit
from Shift-left Circuit
from Subtraction Circuit

from Addition Circuit

Select-Add

Select-Subtract

Select-Shift-Left

Select-Shift-Right

Select-AND

Select-OR

Select-NOT

Figure 2.13. The circuitry used in the ALU to control which opera-
tion it performs. In fact, it actually performs all seven operations, but
only one of the results makes it to the output. A circuit identical to the
one shown is used for each of the sixzteen bits of the output.

on the output wires after the short time it takes for the circuit to do the
computation. Note that exactly one of the control wires must be turned
on for the ALU to work properly. If none of these wires is on, the output
of the ALU will be zero; if more than one are on, the output will be
meaningless.

The ALU has a seventeenth output wire, which is used to provide
extra information about the result of the computation performed. If the
operation is addition, for example, this bit represents the carry-out from
the leftmost bit. Our computer will be able to use the value of this
output to make decisions about what to do next in a program. I will say
more about it in the next chapter.

To finish a complete design for the ALU, we need only determine
how to wire up the inside of the ALU to make the control wires work
correctly. The way we do this is surprising in one respect, in that the
ALU actually performs all seven computations all the time, no matter
how the control wires are set. The control wires merely determine which
of the seven results gets through to the ALU’s output.
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We use the same wiring diagram shown in Figure 2.13 for each of the
ALU’s sixteen output bits. An output bit is connected through such a
circuit to the seven control wires and to the corresponding output bit
from each of the ALU’s seven computational circuits. Understanding
this circuit provides a good exercise in understanding how AND and OR
gates work.

Let’s suppose that Select-Add, the control wire for addition, is turned
on and that all the other control wires are off. In that case, the overall
output should be equal to the output from the addition circuit. The
output wire from the addition circuit is fed through an AND gate along
with Select-add. Since Select-add is on, the output of that AND gate
is equal to the output from the addition circuit. Also, the other six
control wires are off, so the outputs from the other six AND gates in
the circuit are definitely off, no matter what the outputs from the other
computation circuits might be.

So, of the seven wires coming out of AND gates, six of them are known
to be off, and the seventh contains the result from the addition circuit.
These seven wires are combined through OR gates to produce the output
of the ALU. Whenever values are combined with OR gates, the final
result is on if any one of the inputs is on. In this case, six of the inputs
to the OR gates are definitely off, and it follows that the final output
from the OR gates will be off if the seventh input—from the addition
circuit—is off, and will be on if that input is on. That is, the final
output is equal to the result from the addition circuit.

We have shown that when the addition control wire is on and the
other control wires are off, then the output of the ALU is equal to the
output from the addition circuit. The same analysis will work if it is any
other control wire that is on. So, our ALU works as advertised.

We have come a long way from the beginning of the chapter. The
ALU we have built will be a major part of the computer we design in
the next chapter. It will allow our computer to do basic computations
with sixteen-bit numbers. It is still not clear how those computations
can be controlled by machine language instructions stored in memory,
but the outline of a solution can be seen. When an instruction is fetched
into the CPU, we must somehow arrange for the data required by that
instruction to be fed into the inputs of the ALU, and we must arrange
for the correct control input of the ALU to be turned on. Once that is
done, the result of the computation can be read from the outputs of the
ALU. Getting all the details right will not be easy, but we already have
made considerable progress.
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OFF

Store-one OFF
OFF ON
Store-zero {>c
r OFF
Store-one OFF ON
N

Store-zero — 2 {>c ON
r ON

Figure 2.14. A circuit with a feedback loop, shown in the two states
that it can be in when both inputs are off. In the first version, both in-
puts to the OR, gate are off, and its output is off. In the second, one
of the inputs is on, and its output is on. The circuit is stable in either
state, as long as the inputs stay off.

2.3. Circuits that Remember

Before leaving this chapter, I have to admit that there is a second aspect
of logic circuits that I have been avoiding. (The first was the fact that
logic circuits take time to do their computations.) All the circuits we
have encountered so far share the property that once the values on their
input wires are known, the output values are determined. The method
introduced in Section 1 for designing circuits was based on this assump-
tion, since it starts with a table of all possible inputs and the desired
output for each. There is, however, an important class of circuits for
which this assumption does not hold. These are circuits with feedback
loops.

A feedback loop occurs if the output of some gate is connected, di-
rectly or through a sequence of other gates, back to one of its inputs.
Figure 2.14 shows a circuit with a feedback loop in which the output of
an OR gate is connected through an AND gate back to one of its inputs.
For this circuit, looking at the values of the two inputs is not enough
to tell you what the output will be. As shown in the figure, when both
inputs are off, it is possible for the output to have either of the values on
or off. The behavior of this circuit cannot be described by any expres-
sion of Boolean algebra, since any such expression would assign a single,
definite value to the output for any possible input.
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The correspondence between Boolean algebra and logic circuits with-
out feedback loops provides a beautiful and useful mathematical theory
of such circuits, which we have exploited in designing and understanding
them. Once feedback loops are allowed, there is no such simple theory.
As a result, circuits with feedback must be “hand-crafted.” Their main
use is in computer memory circuits. There are only a few basic types of
feedback circuits that are used to build memories. In this section, I will
describe those that we will need for our model computer.

The lack of a theory for circuits with feedback makes them less inter-
esting from my point of view, since in this text I am more interested in
principles than in practice. I will not give all the details of the circuits
I discuss here. A much fuller treatment can be found in [Shaffer].

2.3.1. A One-bit Memory Circuit. Let’s consider the behavior
of the circuit in Figure 2.14 in more detail. Assuming that both inputs
are off, this circuit has two possible states, as shown in the figure. In
one of these states, the output of the circuit is off, and in the other state
the output is on. We can think of this circuit as “remembering” the value
of a bit—zero if its output is off, or one if its output is on. If we can
find a way to tell this circuit which of these values to remember, we will
have a memory circuit. We will be able to store a one-bit number in the
circuit and then later read the value that was stored there by checking
the value of the output. The value in the circuit will not change until
we explicitly change it by telling the circuit to store a new bit.

As you might have guessed from their names, the two input wires
labeled “Store-zero” and “Store-one” can be used to store a value in the
circuit. The procedure for storing a one in the circuit is to turn Store-one
on briefly and then turn it off again. The Store-zero wire must be kept
off during this process. Turning on Store-one turns on one input to the
OR gate. This causes the output of the OR gate to turn on (if it was
not already on). Then, since Store-zero is off, both inputs to the AND
gate will now be on. The output of the AND gate will then come on, if
it is not already. This causes no further changes, since the OR gate is
already on. Turning Store-one off turns off one input of the OR gate, but
its second input is still on, so its output remains on. The value one has
been successfully stored in the circuit.'!

1 Recall from Chapter 1 that all gates have internal power sources. These
internal power sources make it possible for the output of this circuit to be on
even though both inputs are off. There is nothing mysterious about the loop in
the circuit staying on “by itself.”
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Load-Data <t |_ ________ |
— ore-one
Data- D | Data-
In [ | out
Store-zero | |
|

Figure 2.15. Our official one-bit memory circuit. The value stored in
this circuit can be read at any time by checking the value output on the
Data-out wire. A wvalue can be stored in the circuit by placing that value
on the Data-in wire and then turning the Load-data wire on and off.

The Store-zero wire works similarly. To store a zero in the circuit, you
just need to turn this wire on briefly and then turn it back off. Store-one
must be kept off while you do this. Turning Store-zero on turns off the
AND gate, which breaks the feedback loop. Both inputs to the OR gate
will be off and therefore so will its output. Turning Store-zero off will
not change this. The value zero has been stored in the circuit. Note that
these procedures for storing a value in the circuit will work no matter
which state the circuit starts out in.

The circuit in Figure 2.14 is not quite what we need, because of the
inconvenience of using separate wires to store zeros and ones. Figure 2.15
shows the modified circuit that we will use instead. This is a standard
circuit, known as a D flip-flop. For this circuit, the procedures for
storing zero and for storing one are the same. The value to be stored—
zero or one—is put on the Data-in wire; then the Load-data wire is turned
on and back off. This will store the value in the feedback loop of the
circuit. The stored value can be read off the output wire, Data-out. This
value will not change until a new value is explicitly loaded into the circuit.

To see how this circuit works, note that the wires Store-one and Store-
zero are connected to the outputs of two AND gates, which in turn get
their inputs from Load-data and Data-in. Store-one will be on only when
both Load-data and Data-in are on simultaneously. Thus, turning Load-
data on and off while the value on Data-in is 1 will turn Store-one on
and off, which will store a 1 in the feedback loop. (While this is going
on, Store-zero stays off because the value of 1 on Data-in passes through
a NOT gate and becomes a 0 on its way to the AND gate connected
to Store-zero.) On the other hand, if the value on Data-in is 0, then
turning Load-data on and off will turn Store-zero on and off while Store-
one remains off; this will store a 0 in the feedback loop. Thus, in both
cases, the circuit works as it should.
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Data-ing Data-inp Data-in4 Data-ing
I N I ____i

Load- | _ . . .

Data | :
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k-bit Data-out

Figure 2.16. On the top is a four-bit register constructed from four
one-bit memories. Below it is a general-purpose k-bit register. This
memory circuit stores a k-bit binary number, which can be read off the
Data-out wires. The four control wires, Load-data, Load-zero, Incre-
ment, and Decrement, are used to change the stored value.

Now that we have a working one-bit memory, it is easy to build a
memory circuit that can store more than one bit. A circuit to store
a k-bit binary number can be built from k one-bit memories. A k-bit
memory has k Data-in wires and k£ Data-out wires. However, it has only
one Load-data wire, which is connected to the Load-Data inputs of all
k one-bit memories. A k-bit memory therefore stores a k-bit number
all at once, as a unit. Its operation is identical to that of a one-bit
memory: To store a number, put that number on the Data-in inputs and
turn Load-data on and off. This will store each bit of the number in the
corresponding one-bit memory. A four-bit memory constructed in this
way is shown in Figure 2.16.

2.3.2. Registers. Most of a computer’s memory is external to the
CPU. However, the CPU itself does include a small number of memory
circuits. A memory circuit on the CPU is called a register. For exam-
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ple, the program counter, which I mentioned in Chapter 1, is a register
that the CPU uses to store the location in memory of the next machine
language instruction to be executed. There are other registers, such as
the instruction register, which stores a copy of the machine language
instruction that is currently being executed by the CPU.

A register is just a k-bit memory circuit. Some registers, including
the instruction register, can be designed exactly like the four-bit memory
in Figure 2.16. Other registers, such as the program counter, need extra
capabilities. A very common operation on the program counter is to add
one to the value it contains. Adding one to this value corresponds to
moving on to the next instruction in a program, so this operation is part
of every fetch-and-execute cycle. So, in addition to its Load-data control
wire, the program counter has a second control wire called Increment.
Turning Increment on and off will add one to the value in the program
counter. (The term increment just means “add one to.”)

Two more control wires will also be used occasionally. A Decrement
wire can be used to decrement (that is, “subtract one from”) the contents
of the register. A Load-zero wire is used to set the value stored in the
register to zero.

A k-bit register with all four possible control wires is shown in Fig-
ure 2.16. No single register used in the next chapter will have all the
possible inputs shown here.

The implementations of the Increment and Decrement operations are
not easy, and I will not discuss them here. They require a more com-
plicated type of one-bit memory than the one introduced above. In any
case, we could always use an addition circuit to add 1 or —1 to a num-
ber, so you know it is possible in principle; doing it in one step just by
turning a wire on and off is the hard part.

In Chapter 3, we will make use of the circuits designed in this chapter.
Most of the details of the internal operation of these circuits will not be
important. There are some points, however, that you should understand
before going on:

e the fact that a circuit (without feedback loops) can be built with
any specified input/output behavior;

e the method for using the ALU by giving it two sixteen-bit inputs
and turning on a control wire to tell it which operation to perform;

e the purpose of registers and one-bit memories, and the use of their
input, output, and control wires.
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Chapter Summary

The ands, ors, and nots of logic are reflected in the physical structure of
a computer—in its AND, OR, and NOT gates. There is a deep connection
between the logical expressions of Boolean algebra and the computa-
tional circuits in the computer. We can exploit this connection to design
a circuit with any desired input/output behavior. Given a table of in-
put/output values, there is a definite, mechanical procedure for writing
down a logical formula that expresses the same relationship of output
to input; given that formula, there is a definite, mechanical procedure
for building a circuit that performs the computation specified by the
formula.

It turns out that arithmetic too is deeply related to logic. When
dealing with arithmetic, true and false become one and zero, but the
circuits that manipulate the ones and zeros are designed and built in the
same way. Starting from simple circuits that manipulate individual bits,
and combining them step-by-step into more complex circuits, we arrive
eventually at a complete arithmetic-logic unit, a kind of calculator that
can perform any of several different arithmetic and logical operations on
multi-bit inputs.

Computers don’t just do computations. They also have memory.
Data and programs must be stored safely away in memory, where the
CPU can read them as necessary. The CPU itself contains small memory
units called registers to hold data that the CPU is working with directly.
Although memory is very different from computation, it can still be
implemented using only AND, OR, and NOT gates, provided that we allow
circuits with feedback. Although there is no elegant mathematical theory
for circuits with feedback, it is possible to design a one-bit memory circuit
that uses a feedback loop to remember the value of single bit. Such one-
bit memories can then be used as a basis for building all the other types
of memory circuits we will need.

Questions

1. In Section 2.1, we derived a formula for a circuit with two inputs
whose output is on whenever the two inputs are the same. Draw the
circuit. Use similar methods to design and draw a two-input circuit
whose output is on when the two inputs are different. What simple
modification of the first of these circuits would produce a circuit with
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the same behavior as the second? Now suppose you wanted to design a
circuit specified by a table like the one in Figure 2.5, except that most
of the outputs are specified as true, with only a few specified as false.
The method given for building a circuit from this table will produce a
huge, complex circuit, since each line in the table where the output is
true adds several gates to the circuit. How could you produce a much
smaller circuit with the same behavior?

2. Consider DeMorgan’s law, which says that NOT (A AND B) =
(NOT A) OR (NOT B). Build a circuit to represent each side of this rule,
and check that they have the same behavior for all possible inputs. Make
up some examples in English to illustrate this rule. Try to explain in
words why it holds.

3. A full adder is a circuit with three inputs (A, B, and carry-in)
and two outputs (sum and carry-out). Make a table showing all possible
combinations of inputs and the resulting outputs. Use this table to build
a full adder directly, using the methods of Section 2.1. Comment on the
differences between your circuit and a full adder built from two half-
adders. Does it make any difference which version of the full adder is
used in building larger circuits, such as a 16-bit adder? (Both “yes” and
“no” are possible answers, depending on your point of view. Explain
why.)

4. In this chapter, we saw how to construct a one-output circuit
from a Boolean algebra expression. The reverse is also possible for cir-
cuits that have no feedback loops. That is, given such a circuit, it is
possible to write the output as a Boolean expression of its inputs. Give
a detailed procedure for finding this expression. Show how it works on
some example circuits. What goes wrong with your procedure when you
try to apply it to a circuit with feedback loops?

5. The simplest feedback loop that can occur in a circuit is produced
by connecting the output of a NOT gate back to its input. How would
such a circuit behave? Remember that when the input to a gate changes,
it takes some time for the gate to change its state. Consider what hap-
pens at the moment when the output of the NOT gate is connected to
the input, and what happens after that.

6. The ALU developed in this chapter contains two sixteen-bit ad-
dition circuits. One of them is inside the subtraction circuit. It would
be nice to eliminate this duplication by using the same circuit for both
addition and subtraction. For the circuit to do addition, the second
sixteen-bit input number must come directly from the second input to
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the ALU; for it to do subtraction, its second input must come from the
circuit that computes the ones-complement of the input to the ALU. Is
there any way that the ALU can switch between these two inputs as
necessary? In fact, it can be done using multiplexers. A multiplexer
is a circuit with three inputs and one output. Call the inputs A, B, and
Select. The output of the multiplexer is defined as follows: If Select is
on, then the output is equal to A; if it is off, then the output is equal
to B. Check that the output can be written in terms of the input as

(Select AND A) OR ((NOT Select) AND B).

The Select wire acts as a switch to determine which of the inputs gets
through to the output. With a bank of sixteen multiplexers, we can
eliminate the extra addition circuit from the ALU. Show how this can
be done. Explain all the modifications necessary to the ALU. Some
modifications will be necessary in the circuitry that controls the ALU’s
output. (One tricky bit you might miss: For the addition circuit to
perform a subtraction correctly, the carry-in to the addition circuit must
be turned on.)
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Chapter 3

Building a Computer

THE WORK DONE in the previous chapter has provided us with the basic
materials for building a computing machine. Now we will see how to
assemble the pieces into a working computer.

The machine we design in this chapter will, in some ways, seem to
be not very impressive. It will understand only a few different machine-
language instructions, and it will have very limited memory in which
to store data and programs. Only an extremely primitive input/output
capability will be provided, so that just getting data and programs into
and out of the computer will be almost ridiculously tedious.

But all of that is really beside the point. First of all, many of the
limitations are design decisions that could be easily revised. For example,
the way we will use sixteen-bit numbers to represent machine-language
instructions will force a limitation on the size of the computer’s memory.
However, using more bits per number would be easy and would allow us
to greatly extend the memory size. Other limitations, such as the lack
of input/output facilities, are beside the point of this chapter, which is
simply to produce a machine that executes programs, without making
that machine easy for people to use. A discussion of the problems of
making real machines for real people is left to Chapter 5.

Remarkably, though, the limitation that seems most damaging is
not a real limitation at all. Real computers can have hundreds or even
thousands of different machine-language instructions. Our computer will

67
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have a rather anemic set of only thirty-one instructions, and it might
seem that this would mean a real restriction on the computations that
it is able to perform. This is not the case. Aside from limitations of
memory, speed, and difficulty of writing programs for it, our computer
will be precisely as powerful as every other computer in existence. This
essential equivalence of different computer designs is one of the surprising
results of the theoretical study of computation, which will be explained
in Chapter 4.

As for this chapter, while it is generally more technical and detailed
than other sections of the book, the reward for working through it is
substantial: a real understanding of how a purely mechanical device can
automatically execute any list of instructions written in the machine
language it understands. The fact that computers can work at all is
surprising. Even more amazing is the fact that their basic operation can
be fully understood with a relatively modest effort.

3.1. Basic Design

As we saw in Chapter 1 (Figure 1.3), the two main parts of a computer
are its CPU and its main memory. The main memory contains a
numbered sequence of locations, which hold program instructions and
data. The CPU executes programs by fetching instructions one-by-one
from memory and carrying out each of those instructions. We can now fill
in the details in this description. Details of design can vary greatly among
computers, so that the machine we end up with will be different from—
and simpler than—any existing real computer. However, our design is
very much in the spirit of the design of real computers, and it gives a
fair impression of their basic operation.!

Most computers have names, and ours should be no exception. We’ll
refer to it as the “Model X Computer,” or, briefly, as the xComputer.?
The xComputer will be made up of twelve components, connected to-
gether by a mass of wires. The wires connected to each component can
be divided into three classes: input, output, and control. Input and out-
put wires carry data between components, while the control wires are
used to control their operation.

L That is, it gives a fair impression of the operation of the CPU and main
memory, which are the essential components of a computer. Other components,
which will be covered in Chapter 5, play supporting roles.

2 That’s xComputer, pronounced “Eck’s computer,” in case you didn’t get
the rather weak joke.
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One of these components is a clock. The clock has one output wire,
and as it “ticks,” it turns this wire on and off. It is this ticking that drives
the whole operation of the computer. (See Subsection 2.2.2.) The clock
also has a control wire, which can be used to stop it from running. As
long as this wire is of £, the clock will continue to tick; if it is turned on,
the clock will stop, which will in turn stop the operation of the computer.

The eleven remaining components are circuits. One of these is an
ALU to do basic arithmetic and logical operations. Eight of the circuits
are registers—small memory units internal to the CPU, each holding
from one to sixteen bits. Registers and ALU’s were discussed in Chap-
ter 2. That leaves two circuits still to be described. One of these is the
main memory unit, which is assembled from a large number of one-bit
memories. The difficult part of designing a main memory is dividing
it up into locations that can be individually accessed by number. One
possible design is discussed below.

The final component is called the Control circuit or Central Con-
trol Unit. 1t is this circuit that is responsible for controlling all details
of the execution of machine-language programs. If there is any part of
the computer that “thinks,” this must be it! And yet, when we finally
get around to it, building this circuit will be simplicity itself. Here is the
key: Execution of machine-language programs will be controlled entirely
by turning control wires on and off in the right sequence, as the clock
ticks. The Control circuit has output wires connected to each of these
control wires; we just need to arrange for the Control circuit to turn
its output wires on and off as appropriate. Before you can understand
how this could be done, you need to know more about the design of the
individual components and more about machine-language instructions.
By the time we get around to designing the Control circuit in Section 3,
it will no longer be a mystery how it can be built.

3.1.1. Addressing RAM. The memory unit attached to the CPU
is called the computer’s main memory. It is also sometimes referred
to as the RAM, or random access memory, although this is really a
more general descriptive term for any memory made up of addressable
locations. The main memory consists of a large number of locations, each
holding a binary number. These locations can be “accessed randomly.”
That is, you can get at the contents of any randomly picked location at
any time. The locations are numbered: location 0, location 1, location 2,
and so on. The number of a location is called its address. To store or
read data in a location, you need to know the location’s address.
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Load-data-
into-Memory
Main
ﬁ
Address Memo ry
Memory-out
Memory-in

Figure 3.1. The main memory of the tComputer. In this figure, as in
all the figures in this chapter, the thinnest lines represent a single wire,
while thicker lines represent bundles of several wires. Here, there are
stxteen. Memory-in wires, sizteen Memory-out wires, ten Address wires,

and a single Load-data-into-memory wire. All these are connected to the
CPU.

In xComputer, the address will be a ten-bit binary number. This
means that there will be 2'° or 1024, different locations, numbered
from zero to 1023. Each of these locations will hold a sixteen-bit binary
number. The wires that connect the memory to the outside world are as
follows: It has a sixteen-bit input, which is used to specify a number to
be stored in memory, and a sixteen-bit output, which can be used to read
a stored value. There is also a ten-bit input which is used to specify the
address of the location that is to be accessed. (There are 1024 different
locations for storing numbers, but at any given time only one of these
locations is accessible, namely the one whose ten-bit address is on the
Address wires.) Finally, there is a control wire which is used to tell the
memory unit to load the sixteen-bit number on the data input wires into
the location specified by the Address wires. A diagram of the memory
unit is shown in Figure 3.1.

There are only two different things that you can do with main mem-
ory: You can store a number in a specified location, or you can read
the number that is currently stored in a specified location. If you know
how to do these two things, then you understand the memory completely
from an external, “black box” point of view.

The procedure for reading a number is simply to put the address of
the location that contains it on the memory’s Address wires; the stored
value can then be read on its output wires.

Storing a number involves a few more steps: The value to be stored
must be put on the memory’s input wires, and the address of the location
where it is to be stored must be put on the Address wires. Then, the Load-
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Figure 3.2. The first step in designing addressable memory. This cir-
cuit uses a one-bit address to choose between two one-bit memories at
“location 0”7 and “location 1.” When the address wire is off, data can
be stored into or read from location 0; when it is on, location 1 is in use
instead.

data-into-memory control wire is turned on briefly and then off again;
this causes the value to be stored.? Note that this is the only time that
Load-data-into-memory is ever used: Turning it on will load whatever
value is on the Memory-in wires into whatever location is specified by the
Address wires, replacing whatever number was stored there previously.

A black box understanding of main memory is sufficient for under-
standing the role it plays in xComputer, but it is interesting to see how
an addressable memory can be built. To simplify the discussion, we will
imagine that each location stores only a single bit, instead of sixteen.
The real memory will consist essentially of sixteen copies of the circuit
described here.

Each location is really just a one-bit memory of the type introduced
in Section 2.3, with its own Data-in, Data-out, and Load-data wires. The
difficulty is to arrange for the Address wires to pick out one location from
all those available. The simplest case would be when there are only two

3 As always, it takes some time for these procedures to do their work. When
you put an address on the Address wires, the contents of the specified location
are not immediately available on the output wires. You have to wait some
minimum time to allow the effect of changing the address inputs to filter through
the circuit. This minimum time must be less than the time between ticks of
the clock. In a real computer, the time required would be some fraction of a
millionth of a second.
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locations, location 0 and location 1. In this case, only one Address wire is
needed. This single Address wire is turned off to choose location 0 and
on to choose location 1. A two-location memory of this type is shown in
Figure 3.2.

Let’s see how the single Address wire picks out one of the two lo-
cations. Each of the locations constantly outputs the value stored in
it. Only one of these values should get through to the output wire of
the circuit, depending on the value on the Address wire. The idea is that
when this wire is of f, certain data pathways in the circuit are open while
others are closed. Turing it on will reverse the state of each pathway. If
the Address wire is off, then the data from location 0 should get through
to the output, while data from location 1 is blocked. If the address wire
is on, the opposite should happen. You can easily verify that the circuit
in Figure 3.2 works in this way. (The outputs from the two locations are
combined through a subcircuit called a multiplexer. Multiplexers were
introduced in Question 6 at the end of Chapter 2; the Address wire plays
the role of the Select wire of the multiplexer.)

Turning now to storing values, the Data-in wire of the two-bit mem-
ory is connected directly to the Data-in wire of each of the two one-bit
memories it contains. A one-bit memory does not actually store the
value on its Data-in wire until its Load-data wire is turned on and off.
The two-bit memory’s Address wire is used to open up a pathway from
its Load-data-into-memory input to the Load-data wire of one or the other
one-bit memory. As shown in Figure 3.2, Load-data-into-memory is con-
nected to the Load-data wire of each one-bit memory through an AND
gate. The second input to that AND gate will control whether or not a
signal on Load-data-from-memory will get through to the one-bit-memory.
As you can see, this second input is controlled by the Address wire in
such a way that if the Address wire is off, the signal gets through to
location 0, while if it is on, it gets through to location 1. If Address is off,
then turning Load-data-into-memory on and off will turn the Load-data
for location 0 on and off, and the value on the Data-in input wire will be
loaded into location 0. If Address is on, it is loaded into location 1.

Thus, the circuit as shown works correctly for both storing and read-
ing data.

Now, the circuit that we really want to build has 1024 locations, not
two. It might seem at first that that circuit would have to be about 512
times harder to build than the one we have just designed. In fact, though,
it can be built by repeatedly applying exactly the same technique used to
build the two-location memory. Each time it is applied, another address
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Figure 3.3. The step from k to k + 1 address wires. This memory
circuit has 281 locations, and is made from two smaller circuits with
2 locations each. One bit of the (k + 1)-bit address is used to distin-
quish between the two smaller memories; the other k bits are used to
pick out locations within those memories. Aside from the extra k ad-
dress wires, the logic of this circuit is the same as the logic of the two-
location memory in the previous figure.

wire is added and the number of locations is doubled. A memory circuit
with k 4+ 1 address wires can be built from two circuits with k& address
wires, as shown in Figure 3.3. We go from two locations, to four, then
to eight and so forth, reaching the required 1024 after just nine steps.
This is another example of our general method of building a complex
circuit by combining simpler circuits that we have already built, but there
is an interesting twist. Except for having one fewer address wire, the
smaller component circuits are essentially the same as the bigger circuit
of which they are a part. We could almost say, “To make a memory
circuit, start with two memory circuits and wire them together with a
few extra logic gates.” This statement if taken literally is paradoxical,
since it says that a memory circuit contains two copies of itself. It must
be read, of course, as, “To make a memory circuit [with (k + 1)-bit
addresses|, start with two memory circuits [with k-bit addresses].” This
is our first example of a phenomenon called recursion, which occurs
when a problem can be broken down into subproblems that are of the
same type as the original problem. We will encounter recursion again in
Chapter 7, where it is used as a technique in computer programming.

3.1.2. Registers. The main memory is not the only memory used
by our computer. The CPU itself contains registers, which are memory
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circuits capable of holding some small number of bits. Each register has
output wires on which the value that is currently stored in the register
can be read at any time; when we build the CPU, these wires will be
connected to input wires of other components in the CPU that need to
use the value stored in the register.

Registers play an important role in organizing each computation that
takes place in the CPU into a sequence of fairly simple steps. Consider,
for example, the process of using the ALU to perform an addition. The
two numbers to be added must be put on the two sixteen-bit inputs of
the ALU, and the Select-add wire must be turned on. These values on
all the input wires must be maintained while the answer is read from the
ALU’s output wires. In general, at each stage in every computation, we
have to make sure that all the inputs to all the circuits are set to the
correct values. With so many wires to worry about, this could be a very
difficult task.

Suppose, however, that we connect some of the input wires of a circuit
to the output wires from a register. Then, the circuit’s input will always
be equal to whatever value happens to be stored in the register. This
value can only change when a new value is explicitly stored by turning the
register’s Load-data wire on and off. This means we can set up whatever
input the circuit needs by dumping a number into the register; once that
is done, we can stop worrying about that input, as long as we make sure
to leave the Load-data wire of the register alone.

To apply this strategy to the ALU, we attach two sixteen-bit registers
to its two data inputs. We will call these registers X and Y. In addition,
we attach the sixteen-bit output of the ALU to the data input of another
register called the accumulator, or AC. (You might recall from Chapter 1
that the accumulator is a register that holds the results of computations.)
Figure 3.4 shows the ALU with all the registers that are attached to
it. The procedure for adding two numbers then becomes a sequence of
simple, independent steps:

1. Put the first number to be added on the input wires of register X,
and turn that register’s Load-data wire on and off. (Then forget about
register X and its inputs.)

2. Put the second number to be added on the input wires of regis-
ter Y, and turn that register’s Load-data wire on and off. (Then forget
about register Y and its inputs.)

3. Turn on the Select-add wire and, while it is on, turn the Load-data
wire for the accumulator on and off.
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Figure 3.4. The ALU and the four registers attached to it. X, Y, and
AC are sizteen-bit registers. (AC is an abbreviation for “accumula-
tor.”) FLAG is a one-bit register. X and Y hold the numbers to be
used as input for the ALU’s computation. The result of that compu-
tation can be loaded into AC. The Flag output from the ALU, which
can hold extra information about the result of the computation, can be

loaded into the Flag register.

After step 3, the sum of the two numbers is stored in the accumulator,
and that sum can be read from its output wires at any convenient time,
at least until the accumulator is explicitly loaded with a new value.

This three-step procedure could be used to add numbers with the
ALU by hand, but of course our problem is more difficult than this.
We have to design a Control circuit that will carry out this procedure,
along with all the other procedures necessary to execute a machine-
language program, without any intervention from us. Obviously, before
we attempt to design such a circuit, we need a complete understanding
of what those procedures should be. The three steps listed above are not
complete enough.

In particular, in steps 1 and 2, we still have the problem of making
sure that the right data for the operation gets onto the input wires of
the X and Y registers. Since we will not be around while the program is
running to set up the data inputs, they have to come from the outputs
of other components in the computer. Figuring out exactly where they
should come from requires a detailed knowledge of machine-language
instructions and the steps involved in executing them. The machine lan-



76 Chapter 3. Building a Computer

From Memory From ALU From IR

5 S S

SELECT

|

! I
= |
| Load- V ) |
| data Data-in |
| |
| |
| |

Load-AC-from-Memory —
Load-AC-from-ALU
Load-AC-from-IR

Increment-AC

16-bit Register

Increment
Decrement|7 Data-out

Decrement-AC—t

Figure 3.5. Some of the internal structure of the accumulator, show-
ing how it can load data from three different sources. The Select circuit
s used to determine which of the three inputs to the accumulator gets
through to the register that actually holds the stored number.

guage of xComputer will not be covered in detail until the next section,
but that discussion will make a lot more sense if you already have some
idea of the general operation of the computer. I will explain some aspects
of that operation in this section, but you should understand that some
of the details discussed here are required for the execution of specific
machine-language instructions that you don’t know about yet.

Let’s consider the X register first. As it happens, every machine-
language instruction that uses the ALU requires X to be loaded with the
current contents of the accumulator.* So, wiring X is easy: Its input
is connected to the output wires from the accumulator. Turning on X’s
Load-data wire will load a copy of the number stored in the accumulator
into X. To keep things straight, I would like to give a different name to
every control wire in xComputer, so we will call the Load-data wire for
the X register Load-X-from-AC.

If we turn to the accumulator, we find a more complicated situation.
First of all, there are machine-language instructions for adding one to

4 For example, one such instruction says to subtract a number in memory
from the value in the accumulator. For this instruction, X is loaded from
the accumulator and Y is loaded with the number from memory. The answer
produced when Y is subtracted from X is loaded back into the accumulator,
replacing the value that was there previously.
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the accumulator and for subtracting one from it. The accumulator needs
Increment and Decrement control wires to implement these instructions.
(Increment and Decrement were discussed in Section 2.3.)

The input source for the accumulator also presents some problems.
When the accumulator is used to store the results of a computation, it
is loaded with the output from the ALU. However, there are machine-
language instructions that require the accumulator to be loaded from
other sources. To handle this, we provide the accumulator with three
separate data inputs—one from the ALU, one from main memory, and
one from another register called the IR. We provide a separate control
wire to load data from each of these sources into the accumulator. Reg-
isters with several different input sources are something new for us. Fig-
ure 3.5 shows how such a register can be constructed from an ordinary,
single-input register. The Select circuit in this figure is essentially the
same as the circuit we built in Subsection 2.2.6 to compute the output
of the ALU.

This should give you the general idea of how registers are designed
and what they are used for. All of the eight registers used in xComputer
are shown in Figures 3.4 and 3.6. Except for ADDR and COUNT, all
of the registers have already been mentioned. A full understanding of
these components will have to wait until the next section, but here is a
summary description (with some new hints about the overall operation
of the CPU):

e ADDR, the address register. A ten-bit register whose outputs are
connected to the Address wires of the main memory. ADDR is used to
control access to the 1024 locations in the memory. Recall that the value
on the memory’s Address wires specifies which location in memory is to
be used when data is stored in memory or when a stored value is read.
Loading a number into ADDR selects a memory location. Any time
main memory is used—for reading or storing data or machine-language
instructions—that use is preceded by dumping the address of the desired
memory location into the ADDR register.

o IR, the instruction register. A program to be executed by the CPU is
stored in memory as a sequence of machine-language instructions. Each
instruction is coded as a sixteen-bit binary number. Recall that the pro-
gram is executed by repeatedly fetching an instruction from memory and
then executing that instruction. Fetching the instruction will just mean
loading it into the IR. Once it has been loaded, any other component in
the CPU that needs to know what the current instruction is can read
that instruction from the output wires of the IR.
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Figure 3.6. The remaining four registers that are used in ztComputer,
together with the clock. COUNT is a four-bit register, and IR has siz-
teen bits. ADDR and PC each hold ten bits. Note that the output from
IR is divided into two parts: the siz leftmost bits, which feed into the
Control circuit, and the remaining ten bits, which connect to the Y reg-
ister, the program counter, and the accumulator. Ezcept for the Con-
trol circuit, all the components of xComputer appear in this figure or in
Figure 3.1 or Figure 3.4.

e PC, the program counter. The PC was discussed in Chapter 1. It
holds the location in memory of the program instruction that is next in
line to be executed. At the beginning of each fetch-and-execute cycle,
the CPU needs to load the next instruction into the IR. The PC holds
the address of that instruction.

¢ COUNT, the step counter. This is a four-bit register which is unusual
in that it has no data-input wires. It has two control wires, Set-COUNT-
to-zero and Increment-COUNT. The second of these is attached to the
output wire from the clock. As the clock ticks, this wire is turned on
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and off, and the value in COUNT is incremented. In fact, this is the
only direct influence of the clock on the computer.® Each machine-
language instruction is executed in a sequence of small, simple steps.
COUNT is used to “count off” the steps in the execution of each single
machine-language instruction. (This is not the same as counting off the
machine-language instructions that make up a program; that counting
is done in the program counter register.) At the beginning of the fetch-
and-execute-cycle, COUNT contains the four-bit number 00005. As the
clock ticks, the contents are incremented to 00015, then 00105, and so
on. Each time the value changes, a new step is initiated.

e X, the first operand register. Represents one of the numbers to be
used as input for a calculation by the ALU.

oY, the second operand register. The second input to the ALU. (For
those operations that require only one input—that is, for the operations
NOT, shift-left, and shift-right—the value stored in Y is ignored.)

o FLAG, the flag-bit. This one-bit register will be loaded with the Flag
output from the most recent calculation done by the ALU. For example,
after an addition operation has been performed, FLAG will hold the
carry-out from the left-most column. For shift operations, it will hold
the bit that was “shifted off the end” of the number in the accumulator.

e AC, the accumulator. Grand Central Station for most of the data that
flows through the CPU. When data values are loaded from memory, this
is where they are stored. When a computation is performed by the ALU,
this is where the result goes. Any number that is to be stored in main
memory must be first loaded into the AC and then moved to memory
from there.

Altogether, these eight registers have a total of eighteen control wires.
There are nine other control wires in the computer: the seven controls
of the ALU, main memory’s Load-data-into-memory wire, and the clock’s
Stop-clock wire. Everything done by the CPU is accomplished by turning
these control wires on and off. The COUNT register’s Increment-COUNT
wire is continually turned on and off by the clock. All the other con-
trol wires are connected to the Control circuit, which is responsible for
turning them on in the correct sequence.

Recall that the CPU works by repeatedly carrying out a fetch-and-
execute cycle. Each cycle has two parts: fetching a machine-language

51In real computers, the clock output is fed directly to a large number of
components. A great deal of circuitry is devoted to making sure that the signal
from the clock gets to each component at the proper time.
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instruction from memory and then executing that instruction. The first
of these two parts will be the same in every cycle; the second part depends
on what instruction is being executed.

A fetch-and-execute cycle will be carried out in a sequence of steps.
Step 1 is done when the value in the COUNT register is 00015, step 2
when that value is 00102, and so on. As the last step in each cycle,
the value in COUNT will be reset to zero, and the next cycle will begin
when COUNT is automatically incremented to 00015 at the next tick of
the clock. Each step is completely defined by the control wires that are
turned on during that step. Our job, as we try to construct a design for
xComputer, is to specify both the sequence of steps necessary to carry
out each possible machine-language instruction and which control wires
need to be turned on during each step.

We can deal with the fetch part of the fetch-and-execute cycle with-
out knowing anything about how to execute specific instructions, since
the first three steps in each cycle will always be the same. Fetching
an instruction means loading it from memory into the instruction reg-
ister (IR). Now, before anything can be read from memory, its address
must be loaded into the address register (ADDR). So, as the first step
of the fetch-and-execute cycle, the CPU must load the address of the
next instruction to be executed into ADDR. Since the required address
is in the PC, this step can be accomplished simply by turning the Load-
ADDR-from-PC control wire on and off.

Once the correct address has been loaded into ADDR, the instruction
we want will be available on the main memory’s output wires. In the
second step of the fetch-and-execute cycle, this instruction is loaded into
IR by turning the Load-IR-from-memory control wire on and off. In the
third step, the value in the PC is set up to get ready for the next instruc-
tion. We do this by turning the Increment-PC control wire on and off, in
order to add 1 to the value in the PC. So, no matter what instruction is
to be executed, the first three steps in the fetch-and-execute cycle will
always be:

Step 1: Turn on Load-ADDR-from-PC.
Step 2: Turn on Load-IR-from-memory.

Step 3: Turn on Increment-PC.

6 This is another example of the general process of reducing some “action”
that the computer needs to perform to manipulation of control wires. Once
again, I emphasize that this sort of thing is the key that makes it practical to
build working computers.
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For each step, I have listed the wire that is to be turned on during that
step. In some of the later steps for executing certain instructions, several
wires can be turned on at the same time. As each new step begins, any
wire that was turned on for the previous step is to be turned off unless
it is specifically listed for the new step.

The three steps listed here are done when the value in the COUNT
register is, respectively, 00012, 00102, and 00115. For example, we must
design our Control circuit so that when the value in COUNT is 00015,
the Load-ADDR-from-PC wire, and only that wire, will be on. When
the value in COUNT changes to 00102 at the next tick of the clock, the
Load-ADDR-from-PC wire goes off, and Load-IR-from-memory comes on.

The steps that come after the first three depend on what instruction
is being executed. (Of course, this depends in turn on the program stored
in main memory, since the instruction was loaded from some location in
memory.) We can’t go any further in our analysis until we know exactly
what instructions are available and how they are represented.

3.1.3. Input/Output. But before we do the hard work of getting
xComputer to execute machine-language programs, we should make sure
that we will be able to use the computer we design. Our computer will
be perfectly useless if we have no way of getting a program into memory,
no way of telling the CPU to start executing it, and no way of finding out
the result of that execution. We need some way of getting data into and
out of the computer. The process of moving data from the outside world
into a computer is called input; data flowing in the opposite direction
is called output. Collectively, input and output are usually referred to
by the abbreviation I/0.

Real computers have sophisticated I/O capabilities, but in this chap-
ter I am interested only in showing that I/O is possible in principle.
How can we add enough I/O capability to make xComputer minimally
usable?

We already know how to load numbers into main memory by hand.
It’s a simple matter of setting the values of the memory’s input and ad-
dress wires and then turning Load-data-into-memory on and off. When
we put the computer together, all these wires will be connected to the
CPU, but there is nothing to stop us from providing additional connec-
tions to a bank of switches that can be used to manually turn the wires
on and off.

In order to load a program into memory, we need switches connected
to its input, address, and control wires. In order to tell the CPU to exe-
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cute that program, we must load the program counter with the address
of the first instruction in the program. To do this, we need switches con-
nected to the program counter’s input wires and to its Load-data wire.
Finally, we will need a switch connected to the Stop-clock wire. This
switch can be on while we load the memory and PC. Once everything is
set up, turning Stop-clock off will start the computer running.

We also need some way to determine the result of executing a pro-
gram. This means that we must be able to inspect the contents of mem-
ory after the program ends. This is also easy. We can use the switches
we have already attached to the address wires to pick out any location in
memory whose value we want to check. Once we have done so, the num-
ber in that location can be read from the memory’s output wires—we
might attach a small light bulb to each of these wires to indicate whether
that wire is off or on.” This simple I/O capability is enough to let us
load programs, tell the CPU to execute them, and check the results.

3.2. Fetching and Executing

Each machine-language instruction to be executed by xComputer must
be encoded as a sixteen-bit binary number. Most instructions specify
two things: an operation to be performed, and some data that is to
be used in the operation. In most cases, the data is the address of a
location in memory. This address uses up ten bits of the instruction
out of the sixteen available. This leaves the other six bits to use as an
instruction code, which specifies the operation. Let’s say that the six
leftmost bits of an instruction will be used to encode the operation, and
the rightmost ten bits the data. It will be useful to have names for each
of the six bits of the instruction code; we will call them Iy, 14, I3, Io,
I, and Iy (numbered from right to left, corresponding to the powers
of two represented by the bits of a binary number). The format of an
instruction then looks like this:

]1“5\[4\13\12\11\10\ 10 data bits

With six bits for an instruction code, we can encode up to 2%, or
sixty-four, different instructions. In fact, we will only have thirty-one,

7 All this is not, by the way, as silly as it might seem. When the very first
“personal computer,” the Altair, was introduced in 1976, its I/O facilities were
essentially the same as those described here. See [Levy, Hackers|.
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Instruction | Instruction

Code Code Short | Long
(binary) (decimal) | Name | Name
0000004 0 ADD | Add-to-AC
0000015 1 SUB Subtract-from-AC
0000104 2 AND | Logical-AND-with-AC
0000114 3 OR Logical-OR-with-AC
0001004 4 NOT | Logical-NOT-of-AC
0001014 5 SHL Shift- AC-left
0001104 6 SHR Shift-AC-right
0001114 7 INC Increment-AC
0010004 8 DEC Decrement-AC
0010012 9 LOD | Load-AC-from-memory
0010104 10 STO Store-AC-in-memory
0010114 11 HLT Halt
0011004 12 JMP | Jump
001101, 13 JMZ Jump-if-AC-is-zero
0011104 14 JMN | Jump-if-AC-is-negative
0011114 15 JMF Jump-if-FLAG-is-set

Figure 3.7. The sizteen basic instructions for zComputer, with in-
struction codes zero through fifteen. FEach instruction has a long name,
which says pretty much what it does, and a two- or three-letter ab-
breviation. For the instructions HLT, NOT, SHL, SHR, INC, and
DEC, the data bits of the instruction are ignored. For the other in-
structions in this table, the data bits give the address of a location in
main memory.

and for the moment we will limit ourselves to the sixteen instruction
codes shown in Figure 3.7. The remaining instructions will be modified
versions of some of the instructions in this list.® The instructions shown
in the figure have instruction code numbers between zero and fifteen.
They also have names, and we will almost always refer to the instructions
by name rather by number. (Remember, though, that the computer can
only deal directly with the binary numbers.)

We are now faced with a double task: to understand the purpose of

8 In fact, the sixteen instructions in Figure 3.7 would be sufficient to build
a general-purpose computer. The other instructions merely make the computer
easier to program.
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each of these instructions, and, more important, to determine a sequence
of steps that will execute the instruction. Once that is done, we will be
ready in the next section to design a Control circuit to carry out those
steps.

3.2.1. Stopping the computer. Let’s start with the simplest
instruction, Halt. The purpose of the Halt, or HLT, instruction is to
stop all further activity in the computer (that is, until it is manually
restarted). We have arranged things so that this can be done simply
by turning on the clock’s Stop-clock control wire. Once that is done,
the COUNT register will stop counting and no further steps will take
place. There is only one step for executing HLT, beyond the three steps
introduced in the previous section that are the same for all instructions.

Step 4 (HLT). Turn on Stop-clock.

A program will generally end with a HLT instruction, unless the pro-
gram is really intended to execute forever (that is, until the computer is
physically turned off or unplugged—which is the way most real comput-
ers actually work).

Note that the ten data bits of a HLT instruction are ignored. That
is, it doesn’t matter what value they have; the effect of the instruction
will be the same. The same is true for the other instructions that do not
require any data: NOT, SHL, SHR, INC, and DEC.

3.2.2. Moving Data. The next two instructions we consider,
Load-AC-from-memory and Store-AC-in-memory, are used to move data
back and forth between the CPU and memory. The ten data bits for these
instructions specify the location in memory that is to be used. When
LOD is executed, a copy of the value in the specified location is loaded
into the accumulator, erasing and replacing whatever was there before.
For example, 0010010000011101, or “LOD 29,” specifies that the num-
ber stored in memory location 29 is to be copied into the accumulator.
STO moves data in the opposite direction, from the accumulator to the
memory location; again, the previous contents of the memory location
are erased and replaced.

These instructions are easy to execute. As always, before loading or
storing anything in memory, we first load ADDR with the address of the
memory location we want to use. When we are executing a LOD or STO
instruction, this address is given by the ten data bits of the instruction
in the instruction register. To get the address into ADDR, it is only
necessary to turn the Load-ADDR-from-IR control wire on and off. Once
that is done, the data can be moved using the appropriate control wire.
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To execute Load-AC-from-memory (LOD):
Step 4 (LOD). Turn on Load-ADDR-from-IR.
Step 5 (LOD). Turn on Load-AC-from-memory.
Step 6 (LOD). Turn on Set-COUNT-to-zero.

To execute Store-AC-in-memory (STO):
Step 4 (STO). Turn on Load-ADDR-from-IR.
Step 5 (STO). Turn on Load-data-into-memory.
Step 6 (STO). Turn on Set-COUNT-to-zero.

Figure 3.8. Steps for executing LOD and STO instructions. For each
step, the control wire to be turned on during that step is specified.

The steps for executing LOD and STO are shown in Figure 3.8. Note
that the last step in each case is to reset the counter to zero. This is done
at the end of each instruction to get ready for the next fetch-and-execute
cycle, which will begin as the counter is next incremented to 1.

3.2.3. Two-operand Computational Instructions. The first
four instructions in Figure 3.7 perform arithmetic or logical computations
that combine two numbers to give a result. Each of the instructions
Add-to-AC, Subtract-from-AC, Logical-AND-with-AC, and Logical-OR-
with-AC uses the value in the accumulator as one input or “operand”
in the computation. The second operand is taken from some location
in memory. The ten data bits of the instruction give the address of the
location in memory that holds this second operand. The result of the
computation is put back into the accumulator.

To execute one of these instructions, we first load ADDR with the
address of the second operand. Then that number is copied into the Y
register while the number in the accumulator is copied into the X register.
At this point, one of the ALU’s control wires is turned on to tell it which
operation to perform. For an ADD instruction, we turn on Select-Add;
for SUB, Select-Subtract; for AND, Select-AND; and for OR, Select-OR.
While this control wire is turned on, we load the answer into the accumu-
lator by turning Load-AC-from-ALU on and off. (In the case of ADD and
SUB, we also load the Flag output of the ALU into the FLAG register.)
The steps for executing an ADD instruction are shown in Figure 3.9.

3.2.4. One-operand Computational Instructions. The re-
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To execute Add-to-AC (ADD):
Step 4 (ADD). Turn on Load-ADDR-from-IR.

Step 5 (ADD). Turn on Load-X-from-AC
and Load-Y-from-memory.

Step 6 (ADD). Turn on Select-Add, Load-AC-from-ALU,
and Load-FLAG-from-ALU.

Step 7 (ADD). Turn on Select-Add.
Step 8 (ADD). Turn on Set-COUNT-to-Zero.

Figure 3.9. The steps for executing an ADD instruction. The steps
for SUB, AND, and OR are similar, except that a different control wire
replaces Select-ADD. Also, for AND and OR, the FLAG register is not
involved. There is one subtle point: The ALU must continue to out-
put the result of the computation while Load-AC-from-ALU is turned on
and off. If Select-ADD were turned off too soon, the output of the ALU
might change before the process of loading the answer into the accumu-
lator were complete. For this reason, Select-ADD remains on through-
out Steps 6 and 7, while Load-AC-from-ALU is turned off at the end of
Step 6.

maining five computational instructions, Logical-NOT-of-AC, Shift-AC-
left, Shift-AC-right, Increment-AC, and Decrement-AC, perform compu-
tations that involve a single operand. The first three of these use the
ALU to perform the computation and are very similar to the instruc-
tions discussed in the previous subsection. As an example, the steps for
executing Shift-AC-right are shown in Figure 3.10.

When we come to INC and DEC, the situation is a bit different.
These instructions change the value stored in AC but do not use the
ALU. Incrementing or decrementing the value in the accumulator can
be accomplished simply by turning a control wire of the accumulator on
and off. This can be done in a single step. Here, for example, are the
steps for executing INC:

Step 4 (INC). Turn on Increment-AC.
Step 5 (INC). Turn on Set-COUNT-to-zero.

3.2.5. Jumps. We come finally to the Jump instruction and
the three conditional jump instructions Jump-if-AC-is-zero, Jump-if-AC-
is-negative, and Jump-if-FLAG-is-set. Instructions of this type were
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To execute Shift-AC-right (SHR):
Step 4 (SHR). Turn on Load-X-from-AC.

Step 5 (SHR). Turn on Select-Shift-Right, Load-AC-from-ALU,
and Load-FLAG-from-ALU.

Step 6 (SHR). Turn on Select-Shift-Right.
Step 7 (SHR). Turn on Set-COUNT-to-zero.

Figure 3.10. The steps for executing a SHR instruction. The steps
for SHL and NOT are essentially the same, except that NOT does not
involve the FLAG register. The steps here are similar to those for the
ADD instruction. However, since SHR has only one operand, there is
no need to load a second operand from memory into the Y register.

To execute a Jump (JMP):
Step 4 (JMP). Turn on Load-PC-from-IR.
Step 5 (JMP). Turn on Set-COUNT-to-zero.

To execute a Jump-if-Zero (JMZ):
Step 4 (JMZ). If AC is zero, turn on Load-PC-from-IR.
Step 5 (JMZ). Turn on Set-COUNT-to-zero.

Figure 3.11. The steps for executing JMP and JMZ instructions. For
JMZ, a control wire is turned on in step 4 only if the value currently
stored in the accumulator is zero; if it is nonzero, no wire is turned on,
the value in the PC is unchanged, and the instruction has no effect.
JMF and JMN are similar to JMZ, except that a different condition is
checked in step 4.

discussed in Section 1.3. They are required to produce loops and to
allow programs to make decisions between alternative courses of action.

When a JMP instruction is executed, it changes the value stored in
the program counter. Since the PC holds the address of the instruction
to be executed during the next fetch-and-execute cycle, this makes the
CPU “jump” to a new location in the program instead of simply going
on to the next instruction in sequence. The new value for the PC—that
is, the address of the location to which the CPU will jump—is taken
from the ten data bits of the JMP instruction. All that is necessary to
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execute a JMP instruction is to copy the data bits of the instruction
from the instruction register to the PC.

In a conditional jump instruction, the value of the PC might or might
not change, depending on whether or not some condition holds. If the
condition holds, the PC is changed and the CPU jumps to the new
location. Otherwise, the CPU will continue on with the next instruction
in sequence just as if the conditional jump instruction had not been
executed at all.

Our machine language includes three conditional jump instructions,
which test three different conditions. JMZ will cause a jump to a new
location in the program if the value in the accumulator is zero; if it is
nonzero, the JMZ instruction will have no effect. JMN tests whether the
value in AC is negative; because of the way we are representing negative
numbers, this just amounts to testing whether the leftmost bit is one.
And JMF tests whether the single bit stored in the FLAG register is
one or zero; it produces a jump when this value is one.” The steps for
executing jump instructions are shown in Figure 3.11.

3.2.6. Addressing Modes. The machine language-instructions
we have covered so far have six-bit instruction codes that begin with 00.
The machine language for xComputer has fifteen additional instructions
that begin with 10 or with 01. The new instructions are shown in Fig-
ure 3.12. The only difference between these instructions and those we
have already covered is the interpretation of the ten data bits.

Consider, for example, an ADD instruction. Its data bits specify the
address of a location in memory. That location holds the actual number
that will be added to the accumulator when the instruction is executed.
Suppose you wanted to add 37 to the accumulator. You would have to
store the 37 in some memory location. Let’s say you put it in memory
location 1023 (11111111115 in binary). The instruction you would need
to perform the addition would be “ADD 1023,” or in machine language

0000001111111111.
The first six bits here, 000000, say that this is an ADD instruction.
The remaining bits tell where the number 37 is to be found. It would

be more convenient in this case to have an instruction whose data bits
give the actual number to be added, rather than the location of that

9 JMF could be used, for example, to test whether a previous ADD instruc-
tion produced a carry form the leftmost column; this might represent an answer
too big for the computer to handle. The JMF could jump to a section of the
program written to handle such an error.
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Instruction | Instruction

Code Code Short Long
(binary) (decimal) | Name Name
0100004 0+16 ADD-C | Add-Constant-to-AC
0100014 1+16 SUB-C Subtract-Constant-from-AC
0100104 2416 AND-C | Logical-AND-Constant-with-AC
0100119 3+16 OR-C Logical-OR-Constant-with-AC
0110014 9+16 LOD-C | Load-AC-with-Constant
1000004 0+32 ADD-I Add-Indirect-to-AC
1000015, 1+32 SUB-I Subtract-Indirect-from-AC
1000104 2+32 AND-I Logical-AND-Indirect-with-AC
1000119 3432 OR-1I Logical-OR-Indirect-with-AC
1010014 9-+32 LOD-I Load-AC-Indirect-from-memory
101010, 10+32 STO-1 Store-AC-Indirect-in-memory
1011004 12+32 JMP-I Jump-Indirect
101101, 13+32 JMZ-1 Jump-Indirect-if-AC-is-zero
1011104 14432 JMN-I Jump-Indirect-if-AC-is-negative
1011115 15+32 JMF-I Jump-Indirect-if-FLAG-is-set

Figure 3.12. The remaining fifteen instructions in our machine lan-
guage. The instructions in Figure 3.7 use “direct addressing.” FEach
instruction listed here is a modified version of an instruction from Fig-
ure 3.7 that uses one of the other addressing modes, constant address-
ing or indirect addressing. The instruction code for a modified instruc-
tion is obtained from the instruction code of the original instruction
by changing one of the two leftmost bits to one. This corresponds to
adding 16 or 32 to the original code number.

number in memory. That’s what the instruction ADD-C is for: The ten
data bits of ADD-C, interpreted as a binary number, are added to the
accumulator. There is no need to store the number elsewhere in memory.
The instruction code for ADD-C is 0100002, and 37 written in binary is
00001001012, so you could add 37 to the accumulator with the machine
language instruction 0100000000100101, or “ADD-C 37.”

When an ADD-C instruction is executed, there is no need to go to
memory to find the data to be added. That data is already in the
instruction register. Because of this, ADD-C takes one fewer step than
ADD. The exact steps needed are left as an exercise.

We consider ADD and ADD-C to be the same instruction, using
different addressing modes. The addressing mode refers to the in-
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To execute Add-Indirect-to-AC (ADD-I):
Step 4 (ADD-I). Turn on Load-ADDR-from-IR.
Step 5 (ADD-I).

Step 6 (ADD-I). Turn on Load ADDR-from-Y.
(ADD-T).

Step 7 (ADD-I). Turn on Load-X-from-AC
and Load-Y-from-memory.

Step 8 (ADD-I). Turn on Select-Add, Load-AC-from-ALU,
and Load-FLAG-from-ALU.

Step 9 (ADD-I). Turn on Select-Add.
Step 10 (ADD-I). Turn on Set-COUNT-to-zero.

Turn on Load-Y-from-memory.

Figure 3.13. The steps for executing ADD-I1. This is similar to the
execution of an ADD instruction, but the number loaded into Y in
step 5 is not the number we want to add to the accumulator. Instead,
it is the address of that number. So, we must load this address into
ADDR before we can load the actual number into Y in Step 7.

terpretation of the data bits in an instruction. The regular addressing
mode, used in ADD, is called direct addressing, whereas ADD-C uses
a mode that we will call constant addressing. Our machine language
also includes constant addressing versions of SUB, AND, OR, and LOD.

Real computers can have many different addressing modes. This is
a source of much of the complexity in machine languages. Constant ad-
dressing is particularly useful. I have included one other addressing mode
in the machine language for xComputer, mainly to give you an idea of
what other modes are possible. In indirect addressing, the ten data
bits of the instruction give the address of a location in memory. How-
ever, that location does not contain the data to be used in the instruction.
Instead, it contains the address of another memory location that does
contain the data. Admittedly, this is rather confusing. Looking, for ex-
ample, at the steps for executing ADD-I, the indirect addressing version
of ADD, might help. These steps are given in Figure 3.13.

There are indirect addressing versions of SUB, AND, OR, LOD, STO,
JMP, JMZ, JMN, and JMF. For the jump instructions, the data bits
give the address of a location in memory, and that location contains the
number that is to be loaded into the PC.

The machine language for a real computer can be very complex, in-
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cluding hundreds of different instructions. As you should expect, this
complexity must have some structure if it is to be managed. Addressing
modes can help provide such structure. Instructions that perform the
same operation but use different addressing modes can be conceptually
grouped together. This structure is apparent even in our simple lan-
guage. For example, the three addition instructions ADD, ADD-C, and
ADD-I form such a group.

This structure is reflected in the six-bit codes we use for machine lan-
guage instructions. The first two bits of the code indicate the addressing
mode: 00 for direct, 01 for constant, and 10 for indirect. The remaining
four bits indicate the operation: addition, load, jump, and so forth. If
you inspect the construction of the Control circuit in the next section,
you will see that its design is simplified by this division of the instruction
code into addressing mode plus operation.

3.3. Self-control

We have now seen how the machine-language instructions for xComputer
can be executed in the CPU. As I promised, the execution of a machine-
language program is accomplished by nothing more than turning control
wires on and off in the right sequence.

In order to determine which wires should be turned on, you need to
know only a few things. First, you need to know which step of the fetch-
and-execute cycle is currently being executed; this can be determined by
looking at the four-bit number stored in the COUNT register. Second,
when the step number in COUNT is greater than three, you need the
six-bit instruction code of the instruction that is being executed. This
code is stored in the leftmost six bits of the instruction register. Finally,
for the case of the conditional jump instructions, you will need to know
the numbers stored in the accumulator and in the FLAG register.

With just this information—the outputs of the COUNT, accumula-
tor, and FLAG registers and the leftmost six bits of the output from the
instruction register—you could execute the program by hand, turning
on the necessary wires for each step.

Of course, the problem is that you aren’t around to work the control
wires while the program is being executed. It all has to be done by the
CPU. Somehow, the computer has to control itself. This is what the
Control circuit is supposed to do. Earlier in the chapter, I promised that
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Figure 3.14. A design for the Control circuit. The decoder circuits on
the left convert the inputs to the Control circuit into a more useful set
of signals. The circuit on the right uses these signals to decide which
control wires to turn on.

when the time came to design the Control circuit, it would be simple.
Perhaps you have already seen why that is so.

The Control circuit will have twenty-six output wires, which are con-
nected to each of the computer’s control wires (except for Increment-
COUNT, which is connected to the output of the clock). It has twenty-
seven input wires, which are connected to the four outputs from COUNT,
the leftmost six outputs from IR, the sixteen outputs from the accumu-
lator, and the single output from FLAG. For any combination of input
values, we know which control wires should be turned on; thus, we know
what the outputs should be. We could make a table containing this
information. But wait! An input/output table of this sort is all that
is needed to design a circuit, as we saw in Chapter 2. That chapter
showed how to use Boolean algebra to build a circuit from a table of
input/output values. So, without any work at all, we already know that
the Control circuit can be built in principle.

In practice, the design of the Control circuit can be greatly simplified
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if its outputs are computed in two stages, as shown in Figure 3.14. The
inputs to the Control circuit are fed through several “decoder” circuits.
The decoders translate these inputs into a more useful form for deciding
which control wires should be turned on. The design of the decoder cir-
cuits is easy, since their outputs are given by simple Boolean expressions
of their inputs. These outputs are:

e Stepy,. .., Stepyg. Exactly one of these wires will be on, depending
on the value of COUNT. These can be used to test which step of
the fetch-and-execute cycle is being currently executed. (None of
the machine language-instructions requires more than ten steps,
which is why we don’t go up to Stepss.)

e Constant. This is turned on if the current instruction uses the con-
stant addressing mode. In fact, this is just bit I4 of the instruction
register.

e Indirect. Indicates indirect addressing mode. This is bit I5 of the
instruction register.

e Direct. Indicates direct addressing mode. Its value is given by
NOT Constant AND NOT Indirect.

¢ ADD, SUB, ..., JMF. Exactly one of these wires will be on, indi-
cating the current instruction. Which wire is on depends only on
bits Iy, I1, I, and I3 of the instruction register. Note that ADD
is turned on for the instructions ADD-C and ADD-I, as well as
for ADD itself. These three instructions are distinguished by the
addressing mode wires.

¢ AC=0, AC<0, and FLAG=1. These outputs are used only in the
conditional jump instructions, JMZ, JMN, and JMF. AC=0 is on
whenever the number in the accumulator is zero; AC<O0 is on if
that number is negative; and FLAG=L1 is on if the bit stored in the
FLAG register is one.

It is straightforward to write a Boolean expression for each control
wire in terms of the outputs from the decoder circuit. Some of them
are very easy. For example, Increment-PC is turned on during Step 2 of
every instruction cycle and at no other time. It follows that

Increment-PC = Steps.

That is, Increment-PC can be connected directly to Steps. Most wires,
however, require nontrivial Boolean expressions that can be constructed
by inspecting the list of steps for executing each of the thirty-one possible
instructions. For example, the Select-ADD control wire of the ALU is
used only in the execution of ADD, ADD-I, and ADD-C. After checking
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the list of steps for those instructions to see when Select-ADD should be
on, we can write

Select-ADD = (ADD AND Direct AND (Stepg OR Stepr))
OR (ADD AND Indirect AND (Steps OR Stepg))
OR (ADD AND Constant AND (Steps OR Stepg)).

This expression is true for exactly those steps of exactly those instruc-
tions when Select-ADD must be turned on. All we need to do is build the
circuit specified by the expression and connect its output to Select-ADD.

We don’t need to go through expressions for all twenty-six control
wires here. It is easy, if a bit tedious, to write them down. The point is
that with these expressions in hand, we can use them as a blueprint for
a Control circuit that will turn control wires on and off in exactly the
right sequence to execute any machine-language program. This gives us
the last piece we need to complete a working CPU.

3.3.1. Black Boxes. And that’s it! Our design for a working
computer is now complete. We have what we set out to find: a machine
that stores and executes programs.

It is worth stepping back for a minute and admiring the design, be-
cause it’s an impressive piece of work. We started out with very simple
tools: three types of logic gates and a mathematical theory of how to
put them together to perform simple operations on individual bits. From
there we built an ALU to perform more complex operations on binary
numbers. We also constructed a main memory with a large number
of individually addressable storage locations. This provided us with a
place to store a program and a way of fetching its instructions one by
one. The last step—getting the computer to do all the work of executing
a program on its own—might have looked impossible. But by cleverly
arranging the CPU so that the fetch-and-execute cycle could be done
in a sequence of simple steps, we reduced the problem of building the
Control circuit to an elementary problem in logic-circuit design.

The result is a complex machine, but one that can be understood.
This understanding is possible because of the way we built up the struc-
ture step by step, one level at a time. It is not all that difficult to put
logic gates together into one-bit adders. From there, we can easily put
sixteen one-bit adders together, and suddenly our circuits can work with
binary numbers, not just individual bits. Once we have circuits to do
various operations on binary numbers, we can combine them into an
ALU—a general-purpose calculating circuit that does a major part of
the work in the computer.
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On each level, we assemble a small number of components that we
already understand. These components can be used as black boxes.
That is, we don’t have to think about what’s inside them. All we need
to remember is what they can do and how to get them to do it. This
is called the interface of the black box. The interface specifies its
behavior. What’s inside, the stuff that makes it behave the way it does,
is called the implementation. The idea is that once you have built
the black box—or bought it off the shelf—the implementation is not
important. All you need to know in order to use it is the interface.

The idea of keeping implementation separate from interface is some-
times called the Black Box Principle. One aspect of this principle is
that in order to use something you need to know “how to work it,” but
you don’t need to know “how it works.” This, however, is only one side
of things—the view from outside the box. Viewed from the inside, the
Black Box Principle says that in order to design something, you need to
know what it’s supposed to do, but you don’t need to know the exact use
to which it will be put. For example, when we designed our addition cir-
cuit, our goal was to create a circuit that would add two binary numbers.
At the time, you didn’t know (or care) how it would be incorporated into
a computer.

The Black Box Principle is really just another, more concrete way of
formulating the idea of structured complexity that we first encountered
in Chapter 1. It is a way of limiting the amount of detail you have to
deal with at one time by keeping the various components and the various
levels of a complex system separate. 1 hope you will agree that our
success in designing a working computer shows the power and usefulness
of this idea.

3.4. Postscript: Assembly Language

This chapter has dealt extensively with individual machine-language in-
structions. But such instructions are only really useful when combined
into a program that does something interesting. It is only fair before
leaving the chapter that I give you some idea what such programs look
like.

Consider a simple program that adds the two numbers in locations
200 and 201 and puts the result back into location 200. In the machine
language of xComputer, such a program would read
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0010010011001000
0000000011001001
0010100011001000

Obviously, programs that look like this are not meant to be read, or
written, by humans. As a first step, instead of writing six-bit instruction
codes, we can write the name of the instruction. And instead of writing
the ten-bit data part of the instruction in binary, we can write it in base
ten. With these changes, the program becomes

LOD 200

ADD 201

STO 200

Written in this way, the program is much more readable, and it is easy
to translate it into machine language—so easy, in fact, that a computer
program can be written to do the translation. A program that is written
using instruction names instead of binary instruction codes is called an
assembly-language program, and a program that translates assembly
language into machine language is called an assembler. It assembles a
“real” machine-language program out of the merely convenient assembly
language form.

Before turning to a more interesting example, it will be useful to make
our assembly language even more flexable. We already allow names to be
used in place of instruction code numbers. Names are easier than num-
bers for humans to deal with. It would be nice if we could use names
for memory locations as well. Names used in this way—as names for
memory locations—are called labels. A label can refer to a memory lo-
cation that contains data, or it can refer to a position within the program
itself. Labels of the first type could be used in ADD, LOD, and STO in-
structions; labels of the second type could be used in jump instructions.
For example, if an assembly-language program uses the label “sum” for
memory location number 200, then that program could say “LOD sum”
instead of “LOD 200.”

The idea of using labels is a powerful one. A programmer can create
and use a label without even knowing what location in memory that label
refers to. The assembler can do all the work of figuring out where the
data is actually stored, or which location a jump instruction is supposed
to jump to. All the programmer needs to know is that the location
exists. The example in Figure 3.15 shows how labels can be assigned
to specific memory locations and used in a program. The labels in this
example, Loop, Done, Num, and Ans, are meaningful names chosen by
some programmer. It is much more natural to use such names instead
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Location Instruction Label Instruction
0 LOD-C 100 LOD-C 100
1 STO 13 STO Num
2 LOD-C 0 LOD-C 0
3 STO 14 STO Ans
4 LOD 14 Loop: LOD  Ans
5 ADD 13 ADD Num
6 STO 14 STO Ans
7 LOD 13 LOD Num
8 DEC DEC
9 JMZ 12 JMZ Done
10 STO 13 STO Num
11 JMP 4 JMP Loop
12 HLT Done: HLT

Num: data
Ans: data

Figure 3.15. Two programs for adding up the numbers 100, 99, 98,
..., down to 1. The program on the right uses labels, or names, for
memory locations. Note that the program on the left must be stored in
memory starting at location 0; otherwise, the JMP command will not
jump to the correct instruction. The program on the right can be as-
sembled to start at any memory location. The assembler will determine
the correct location number to use in the JMP instruction. The “data”
instruction used on the last two lines of this program does not represent
a machine-language instruction; instead, it is a place-holder that tells
the assembler to reserve a memory location for some data.

of meaningless, arbitrary-looking numbers.

Neither program in Figure 3.15 could be executed as-is by a computer.
An assembler would have to be applied to either program to convert it
into a machine-language program consisting entirely of zeros and ones.
In the machine-language program, any labels in the program will be
replaced by the binary numbers they represent. Fortunately, the tedious
task of “counting off” the instructions in the program to determine what
number each label represents is easy enough to leave to the assembler
program.

The sample program in Figure 3.15 actually performs a nontrivial
computation: It adds up the numbers from 1 to 100. To do this the
program must do 100 additions. The idea is to start with zero and then
add in each of the numbers, one at a time. Although we could do this
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with 100 separate instructions, it makes more sense to use a loop. Each
time through the loop, we add one number. The heart of the loop, then,
consists of adding the next number to the sum we have computed so
far. This part is essentially the same as the three-instruction program
given at the start of this section. That much is easy, but there are a
lot of details to work out. We have to use a memory location to store
the sum we are computing, we need another location to keep track of
which numbers have been added to the sum so far, and we have to exit
from the loop when all the numbers have been added. It is a little easier
to add the numbers in reverse order, starting with 100. That way, we
can use a JMZ instruction to exit from the loop when the number being
added gets down to zero.

The program uses two memory locations for storing data. These
locations are referred to as Ans and Num in the second version of the
program. Ans is used to store the sum computed so far. When the
program ends, this location will contain the sum of all 100 numbers.
Num is used to store the next number that still has to be added to the
sum. The first four instructions set things up so that the sum starts out
at zero and the first number to be added will be 100.

The loop starts with the location labeled Loop. The first three in-
structions in the loop add Num to Ans. The next two instructions sub-
tract one from Num. If the result is zero, then all the numbers have
been added; the JMZ instruction will jump out of the loop to the halt
instruction at the end of the program. Otherwise, the result, which is
the next number that still has to be added, is put back into Num, and
the JMP instruction jumps back to the beginning of the loop.

This example should convince you of two things: First, that machine-
language programs can do nontrivial things, and second, that it is not
necessarily easy to write those programs. In the early history of com-
puting, most programming was done in assembly language. Even after
compilers became available that could translate more sophisticated high-
level languages into machine language, many programmers preferred to
write in assembly language because by working in the “native language”
of the computer, they could write faster, smaller programs. As comput-
ers have become faster, memory cheaper, and compilers better, the use
of assembly language has become rare, but it is used even today when
the speed or size of the program is especially critical. However, high-level
languages are easier to use, and I will postpone serious consideration of
programming until I introduce a high-level language in Chapter 6.
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Chapter Summary

A computer is a machine. Although it does not consist of levers and
gears, it is mechanical in that its operation consists of a sequence of
steps, each of which directly and inevitably causes the next. Ultimately,
this process is driven by a clock, which emits a regular sequence of on/off
pulses as it ticks. At each tick of the clock, one small step in a compu-
tation is performed. What that step will be depends entirely on the
contents of the CPU’s registers. Since some of these registers are con-
nected to the computer’s main memory, the course of the computation
is affected, in a purely mechanical and predictable way, by the contents
of that memory. Of course, looked at from the right point of view—the
human point of view that sees a world of meaning—all this mechani-
cal activity can add up to the execution of a complex, meaningful, and
perhaps infinitely surprising program.

By exhibiting the detailed design of a working model computer, this
chapter has shown how the execution of a computer program can be re-
duced to a sequence of very simple, mechanical steps that can be carried
out by circuits of the type introduced in Chapter 2. Each individual step
is performed by turning on control wires attached to such circuits. The
control wires that need to be turned on are determined entirely by just a
few bits of information, namely (in our model computer) by the contents
of the COUNT register, the accumulator, the flag register, and part of
the instruction register. This information is fed into a logic circuit called
the Control circuit, which turns control wires on and off in a pattern
completely determined by its inputs.

The computation performed by our model computer is made up of
a sequence of fetch-and-execute cycles. During each cycle, one machine-
language instruction is fetched from memory and executed. An individ-
ual machine-language instruction doesn’t accomplish very much. Cer-
tain instructions perform simple computations (such as ADD, SHL, and
INC). Others—LOD and STO—move individual pieces of data between
the CPU and the main memory. Still others—the jump instructions—
control the order of execution of program instructions by changing the
value of the program counter. Beyond this, there is really not very much,
even in computers much more complicated than our model, but some
flexibility is provided by the existence of various addressing modes.

The construction of complex programs from such simple instructions
is aided by the existence of assemblers. These are programs that ma-
nipulate other programs. They can take programs written in assembly
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language and translate them into the zeros and ones of machine lan-
guage. Assembly language uses names instead of binary numbers for
instructions and memory locations. The important role of names carries
over into high-level programming languages, which are covered in later
chapters.

Questions

1. Since the X register is always loaded from the accumulator, why
can’t we just eliminate X and connect the output of the accumulator
directly to the ALU’s input?

2. Make a drawing of xComputer showing how all of its components
are interconnected. (Use a large piece of paper!) Using this diagram,
follow in detail the flow of data within the computer as several different
machine-language instructions are executed. Try to understand how each
connection is used and why it is necessary. That is, what machine-
language instructions require the connection, and what data flow along
it.

3. Our machine-language instructions are coded as six-bit instruc-
tion codes. There are 64 different codes, but we have only 31 different
instructions. More than half of the instruction codes are meaningless.
Suppose one of these meaningless codes is loaded into the instruction
register. How should the CPU react? One possibility is to ignore the
code and do nothing during the execute part of the fetch-and-execute
cycle. Another would be to be to assume that the bad code is an er-
ror and halt the computer. You might be able to come up with other
possibilities. After deciding what you would do, explain how you would
implement it. What specific changes would be required in xComputer’s
Control circuit? Try to figure out what xComputer will do with bad
instruction codes if you build the Control circuit exactly as described in
this chapter.

4. Perhaps the control wires that contribute the most to the “intel-
ligence” of xComputer are Load-PC-from-IR and Load-PC-from-memory.
These wires are used in the jump and conditional jump instructions to
change the value of the program counter. Without them, the CPU would
be doomed to following a sequence of instructions from beginning to end
with no loops or decisions. Only very dull programs could be written.
Design the part of the Control circuit that controls these wires. You will



Questions 101

need to consider the sequence of steps for executing each of the eight
jump instructions (using both direct and indirect addressing).

5. What changes would be necessary in xComputer to allow it to
use more memory locations? To allow it to work with binary numbers
with more bits? (These two questions are interdependent. Why?)

6. This chapter ignored the fact that much of the data manipulated
by computers represents characters rather than numbers. This question
shows that the machine-language instructions that are available in xCom-
puter can perform some useful operations on character data. Recall that
a character is represented as an eight-bit ASCII code. Each location
in memory holds sixteen bits. If we want to save space, we can store
characters in a “packed” format, two characters per location. But it is
generally more convenient to store characters in an “unpacked” format,
with one character per location. In unpacked format, the eight leftmost
bits are set to zero. Write two small assembly-language programs to
convert between packed and unpacked character representations. One
program should take two characters stored in packed format in a single
location, and it should separate those characters into two locations in
unpacked format. The second program should do the reverse. (Hint:
What happens when you AND a number with 000000001111111157)

7. Recall from Chapter 1 that a subroutine is a sequence of instruc-
tions that can be jumped to from another part of a program. After the
subroutine ends, the computer should pick up where it was when the
jump to the subroutine occurred. The machine language for xComputer
does not directly support subroutines. Nevertheless, you can use sub-
routines if you handle their implementation “by hand.” The subroutine
must end with a jump back to the correct memory location. Before the
jump to subroutine occurs, the program must stash this location in a
place where the subroutine can find it when it needs it. Work out this
implementation in detail.

8. If you would like a real challenge, you might try to write an
assembly-language program that multiplies two numbers. Assume that
the product of the two numbers is small enough to be represented with
sixteen or fewer bits. (In all honesty, this is much too hard a problem
for me to ask you to do at this time. Remember that the answer is in
the back of the book.)
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Chapter 4

Theoretical Computers

IN THE MID 1930s, it was discovered that there are certain surprising
limitations on what can be accomplished by computers, even given un-
limited time and memory. This was all the more remarkable, given that
no computer even existed at the time.

The mathematicians who made these discoveries were faced, first of
all, with defining exactly what it means to compute something. Several
very different-looking definitions were invented. Using any of these def-
initions, it was found that certain things are “uncomputable.” It might
seem that the best course would have been to look for better definitions.
But another surprise lay in store.

As people began comparing definitions, it was realized that even
though they seemed quite different, in fact, the very same things would
turn out to be computable no matter which was used. All the definitions
that had been put forward were fundamentally equivalent. And since
then, no one has come up with anything better. Any proposed defini-
tion of computability has been proved to be either equivalent to those
invented in the 1930s or strictly more limited than them.

In a sense, any computer that is built can be thought of as a definition
of what it means to compute. We could simply say “computation is what
this computer does.” Now, there are obvious limitations to what any real
computer can do. It might run into problems that it can’t solve only
because it doesn’t have enough memory, or because you aren’t willing to
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give it enough time—say, several million years—to find a solution. But
we can imagine giving the computer as much memory as it needs and
letting it run for as long as necessary, and we can ask what it can do given
such unlimited resources. We then find that the answer doesn’t depend
on the computer at all. Ignoring limitations imposed by lack of memory
and time, all computers are equivalent in what they can compute. And
they are all equivalent to the theoretical computers developed in the
1930s. In particular, they are all subject to fundamental limits that
apply even given unlimited time and memory.

In this chapter, I will explain how we know that all computers are
equivalent. Then, I will discuss Turing machines, a particularly simple
type of theoretical computer introduced by Alan Turing in 1936. The
advantage of using Turing machines to define computability is their sim-
plicity, which makes it easier to analyze them than it is to analyze real
computers. We will take advantage of this simplicity to show that there
are interesting problems that can’t be solved by Turing machines, nor
therefore by any computer.

4.1. Simulation and Universality

Over the course of the last two chapters, we developed a design for a
simple working computer, which we called “xComputer.” But it might
have seemed to you that xComputer could not be capable of very much.
It can execute thirty-one different machine-language instructions, but
each instruction does very little. The things the instructions do are
variations of only a few types of operations: moving data around, per-
forming arithmetic and logical operations, and changing the value of the
program counter. Yet I am claiming that any computation that can be
done by any computer can be done by a program written using only
these thirty-one simple instructions.

Note that I am not claiming that xComputer can necessarily run that
program. We gave our computer an extremely limited memory, which
is simply not big enough to hold any but the most simple programs.
But we could easily redesign it with as large a memory as necessary to
run any given program, without changing the instructions that it can
execute. I am really interested in a theoretical version of xComputer,
with a memory “as large as necessary.” (How large will depend on the
program we want to run, so I cannot fix a size once and for all.) In the
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rest of this chapter, when I talk about xComputer, I will be referring to
this imaginary, theoretical version.

Note also that my claim has nothing to do with input/output. When
you use a real computer, you probably engage in a kind of dialog with
it, in which you give it a command or enter some data and wait for it
to respond. This interaction is not itself computation—merely a way
of telling the computer what to compute. It’s what the computer does
internally, while you are waiting, that I am calling “computation.” Obvi-
ously, xComputer cannot imitate the sophisticated interaction that you
can engage in with real computers; it lacks a mouse, monitor, and key-
board, for one thing. What I am claiming is that xComputer can perform
any computation that any other computer can do, once that computer
has been set up to compute something—with data and programs already
loaded into memory.!

Finally, I am not claiming that xComputer can directly run a program
written for another computer. Each computer is built to execute its own
machine language. Different languages can provide different instructions,
and they probably use very different encodings even for instructions with
the same meaning. If you load a machine-language program written for
another computer into xComputer’s memory and try to run it, xCom-
puter’s circuits will react to the bit patterns in the program in ways that
have nothing to do with their intended meanings. The result will look
completely random.

So what do I mean when I say that xComputer can perform any
computation that can be done by any other computer? First of all, I
mean that if you give me any program written for any computer, I can
write a program for xComputer that will always produce the same result
as your program, given the same data. Here, “giving the program data”
just means loading that data into memory with the program. As the
program runs, it can read the data, make changes to it, and write new

I Actually, real computers do get extra computational power from their
input/output capabilities, but this is only because they have main memories of
a fixed, limited size. If the computer can do input and output between main
memory and the outside world, it can use more data and program instructions
than can fit into its memory at one time. The outside world here can refer to
so-called “external memory” such as disk drives and magnetic tape drives—or
to a human who can type in data as needed. Note that if the computer’s main
memory is “as large as necessary,” then the ability to do I/O becomes irrelevant,
since we can load a program and all its data into memory and also leave room
for any “scratch work” that the computer might need to do during the course
of the computation.
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data. By the “result” of running the program with that data, I just
mean the contents of memory after the program halts. Note that I am
required to produce a single program that will give the same result as
your program for any possible data. This requirement is important; if
I were permitted use different programs for different data, I could cheat
by producing programs that simply write the desired result to memory
without doing any computation at all!

What I will actually show is that xComputer can stmulate any other
computer. Simulation means something stronger than just giving the
same result: xComputer will get the results by following the same steps
as the other computer, on some level. Because xComputer is relatively
simple as computers go, it might take it many steps to accomplish what
can be done by one instruction on other computers. But there will be a
sequence of stages in xComputer’s computation that will correspond to
the steps taken by the other computer. While step-by-step simulation
is not in itself my goal, it provides an effective way of proving that one
machine can do any computation that can be done by another.

4.1.1. Translation. Given a program written in any other lan-
guage, the most natural approach is to try to translate it into a program
in xComputer’s machine language. This will provide the fastest possible
simulation, but it will be easy only if the original language is almost the
same as xComputer’s in the first place.

For example, if the original program contains an instruction that
adds a value from some location to the accumulator, it can be trans-
lated directly into an ADD instruction for xComputer. However, if the
original program contains a multiplication instruction, it will have to be
translated into a sequence of many instructions, since xComputer does
not have a single instruction that does multiplication.

The problems can be much worse than this. The original program
might use subroutines. It might include addressing modes that are not
available for xComputer. It might use “real numbers” (with decimal
points), not just integers. All of these things can in fact be translated
into the machine language of xComputer, but it’s not easy, and I won’t
convince you just by saying so. Simply talking about translation is not
going to convince you of xComputer’s power.?

2 Nevertheless, translation is very important. It can be applied to any
language—even if it’s not the machine language of any existing computer. This
is the case for two types of translators that have already been mentioned, as-
semblers and compilers. These translate, respectively, assembly languages and
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4.1.2. Interpretation. Closely related to translation is another
form of simulation called interpretation. Instead of translating the
program all at once, we let xComputer inspect the instructions in the
program and perform the actions encoded by each instruction, one at a
time.

Of course, when I say that xComputer will do this, I mean that it
will run a program to do it. That program is called an interpreter.
The original program and its data are loaded into part of xComputer’s
memory. The interpreter, which is written in xComputer’s machine lan-
guage, is loaded into another part of xComputer’s memory. When it is
run, it will read the instructions in the original program and carry them
out one by one; we say that it interprets that program.

As the interpreter interprets another program, it is in effect playing
the role of the CPU of the simulated computer, imitating the exact
sequence of fetch-and-execute cycles that that CPU would go through.
Important data that the CPU would keep in its registers are kept instead
in xComputer’s memory. For example, one memory location would be a
“simulated program counter,” which the interpreter uses to keep track
of which instruction is next in line to be executed in the program it is
interpreting. Another memory location might hold the equivalent of the
simulated CPU’s accumulator.

The basic structure of an interpreter program is fairly simple. It con-
sists of a loop that imitates the fetch-and-execute cycle of the simulated
computer. That is, the loop finds the next instruction to be executed
and simulates its execution, and then it repeats this process over and
over until the program halts. The part of the loop that simulates the
execution of one instruction is just a decision among a number of al-
ternatives, one for each possible instruction code used by the simulated
computer. Given an instruction to be simulated, the interpreter com-
pares its instruction code to each possible code and then jumps to a
segment of the interpreter program designed to simulate that particular
instruction.

high-level languages into machine language. Programmers who write in a high-
level language such as Pascal or BASIC tend to think as if there were a computer
that could run their programs directly. Such an imaginary computer is called
a virtual machine. When a high-level language program is translated into
machine language, this virtual machine is being simulated by a real computer.
In theory, it would be possible to build a real computer that executes high-
level language programs directly, but its circuitry would be extremely complex.
Translation allows the programs to be run on much simpler machines.
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When it comes to simulating these individual instructions, however,
we run into the same sort of problem we had with translation: Simple
instructions are easy to simulate, but it is not obvious that we will be able
to handle all the complex types of instructions that we might encounter.3

However, we can make things easier for ourselves by dropping down
one level of complexity. Recall that when the CPU executes an instruc-
tion, it does so in a sequence of steps. A single step might, for example,
move a number from one place to another, increment the value in a reg-
ister, or load a register with the output value from a complex circuit
like the ALU. Instead of trying to simulate an instruction all at once,
suppose we simulate each of the small, simple steps needed to execute
that instruction.

Simulation on this level will allow many of the details to take care of
themselves. For example, simulating a jump-to-subroutine instruction
might seem pretty complex for xComputer, which does not implement
subroutines directly in its machine language. However, the simulated
computer must execute such an instruction in a series of simple steps
such as storing a value in memory and changing the value of the program
counter. By simulating those steps, xComputer will simulate a jump-to-
subroutine without ever “knowing” that it is doing so.

This whole discussion still assumes that the simulated computer is
very similar in design to xComputer. And it still leaves us with the
problem of simulating complex operations such as multiplication. So I
still can’t claim to have convinced you that xComputer can simulate
any other computer. But maybe you can see what the final step is: If
simulation at a lower level makes things easier, maybe we should work
on the lowest possible level.

4.1.3. Low-level Simulation. From a low-level point of view,
computers are constructed from extremely simple components, which are
easy to simulate. I will assume in my discussion that those components
are AND, OR, and NOT gates (and a clock), but the discussion will clearly
apply to any computer that is built of components that take a small

3 Still, interpreters, like translators, are important programs. I can buy a
program for my Macintosh SE/30 computer that will allow it to run machine-
language programs written for the IBM PC. The PC programs cannot be exe-
cuted directly by the Macintosh’s CPU. Instead, they are interpreted in just the
manner described here. In addition, interpretation can be applied to high-level
languages as well as to machine languages. At least one such language, LISP,
is usually interpreted rather than compiled.
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number of one-bit inputs and produce a one-bit output according to
some simple rule.?

Suppose that we want to simulate some computer. To prepare for the
simulation, we load xComputer’s memory with a complete representation
of that computer on the logic-gate level. Each logic gate is represented
by a block of several memory locations. One of these locations holds a
code indicating what sort of gate is being represented; we use a code of
0 for a NOT gate, 1 for an AND gate, and 2 for an OR gate. A second
location holds the value—0 or 1—on the gate’s output wire.

For each of the gate’s input wires, we use two memory locations. One
of these just holds the value of the input. The other is used to encode
information about how wires are connected in the computer. A computer
is not just a bunch of gates; it is a bunch of gates intricately connected
in a very specific pattern. Each input wire of each gate is connected to
the output wire from some other gate. The identity of that output wire
is the second piece of information we must store for each input wire.
We encode that identity simply by storing the address of the memory
location that holds the value on that output wire.

Finally, we need one memory location to store the value on the clock’s
output wire. We use memory location number one for this purpose and
reserve memory location zero for “scratch work” during the course of the
simulation. Figure 4.1 shows how a very simple logic circuit would be
represented in xComputer’s memory.

When the simulated computer is in a steady state—that is, when
the values on wires are not changing as they do during the course of

41In this text, I am following the common practice of using the term “com-
puter” to refer to what is more properly called a “digital computer.” The
components that make up a digital computer have inputs and outputs that can
take on only the two values zero and one (or possibly some other small set of
values such as the decimal digits from zero to nine). An analog computer,
on the other hand, includes components whose inputs or outputs can vary over
a continuous range of values. For example, instead of just being on or off, the
voltage on an input wire might be any of the infinitely many numbers between 0
and 1. However, since voltages on a wire can never be measured with complete
accuracy, there is an inherent degree of error in analog computations. In fact,
the activity in an analog computer can be simulated in a digital computer—
with even more accuracy than is physically possible in the analog computer
itself. This would seem to imply that digital computers can do anything that
analog computers can do, and analog computers have mostly fallen out of use.
However, there is increasing interest is a certain type of analog computer called
a “neural net.” Neural nets are used in artificial intelligence research, and we
will meet them again in Chapter 12.
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Location
Number Memory Meaning

0 0 Scratch Memory
1 0 Clock Output Value
2 0 Code for NOT gate
Data for 3 1 Output Value
NOT gate | 4 0 Input Value
5 1 Input Source
6 1 Code for AND gate
7 0 Output Value
Data for 8 0 First Input Value
ANDgate 9| 13 First Input Source
10 1 Second Input Value
11 3 Second Input Source
12 2 Code for OR gate
13 0 Output Value
Data for 14 0 First Input Value
ORgate \ 15 7 First Input Source
16 0 Second Input Value
17 1 Second Input Source

Figure 4.1. Here’s how we could simulate a small (and perfectly use-
less) logic circuit in xComputer’s memory. Each gate in the circuit

on the left is represented by a block of memory locations. Those loca-
tions store information about what type of gate it is, where its inputs
are connected, and what the values are on its input and output wires.
Location 1 stores the value on the clock’s output wire. If this value is
changed, it is easy to simulate the resulting changes in the circuit. Sim-
ulating a whole computer is just a larger version of this example.

a computation—the value on each input wire must be the same as the
value on the output wire to which it is connected. However, whenever
the value on some output wire changes during the course of a simulated
computation, the value on any input wire connected to that output also
changes. Then, of course, it is possible that the output from the gate
to which that input is connected will change. This can cause further
changes down the line. This cascade of changing values is, in fact, the
substance of a computation, and it is such sequences of changes that we
have to simulate.

Recall what the activity inside a computer looks like on this level: The
computer is in a steady state. Then the clock ticks; that is, the value
on the clock’s output wire changes. This sets off a ripple of activity
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in the computer’s circuits that can change the values on many gates.
Eventually, the activity stops with the computer in a new steady state,
which lasts until the clock ticks again. We have everything we need to
simulate the activity of the computer on this level.

Before running the simulation, we must set up the contents of xCom-
puter’s memory to represent the state of the other computer at the mo-
ment before it starts executing a program, including the contents of its
main memory. But recall how bits are stored in memory: Each bit is
stored in a one-bit memory circuit and is represented by the value on
the output wire from one of the gates in that circuit. So, if we store
all the information about the state of each gate in the computer, we
have already represented the contents of its memory along with every-
thing else! (You might object that this does not really represent the
contents of the computer’s memory, but in fact every bit in that mem-
ory is represented by some bit in xComputer’s memory. You can inspect
the values of these bits after a computation has been simulated, to de-
termine the result of that computation. It’s true that those bits are
scattered through xComputer’s memory, and it might take some work
to pick them out, but obviously it is not the point of this discussion to
make things convenient.)

Once all this is set up in memory, we need only a fairly short xCom-
puter program to do the actual simulation. The program uses memory
location 0 to determine when activity in the simulated computer dies
down between ticks of the clock. I leave it to you to convince yourself
that this program can be written in xComputer’s machine language.

Step 1. Change the value in location 1 (from 1 to 0, or from 0 to 1).
This represents a tick of the simulated computer’s clock.

Step 2. Store a 0 in location 0. (This will be changed to a 1 in step 4
unless the cascade of changes set off by the tick of the clock has ended.)

Step 3. Loop through each of the gates of the simulated computer.
For each input wire, check whether the value recorded for that input
matches the value recorded for the output wire to which it is attached.
(Recall that we have carefully put the address of this output value where
xComputer can find it.) If not, change the value recorded for the input
wire.

Step 4. Loop through each of the gates of the simulated computer.
For each gate, check its inputs and compute what the corresponding
output should be. (This involves checking the type of gate, as well as
the input values.) If the output recorded for the gate does not agree
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with the correct output, change the recorded output value and store a 1
in location 0.

Step 5. Check the value in location 0. If it is 1, then jump back to
step 2. (A 1 in location 0 means that some output wire has changed
value, and therefore the activity in the simulated computer has not yet
died down. Steps 2 through 5 will repeat until no further changes occur.)

Step 6. Check the value in whatever memory location represents the
Stop-clock wire. If it is one, then Halt; the simulated computation has
finished. Otherwise, go back to step 1 to begin simulation of the next tick
of the clock. (The simulated computer might have some other method
of indicating that a computation is finished. This step should make the
appropriate test. The computer must have some simple way of indicating
that the computation is finished—turning some wire on or off, loading a
certain value into some register or some memory location, or executing a
jump to some specific location. These are all things that can be tested,
with more or less difficulty.)

Running this program will simulate every detail of the activity inside
the simulated computer as it performs its computation. It follows that
the result of the simulated computation must be the same as the result
when the computation is performed by the real computer. This shows
that xComputer is capable of doing any computation that that computer
can do.

The simulated computation will, of course, take an outlandishly long
time. For each tick of the simulated clock, xComputer will have to loop
through all the simulated gates, perhaps many times. It will execute
literally millions of instructions (from its own machine language) to sim-
ulate a single step of the computation. If you want a practical simulation,
you will have to use translation or interpretation. But remember that
we are trying to determine what computers can do in theory, ignoring
limitations imposed by time and memory restrictions.

The advantage of very low-level simulation is the simplicity and the
generality of the approach. It is simple enough to be implemented on
xComputer, or even on a much simpler machine. And it is general enough
to allow simulation of any computer. Thus, it provides what I hope is
a convincing demonstration that any computation that can be done by
any computer can be done—perhaps much more slowly—by xComputer.

4.1.4. Computational Universality. Everything I have been
saying about xComputer is true about any computer with a reasonable
set of machine-language instructions. It should be clear that I have
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been talking about “xComputer” only so that I could keep straight the
difference between the computer doing the simulation and the computer
being simulated. In fact, apart from limitations imposed by time and
memory, any computer that has some minimal level of computational
capability can simulate any calculation that can be done by any other
computer. If we compare two computers, again ignoring limitations of
time and memory, we will find that each can simulate the other, and
therefore neither is in theory more powerful than the other. In this
sense, all computers—at least, all computers worthy of the name—are
equivalent.

Let’s put it another way: We can divide all possible problems into two
classes: those that can be solved by a computer given enough time and
memory, and those that cannot. When we make this division, it doesn’t
matter what computer we are thinking of. Any computer can solve all
the problems in the first class, but it will be foiled by any problem in
the second class. We say that any given computer is computationally
universal. This just means that it can be universally applied to all
problems that can be solved by computer.

I will show later in this chapter that there are, in fact, problems
that cannot be solved by any computer. Note, however, that this does
not settle the issue of whether there are problems that cannot be solved
by computer but that can be solved by some other method that we
would be willing to call computation. The hypothesis that there are
no such problems is called the Church-Turing Thesis (named after
Alonzo Church and Alan Turing who independently proposed the thesis
in the 1930s). The Church-Turing Thesis asserts that anything that can
reasonably be called computation can be done by a computer. This
thesis is generally believed to be true, but it is not something that can
be proved since its truth depends to some extent on what people are
willing to call computation.

We have seen that a computer does not have to be very complicated
to be computationally universal. In the next section we shall see that
a very simple machine indeed can display this surprising property. How
can it be that the complex computations of sophisticated computers can
be simulated with such meager resources? In fact, the answer was already
implicit in the discussion of structured complexity in Chapter 1.

Considered at a low enough level, computers are made from very sim-
ple parts which interact with each other in very simple ways. Complexity
arises from the large number of parts used and from the way those parts
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are connected together. But the interconnections among the parts can
be treated as passive data—just a list of facts—that can be stored in
another machine’s memory. Once this is done, that machine can run a
simulation using very few computational resources. The complexity is
still there, but it is in the machine’s memory rather than in its circuitry.
And, if we get tired of simulating one computer, we can always load a
description of a different computer into memory and simulate that one
instead. The same simple machine can still do the job.

4.2. Turing Machines

One of the theoretical models of computation developed in the 1930s
was based on abstract machines that we would recognize today as sim-
ple computers with infinite memory. These machines are now called
Turing machines, after their creator, Alan Turing. Turing machines
are abstract in that they cannot really be constructed, because of the
requirement of infinite memory. Indeed, they were never meant to be
constructed. Turing was interested in studying the theory of computa-
tion. He needed a definition that would be easy to analyze rather than
practical. He was able to use his imaginary machines to prove many fun-
damental results, and his definition of computation is still the one most
commonly used in the abstract study of the theory of computation.

A Turing machine has two parts, analogous to the CPU and main
memory of a computer. Its processing unit is much simpler than the
CPU of any computer, which is what makes Turing machines easy to
analyze. On the other hand, it has an infinite memory in which data
structures of any degree of complexity can be stored.

The memory of a Turing machine is called its tape. It can be visual-
ized as a strip of paper, stretched out to infinity in both directions. The
tape is divided into cells, which correspond to the memory locations in
a computer. Each cell either can be blank or can hold a single symbol.
The only symbols I will use in this chapter are the digits 0 and 1 and the
letters z, y, and 2.> A Turing machine tape, then, might look like this:

5 The details of the definition of a Turing machine can be varied in many
ways. For example, its tape might be infinite in only one direction, or it might
be limited to using only the symbols 0 and 1. The variations don’t matter in
the end, for a reason that should not surprise you: Each type of Turing machine
can be simulated by any other type, so that no type has more computational
power than any other.
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Sometimes, I will need to write a blank so that you can see it; in that
case, I will write it as a sharp sign (#).

The Turing machine’s processing unit is a small device that moves
back and forth along the tape, reading, writing, and erasing symbols.
Its activity is very simple. It can work on only one cell on the tape at
a time. It reads the contents of that cell. It might or might not change
those contents. Then, it moves one cell over, either to the left or right.
And it repeats this process continually until it halts.%

Like a CPU, the processing unit of the Turing machine has some
internal memory, but that memory holds only one piece of data, the cur-
rent state of the Turing machine. There is one special state called the
halt state, which we will denote by h. A Turing machine enters the halt
state when it finishes a computation. The other states are represented
by numbers between zero and some maximum value. Different Turing
machines can have different numbers of states, but any particular ma-
chine has a fixed, finite number of possible states. When we say that a
Turing machine is “in state number N,” we just mean that the number
N is stored in its memory. As a Turing machine computes, moving from
cell to cell on the tape, it can also change from one state to another.

To perform a calculation with a Turing machine, we will write some
data for the calculation into some cells on its tape. Then we set the
machine down on some cell and start it up in state number zero. At
each step in the calculation, it reads the contents of the current cell—x,
Y, 2, 0, 1, or blank. It then takes some action, based only on the contents
of the cell and on its current state. The action it takes will have three
steps:

1. It writes a symbol or a blank on the cell it is currently occupying,
replacing the previous contents of that cell. (It doesn’t necessarily change
the contents of that cell; the value it writes might be the same as the

6 Note that the tape of a Turing machine differs from the memory of a
computer in one essential aspect. A computer’s memory is random access; that
is, the computer is able to read any location at any time just by specifying its
address. A Turing machine, on the other hand is capable only of sequential
access. At any given time, the Turing machine is positioned at some particular
cell on the tape. To move to a different cell, it must pass sequentially over all
the cells between its old position and its new position. In fact, the cells do not
even have addresses. There is nothing to distinguish one cell from another, and
the Turing machine doesn’t “know” which cell it is currently reading.
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Current | Current Cell| New Cell| Direction | New
State Contents | Contents | of Motion | State
0 0 1 R 1
0 1 0 L 0
0 +# 1 R 1
1 0 0 R 1
1 1 1 R 1
1 # # L h

Figure 4.2. The specification of a simple Turing machine. FEach line
in the table specifies the action that will be taken by the machine when
it is in a certain state, and the cell it is scanning contains a certain
character. The action will consist of (possibly) changing the contents
of the cell, moving to the next cell either to the right or to the left on
the tape, and (possibly) changing to a new state. In the last line of the
table, the new state is the halt state, h. If the Turing machine ever en-
ters this state, it will halt. This table is actually incomplete. It does
not specify what the Turing machine will do if it encounters a x, y, or
z. To complete the table, we specify that if it encounters one of these
symbols, it will move right and halt.

old value.) We specify this part of the action by stating what value the
machine writes. This can be x, ¥y, z, 0, 1, or #.

2. It then mowes on the tape either one cell to the left or one cell
to the right. We specify this part of the action with one of the letters
L or R.

3. It then changes state. (It is allowed to “change” to the same state
that it is currently in.) The new state is specified by h, for the halt state,
or by the number of the new state. If the new state is the halt state h,
then the computation is finished; otherwise, the machine begins another
step in the calculation.

A Turing machine can be completely specified by a table that gives
the action that it will take for each possible combination of current state
and current cell contents. In practice, we do not require that each pos-
sible combination actually appears in the table; we assume that for any
combination of state and cell contents not listed in the table, the ac-
tion taken by the Turing machine is to move right and halt. (In most
cases, the omitted lines of the table are irrelevant to the intended use of
the machine.) Figure 4.2 shows a specification of this type for a simple
Turing machine.
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You can imagine a Turing machine’s processing unit as containing a
Control circuit which controls the activity of the machine. The inputs to
this circuit are the current state number and the contents of the current
tape cell. The outputs of the circuit determine the action to be taken
by the machine. A table like that in Figure 4.2 can be thought of as
a specification for this Control circuit. Sometimes this type of table
is referred to as a “program” for a Turing machine, but that can be
misleading because, unlike a program, the information in the table is
hard-wired into the machine. When we do finally encounter something
more like programs for Turing machines, those programs will be placed
on the Turing machine’s tape, just as programs for a computer are placed
in its memory. And it will only be very special Turing machines that
can run such programs.

4.2.1. Useful Machines. @ When you look at the table in Fig-
ure 4.2, it probably seems pretty random, and if you were to start up
the machine it specifies, its activity might seem random as well. Of
course, that activity is completely determined by the table and by the
contents of the tape, and we can trace by hand the exact steps that the
Turing machine will take.

Suppose, for example, that the tape contains 1011 in four consecutive
cells and that the rest of the tape is blank, and suppose we start the
machine running on the rightmost 1. Remember that a Turing machine
always starts in state 0. According to the table, since it is in state 0
and reading a 1, it should write a 0, move left, and remain in state 0.
The tape now reads 1010, and the Turing machine is on the second digit
from the right, in state 0. In the second step of the computation, the
same rule applies, so the machine again writes a 0, moves left, and stays
in state 0. This time, the cell contains a 0. In state 0, reading a 0, the
Turing machine writes a 1, moves right, and changes to state 1. The
tape now reads 1100.

If you continue to trace its activity, you will see that the Turing
machine moves right twice, without changing the tape or changing state.
In the final step of the computation, it encounters a blank, moves left
and changes to the halt state h. This ends the computation. So in the
end, the tape contains 1100 and is otherwise blank. The Turing machine
is positioned on the rightmost zero.

Nothing that Turing machines do is more complicated than this, ex-
cept that the tables that dictate their actions can be longer. Yet we have
seen that complex calculations can be performed as a sequence of very
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simple steps, and the question is, can the simple steps taken by a Turing
machine add up to something interesting? In fact, it can be shown that
Turing machines can perform any calculation that can be done by any
computer.7

In fact, even the simple Turing machine of Figure 4.2 does something
interesting: It adds one to a binary number. If you write the number
n in binary on a tape and start up the machine on the rightmost digit,
then when it halts, the tape will contain the binary number n + 1. For
example, 10115 + 15 = 11005, and when we traced the calculation of this
Turing machine with input 1011, we saw that it eventually halted with
1100 on the tape. You should trace its calculation on other inputs, such
as 100, 0, and 1111, to convince yourself that it works as advertised in
all cases.

To deal more rigorously with the theory of Turing machines, we need
a standard definition of what it means for a Turing machine to compute
something. The definition formalizes the idea of giving the machine
some input, letting it compute, and seeing what output it produces. Our
definition does not represent the only way of using Turing machines, but
it is a definition that is convenient for mathematical analysis.

The inputs and the output will be nonnegative integers (0, 1, 2, ...),
written on the tape as binary numbers.® We will always write a specified
number of inputs on the tape, with one blank space between consecutive
inputs. The rest of the tape will be blank. The Turing machine will
be started, in state 0, on the rightmost digit of the last input. We will
say that this computation produces the output n if the Turing machine

" This does not say that any Turing machine you happen to make up is
computationally universal. You might need a different Turing machine for each
different calculation. However, as we will see below, there are certain individual
Turing machines that are computationally universal.

8 Of course, as we saw in Chapter 1, any type of data can be encoded as
binary numbers. Since the meaning of a calculation is always an interpretation,
we can always interpret a Turing machine as working with other types of data
if we like. For example, we could write a list of words in ASCII code on the
tape and try to build a Turing machine whose output will be the same list
of words sorted into alphabetical order. From one point of view, that machine
takes a binary number as input and computes another binary number as output.
From a lower level point of view, all it does is move back and forth on a tape,
reading and writing symbols. But from the point of view of the user, it is
performing the useful task of alphabetizing a list of words. In any of these
cases, the computation in itself has no meaning. The meaning comes from the
interpretation.
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halts with the number n written in binary on an otherwise blank tape.
There are two things that might go wrong: It is possible that the Turing
machine might just keep running forever. Or, even if it does eventually
halt, the tape might not contain a single binary number when it halts.
In either of these case, we will say that the Turing machine produces
no output for that input. We are mostly interested in machines that
produce outputs for all possible inputs.

For example, if I say that a certain Turing machine adds pairs of
binary numbers, I mean that if you take any two binary numbers what-
soever, write them on the tape separated by a blank and start up the
Turing machine on the rightmost digit of the second number, then the
machine will eventually halt with the sum of the two input numbers
written on the tape. Furthermore, the tape will be blank except for this
sum.

Suppose, more generally, that k is some fixed number, and that 7" is a
Turing machine that produces an output for any set of k£ binary inputs.
(That is, we are assuming that for any such inputs, 7" will halt with
some single binary output number written on its tape.) We then say
that T computes a function from N* to N. Here, following standard
mathematical notation, N represents the set of all nonnegative integers,
and N* represents all possible sequences of k nonnegative integers. A
function from N* to N associates some single output integer to each
possible set of k inputs. If f is the name of a function from N¥ to N,
and ni, na, ..., ny are any k integers, then the notation f(nq,no,...,ng)
is a short-hand way of saying “the output of the function f when it is
given the numbers ny, ns, ..., ng as input.” For example, addition can
be considered as a function with two inputs; in this case, f(ny,n2) is
given by ni + ns.

Turing machines provide one way of defining functions, but it is not
the case that every function from N* to N can be computed by a Turing
machine. Those special functions that can be are called Turing com-
putable.® To reiterate the definition: A function f from N* to N is

91 mentioned at the beginning of the chapter that several definitions of com-
putability were developed in the 1930s. Turing computability is one of those.
You might be curious about what other sorts of definitions are possible that
would be “very different” form this one. Well, Alonzo Church’s definition by-
passes the whole process of computation entirely! What Church did, more or
less, was say, “Here are some very simple functions that are obviously com-
putable, and here are some simple things we can do with functions to generate
new functions. Let’s say that all the functions that we can generate in this way
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called Turing computable if there is some Turing machine 7" that com-
putes f. And T is said to compute f if whenever T is started on a
tape with k integers ni, no, ..., n as input, it will eventually halt with
output f(ny,no,...,nk).

4.2.2. Building Blocks. So far, we have seen only one example of
a Turing machine, as given in Figure 4.2. This Turing machine computes
the function f(n) = n + 1, which is not a completely trivial accomplish-
ment but is still very far from the level of complexity of computations
that can be done by computers. In order to be able to deal with such
complexity effectively, we need some way of combining simpler Turing
machines into more complex machines. The basic ideas for constructing
new machines from old are simple: (1) When a machine halts, we might
want to restart it in state number 0 to continue its calculation; (2) We
might want one machine to take up where another leaves off; (3) When
the first machine halts, we might want to start up one of several different
possible machines, based on the status of the first machine when it halts.

These three constructions ought to look familiar. They are essen-
tially the same as the three ways we can build complex programs: loops,
sequences of instructions, and decisions among alternatives. Building
complex Turing machines turns out to look very much like program-
ming. I will not give the complete details of how each construction is
done, since they are rather technical. However, I will give some examples.

Actually, we don’t work with the machines themselves but with the
tables that specify their behavior. As an example, let’s consider the
Turing machine of Figure 4.2. Suppose we modify the last line of the
table in this figure by replacing the h in that line with a 0. The resulting
table will define a new machine. When this machine encounters a #
while in state 1, it will enter state 0, instead of state h. Where the first
machine would have halted, the new machine will loop back to state 0
and continue computing. After adding 1 to its input, this machine will
then go on to add 1 to the result, and it will continue adding 1 to the
number on the tape forever. It is effectively counting in binary.

In general, a loop can be introduced into any Turing machine’s cal-
culation by changing the halt state h to some other state in one or more
lines of the specification of that machine.

starting with the trivially computable functions are recursively computable,
and see what we can prove about them.” In the end, as I mentioned, it turns out
that the recursively computable functions and the Turing computable functions
are the same.
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Current | Current Cell| New Cell| Direction | New
State Contents | Contents | of Motion | State
0 0 1 R 1
0 1 0 L 0
0 +# 1 R 1
1 0 0 R 1
1 1 1 R 1
1 # # L 2
2 0 1 R 3
2 1 0 L 2
2 +# 1 R 3
3 0 0 R 3
3 1 1 R 3
3 +# # L h

Figure 4.3. A specification for a Turing machine that adds 2 to its
input. This table is made of two copies of the table from Figure 4.2.
In order to avoid conflicts between state numbers, the second copy has
been modified by adding two to each state number. The first copy has
been modified so that instead of halting, it will enter the first state of
the second machine. In states 0 and 1, this machine adds one to its
input. Then in states 2 and 3, it adds one to the result. After doing
the second addition, it halts.

Next, suppose we want a machine that will add 2 to its input. We
already have a machine that adds 1. I would like to take two copies of
that machine and have the second one start when the first one halts.
That is, in the case where the first machine would halt, I would like it
instead to enter the starting state of the second machine. The table for
the combined machine will consist of modified copies of the tables for
each machine, as shown in Figure 4.3.

A similar construction can be used to sequence the calculations done
by any two machines. It is a simple extension from this to allowing one
machine to “decide” which of several possible machines to start up after
it halts, provided there are several lines in the first machine’s table in
which that machine enters the halt state. We can modify each of those
lines so that, instead of halting, it will enter the starting state of one of
the other machines.

We can use a combination of methods to construct complex Turing
machines. Consider for example the problem of adding two binary num-
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Current | Current Cell| New Cell| Direction | New
State Contents | Contents | of Motion | State
0 0 0 L 1
0 1 1 L 2
1 # # R h
1 0 0 R h
1 1 1 R h
2 # # R h
2 0 0 R h
2 1 1 R h

Figure 4.4. A Turing machine that checks whether a number is zero.
This machine must be started on the rightmost digit of the number, and
the number must be preceded by a blank on the tape. The calculation
performed by this machine consists of just two steps. It moves left on
the first step and right on the second. It does not change its tape, and
it halts in the same position in which it was started. However, it halts
with “knowledge” of whether or not the number on the tape is zero. If
that number is zero, the machine will see a zero on its first step and a
blank on its second step. The second step it takes is the one indicated
by the third line in the table. If we change the h in the third line of the
table to the start state of a second machine, then that machine will be
run provided the number on the tape is zero. If there is another ma-
chine that we want to run when the number on the tape is nonzero, we
just have to change the h in each of the other lines of the table to the
start state of that machine.

bers placed as input on a tape. One way of doing this is to subtract one
from the second number and add one to the first number, and repeat this
until the second number is zero. If that zero is then erased, the number
remaining on the tape is the sum of the two input numbers.

A Turing machine to do this can be constructed from separate ma-
chines that add one to a number, subtract one from a number, check
if a number is zero, erase a number, and move left or right from the
rightmost digit of one number to the rightmost digit of the number next
to it on the tape. Each of these machines is easy to construct. The one
obscure point is what it might mean for a machine to “check if a number
is zero.” This is explained in Figure 4.4.

From these small machines, we first construct a single machine that
subtracts 1 from a number, then moves left to the neighboring number
on the tape, adds 1 to that number, then moves back to the number on
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the right, and halts. Let’s call this Turing machine 7;. Next, we build a
machine that checks if its input is zero. If so, it starts up a machine that
erases the zero; otherwise, it starts up the machine T;. Let’s call this
Turing machine 75. Finally, we introduce a loop into 75 by modifying
it so that after its submachine 7% finishes its calculation, T5 will loop
back to its start state instead of halting. This modified machine, T3, is
a Turing machine for adding binary numbers.

4.2.3. Universal Turing Machines. It is possible to build
very complex Turing machines, but can Turing machines really do any
computation that can be done by computer? One way to prove that they
can is to build a Turing machine that can simulate the computations done
by computers. Such a machine would be computationally universal.

In fact, it is possible to build a Turing machine that can perform
low-level simulations of computers similar to the type of simulation dis-
cussed in Subsection 4.1.3. When a suitably encoded description of the
computer is written on its tape, this Turing machine will simulate the
computation of that computer using the six-step procedure outlined in
Subsection 4.1.3. I will not try to give the details of the construction of
such a machine, but I hope that the hints I give will convince you that
it can in fact be built.

When we used xComputer to simulate another computer, we used
xComputer’s memory to store information about each logic gate in the
machine being simulated. We could instead write all this information
onto a Turing machine’s tape, with the numbers from consecutive mem-
ory locations separated on the tape by a blank cell. In steps 3 and 4
of the simulation, where xComputer “loops through each of the gates of
the simulated computer,” the Turing machine will move along its tape
and perform the equivalent actions.

Consider step 4 first. It is easy enough to design a Turing machine
that will look at the inputs to each simulated gate, decide what the
output should be, and check whether the output recorded for that gate
is correct. If it is not correct, though, the Turing machine is supposed to
store a 1 in location 0. In order to do this, the Turing machine will have
to move all the way back to beginning of the data on the tape, where
the number in location 0 is written.

There is no problem with doing this, but then the Turing machine
will have to return to the location on the tape where it discovered the
incorrect output value, so that it can continue on to process the next
gate. The solution is for the machine to write a y at the spot where it is
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Current | Current Cell| New Cell| Direction | New
State Contents | Contents | of Motion | State
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Figure 4.5. The specification of one of the submachines used in con-
structing a Turing machine that simulates computers on the logic-gate
level. If this machine is started on a blank cell, it will change that blank
to ay [in state 0] and then move left [in states 1 and 2] until it en-
counters two consecutive blanks. (This is how it recognizes the begin-
ning of the data on the tape.) It then moves right two cells [in states

2 and 3] to a cell that must contain a 0 or a 1. If it contains a 0, the
machine writes a 1 into the cell [in state 4]. It then moves right [in
state 5] until it encounters the y it left to mark its place, changes the y
back to a blank, and halts.

working before it moves. Then, it will be able to return to that spot by
searching for the 3.!0 Figure 4.5 gives a specification for a submachine
that carries out the task equivalent to storing a 1 in location 0.

Step 3 of the simulation is somewhat harder, since it involves looking
up values at specified addresses in memory, but Turing machines have
no built-in way of addressing memory. Here is one way we can make a
Turing machine simulate addressing. Suppose that the Turing machine
is currently located at the beginning of a number written on its tape and
that the number specifies some address in the memory of xComputer.
We want the machine to move to the position on the tape corresponding

10’11 bet you were wondering what I was going to do with the symbols z, y,
and z.
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to that address. After reading the value stored at that address, the
machine must return to its original position.

The Turing machine should start by marking its current location with
a y. Then, it should copy the address to the beginning of the data on the
tape and mark the beginning of the data with an z. It is also convenient
to mark the end of the address with a z. At this point, the tape might
look like this:

T T Tefool=[=]a] To[ [afxfo[ [iJo] [--

Here, the address is the number, 1005, to the left of the z. The cell to
the right of the x corresponds to memory location 0. Next, the machine
enters a loop in which it repeatedly subtracts 1 from the address and
then moves the x from its current location to the next blank cell to
the right of that location. Since the contents of xComputer’s memory
locations are stored sequentially on the tape, this corresponds to moving
the = from one location to the next. When the address is reduced to
zero, the = will be marking the cell on the tape corresponding to the
original value of the address. The Turing machine can read the value
stored at that address, erase the x, and return to the y that marks its
starting position. In the example, where the address is 4, the x will be
moved right 4 times and will therefore mark the data on the tape that
represent the contents of memory location 4.

This is complicated by the fact that there will be a y somewhere on
the tape that must be counted like a blank but must not be lost or moved.
Copying an address from somewhere on the tape to the beginning of the
data is also nontrivial. I leave you to work out these and other details
if you like. See Question 4 at the end of the chapter. In any case, I
hope you have seen enough to believe that it is possible to complete
the construction of a computationally universal Turing machine. The
existence of such a machine shows that what we call computation can
be done by a very simple machine indeed, although we might have to
give that machine very complex data to work with, and we might have
to wait a very, very long time for it to get anything interesting done.

When we are interested in the mathematical analysis of Turing ma-
chines, the type of universal machine we need is one that can simulate
other Turing machines, rather than computers. A wuniversal Turing
machine is a Turing machine that can simulate the computation of any
other Turing machine on any input data. Since Turing machines can do
anything computers can, a universal Turing machine is computationally
universal in the usual sense.
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To use a universal Turing machine, we will write on its tape an en-
coding of the Turing machine to be simulated, along with its input data.
We need to agree on some method of encoding. Everything there is to
know about a Turing machine is contained in the table that specifies its
behavior, so we can simply encode that table as a long binary number.
This is just an exercise in constructing a complex data representation:
The encoding for a complete table is obtained by stringing together en-
codings for each line in the table. An individual line, which has five
entries, is obtained by stringing together representations for each of the
five entries. Since we have not put a limit on the number of states a ma-
chine might have, we cannot simply use a fixed number of bits to encode
the possible individual table entries, so we have to be careful here. We
will encode the value of an entry in the table as a string of ones followed
by a single zero.

Specifically we encode L and R as 10 and 110. We encode the symbols
#,0,1, z,y, and z as 10, 110, 1110, 11110, 111110, and 11111110. And
as for states, we encode h as 10, state number zero as 110, state number
one as 1110, and so forth. The details are not important, as long as we
pick a representation and stick to it.

For example, consider a simple Turing machine described by the two-

line table:
0 01 L 1

10y R &

Since the code for 0 (state or symbol) is 110, for 1 is 1110, and for L is
10, the binary code for the first line of this table is 1101101110101110.
When we string this together with the code for the second line, we find
that the binary number that encodes this Turing machine is

1101101110101110110101111011010.

Note that if a binary number contains two consecutive zeros or if the
number of zeros is not a multiple of five, then that binary number cannot
be the code of any Turing machine. But it is easy to check whether a
given number is the code for some machine. In fact, we could even have
the universal Turing machine do the checking for us.'!

11T should point out that once each Turing machine has a code number,
it becomes easy to show that there are functions f:INN — N which cannot be
computed by any Turing machine. The trick is to write down a function that
behaves differently from every possible Turing machine on at least one input.
To define such a function, f, we define f(n) for each input number n as follows:
If n is not a code number for some Turing machine, let f(n) =0. (In fact, it
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Let’s consider a universal Turing machine, U, in more detail. With
an encoding scheme in place, we can be more specific about what U
must do. Given two binary numbers n and m as input, it will first check
whether n is a legal code number for some Turing machine. If not, U will
just halt immediately. (I really don’t care what it does in this case.) If
n is the code number for the Turing machine 7', then U should simulate
the calculation that T" would perform when given input m. The details
of the simulation don’t matter as long as the end result is the same: If
T never halts after being started with input m, then U must fail to halt
when started with n and m as inputs; if 7" does halt on input m, then
U must halt when given n and m as input, and the resulting tape must
be identical to the tape produced by T on input m.

Since we already know that a computationally universal Turing ma-
chine exists, I will ask you to take the existence of U on faith. (To stretch
a point—possibly beyond breaking—ryou could always have U simulate
a computer running a simulation of a Turing machine!) The rest of this
chapter does not use the universal Turing machine, but it does depend
essentially on the existence of a coding scheme for Turing machines. Such
a scheme makes it possible for one machine to use a representation of
another machine as data on its tape.

4.3. Unsolvable Problems

Suppose that we start up a Turing machine T' after writing some input
on its tape. We wait eagerly for it to halt to see what output it produces.
After some time—a few years perhaps—it dawns on us that perhaps it

makes no difference how we define f in this case.) If n is the code number
of a Turing machine T, then we consider what happens when 7' is run with
input n. Note that we are giving T its own binary code number as input. If
T does not produce an output when given input n, because it fails to halt or
halts with illegal stuff on its tape, then we define f(n) = 0. Note that such a
T certainly doesn’t compute f because f gives output 0 on input n, while T
fails to give any output at all. Finally, if T' produces output m, then we define
f(n) =m+ 1. Again in this case, T does not compute f because f and T give
different outputs on input n. Since every Turing machine has a code number
and since we have set up f so that no machine with a code number computes f,
it follows that no machine at all computes f. At the beginning of the chapter,
I promised that we would find some interesting uncomputable functions. f is
uncomputable but not really interesting. In the next section, I will show you
some more interesting examples.
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is never going to halt at all. Should we stop it, or should we let it go
for another few years to see what will happen? Perhaps if we wait just a
little longer, it will halt. But if, in fact, it is destined to run forever, we
will never find that out by just standing around watching it compute.
How can we tell, without waiting around literally forever, that the Turing
machine is never going to halt?

Now, there are certainly cases where, just by looking at the machine’s
specification, we can tell that a machine is never going to halt. Suppose
that in state 0, reading any input at all, the machine will write a 1 on
the tape, move right, and stay in state 0. No matter what input this
machine is given, it will just travel forever to the right, writing an infinite
string of ones. This is a trivial example, but whenever we can tell just
by looking at the specification table of a machine that it will enter an
infinite loop with no way of breaking out of it, then we can tell that the
machine will run forever—and we can do this without actually running
it. Perhaps if we are clever enough we can always decide in advance
whether or not a given Turing machine will ever halt when run with a
given input.

Now as for myself, I have often written computer programs that
turned out to contain infinite loops that I would have sworn were not
there. So I am not satisfied to rely on my “cleverness” to determine
whether or not a Turing machine will run forever. What I would like is a
foolproof computer program that would answer the question for me. Or,
since Turing machines can do anything computers can, I would like a Tur-
ing machine which could look at the specification for any Turing machine
and the input I intend to give to that machine and tell me whether or not
that machine will ever halt after being started with that input. A Turing
machine that could do this would be said to solve the Halting Problem.

Alas, it’s not going to happen. The Halting Problem is unsolvable.
That is to say, there is no Turing machine that solves it. It is surprisingly
easy to give a proof of this fact.

4.3.1. The Halting Problem. To be more definite, let H be a
Turing machine. We say that H solves the Halting Problem if when run
with binary numbers n and m as input, it will halt and give an output
of either 0 or 1; it will produce output 1 if n is a valid code number for
some Turing machine and if that machine will halt when run on input m;
in any other case, H will produce output 0.

Let H be any Turing machine whatsoever. I will show you that this
H does not solve the Halting Problem. Since my proof works for any
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Turing machine H, it will follow that there is no Turing machine that
solves the halting problem.

All T have to do is produce one case of a Turing machine and an input
number for which H does not work.'? Let’s call the Turing machine I
am going to build K. K will use H itself as an essential submachine, and
in a sense what I will show is that no Turing machine can be powerful
enough to analyze itself.

K is made by stringing three machines together. When K is started
with an input number m, the first of these machines will make a copy
of m. There will then be two identical numbers on the tape. The second
submachine of K is H, which will therefore run with two copies of m
as input. If and when H halts, the third machine is started up. This
machine will check whether the tape contains an output value of 0. If so,
it will halt immediately; if not it will go into an infinite loop in which it
moves forever to the right.

To make this clearer: Suppose that m is the binary code number of
a Turing machine, T. When we run K with input m, K will start by
running H with input m,m. If H were a solution to the halting problem,
running it with input m,m would test whether or not T" will ever halt
when given its own code number, m, as input. Now there are three
possible outcomes. First of all, H might not produce any output at all
when run with input m,m. In that case, we already know that H does
not solve the halting problem, since if it did, it would give an output of
0 or 1 in all cases. If H does produce an output of 0 or 1, thereby making
a prediction about whether T" will halt on input m, then K looks at this
prediction and behaves in the opposite way. Thus, K halts on input m
if and only if H predicts that T will not halt on input m, where m is the
binary code number for 7.

It doesn’t seem as though this proves anything, but the payoff comes
when we give K its own binary code number as input. Let £ be this
code number. When K is run with input &, it will first run H with input
k,k. Since the Turing machine encoded by the number k is K itself, H
is being asked to make a prediction about whether K will ever halt on
input k. But H is actually being run as part of the computation that K
performs on input k! H is being asked to predict whether this ongoing

12 Of course, there will be many machines on which H will fail, but finding
just one is enough to show that H doesn’t solve the halting problem. You might
object that you could always fix H so that it works for the particular case I
find, but this won’t get you very far—the new machine you produce will fail for
some other case.
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Given any machine H which is supposed to solve the
halting problem, we build a machine K that fools it.

Let n be the code number for any Turing machine T.
On input n, the computation done by K has three steps:

H predicts
T will halt
@ on input n

Step 3:

K does the opposite
[ [ [ [n] ] [ [n [n] | of what H predicts
Step 1: Step 2: T will do.
Copy the input Run H on that
number. input. H predicts
T will not halt

on input n

But if T is K itself, then K does the
opposite of what H predicts K will do.
So, H was wrong!

Figure 4.6. Given any Turing machine H that is supposed to solve the
halting problem, it is possible to find a case where it fails, either because
it gives no answer or because it gives the wrong answer. The machine
for which H fails includes H itself as a submachine. (In this picture,

[

where “n” is shown on a tape, it is actually the binary expansion of the
number n that should be shown, probably filling many cells.)

computation will ever end. Can H possibly get this right? If H makes no
prediction, it has already failed. But if it ventures a prediction that the
computation halts, as soon as K sees this prediction it sends the compu-
tation into an infinite loop, thereby retroactively making the prediction
incorrect. On the other hand, if H predicts that the computation will go
on forever, then K will react by halting, so that H’s prediction is wrong
in this case as well. So, no matter what H does, it cannot possibly give
the correct answer.

You can imagine H’s predicament. If it could think, it might say
to itself, “Let’s see.... If I say that this computation will halt, then it
won’t halt, and if I say it won’t, then it will. I’'m in trouble.” Of course,
H doesn’t think. It merely follows rules. The point is that whatever
rules it uses to make predictions, they do not work in all cases. H does
not solve the halting problem.
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It is important to understand what has been proved here and what
has not been proved. When we say that the halting problem is unsolv-
able, we mean that no Turing machine correctly predicts the halting
behavior of all Turing machines for all inputs. But you might find a
machine that makes correct predictions in a great many cases, perhaps
even for all the cases that you are really interested in. In fact, if you
are designing Turing machines, or writing programs, there is nothing
to stop you from consciously trying to produce machines or programs
whose behavior can be analyzed. The lesson that a programmer should
learn from the unsolvability of the halting problem is not that it is im-
possible to write good programs, but rather that good programs don’t
happen automatically. I will have more to say in Chapters 6 and 7 about
techniques for writing good programs.

Furthermore, our proof says nothing, one way or the other, about
whether people can solve the halting problem. It is still conceivable
that, given any Turing machine and input, you might eventually be able
to decide whether or not that machine will halt on that input. However,
you will not be able to write down a fixed set of rules that can be used
to make the decision in all cases, since once you had done so, you could
build a Turing machine that solves the halting problem by following those
rules. (Though how you could ever be sure that you would get the right
answer in all cases without writing down a set of rules, I have no ideal!)

4.3.2. Other Problems. The halting problem is only the first
of many unsolvable problems. There are many natural questions that
can be asked about computers and Turing machines that cannot be
answered—mnot, at least, by a Turing machine or a computer program.
Here is a sampling of such problems. In each case, saying that the
problem is unsolvable means that there is no Turing machine that can
correctly answer the problem in all cases:

e Given any Turing machine 7', determine whether T will ever halt
after being started on an empty tape.

e Given a Turing machine 7', determine whether there is any number
n such that T will halt when started on input n.

e Given a Turing machine 7', determine whether it computes a func-
tion from N to N. That is, given any binary number n as input, will T’
always halt with a binary number as output on its tape?

e Given two Turing machines, 77 and 75, decide whether 77 and Tb
compute the same functions. That is, will they always give the same
output when started on the same input?



132 Chapter 4. Theoretical Computers

e Given any computer running any program, determine whether or
not the computer will run out of memory before the program halts.

e Given any computer running any program, determine how long to
wait before concluding that the program is never going to halt.

Each of these problems can be shown to be unsolvable by showing
that if there were a Turing machine that solved that problem, it could be
used as a basis for building a machine that solves the halting problem.

Consider, for example, the first problem in the above list. Suppose
that you have a Turing machine E that solves this problem. That is,
when given the code number for a Turing machine 7" as input on its tape,
FE performs some calculation that determines whether or not 7" will ever
halt when started on an empty tape. If F actually worked as advertised,
then it could be used as a basis for building a machine H that would
solve the halting problem. (Then, since no such H exists, we know that
no such E can really exist either.)

How can we build H from E?7 Here is an informal description of how
H would work: Suppose that H is given the numbers n and m as input,
where n is the code number of a Turing machine T. H is supposed to
determine whether T" will ever halt when given input m. The trick is to
have H make up a new machine M that does the following: When M
is started on a blank tape, first it will write out the number m on that
tape and then it will run the machine T" on that input. Thus, running M
on a blank tape is equivalent to running 7" with input m. In particular,
M will halt when started on a blank tape if and only if 7" will halt when
given input m. Now, our machine H just has to use the given machine FE
to check whether or not M will in fact halt on an empty tape. By doing
this, it is also solving the equivalent problem of whether 7" will halt on
input m. That is, it is solving the halting problem (which we know is
impossible)!

It is not easy to fill in the details in this informal description. What,
for example, does it mean for the Turing machine H to “make up” a
machine M7 It can only mean writing out the code number for M on its
tape. We have to check that it is possible to design a machine H that
can do this. I will have to ask you to take this on faith, keeping in mind
that M is defined in a straightforward way from the inputs n and m that
H has to work with.

If you want to learn more about Turing machines and unsolvable
problems, they are usually covered extensively in textbooks on “au-
tomata theory” or “formal language theory,” such as [Lewis and Pa-
padimitriou].
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Chapter Summary

All computers are equivalent, at least if we ignore limitations on memory
and time. In this sense, every computer is computationally universal,
since all computers can solve the same set of problems, at least if they
are given as much time and memory as they need. We know this because
it is possible for one machine—even one with very limited computational
capabilities—to simulate another. Translation and interpretation are
two efficient methods of simulation, but it is low-level simulation that
offers the strongest evidence for the equivalence of all computers.

This equivalence of many different types of machines is part of the
evidence for the Church-Turing Thesis, which is the claim that anything
that can reasonably be called computation can in fact be done by a
computer.

In reality, only a machine with infinite memory can truly be com-
putationaly universal. A finite memory is a real limitation, since given
a fixed, finite memory, there will be complex computations that require
more memory than is available. A Turing machine is an abstract com-
puter with an infinite amount of memory. Its memory consists of an
infinitely long tape. The Turing machine moves back and forth along its
tape, reading and writing symbols. The machine has an internal state,
and the action it takes at any given time is completely determined by
its state and by the symbol written at its current position on the tape.
Although Turing machines are very simple, there are universal Turing
machines that can solve any problem that can be solved by any com-
puter.

However, not every problem can be solved by computer. In particu-
lar, the Halting Problem is unsolvable. There is no Turing machine (or
computer program) that can tell, in advance and in all cases, whether
or not a given Turing machine will ever halt when it is run with a given
input.

This chapter seems to have two contradictory messages. The first
is that computation is simple. Any computation that can be done by
even the most sophisticated computer can also be done by much sim-
pler machines—even by something with the very limited computational
resources of a Turing machine. On the other hand, computation is com-
plex. We can’t give any definite rules for answering even the most natural
question: Will a given computation ever end?

Perhaps the real message is that even though computations are made
up of very simple individual steps, computation can surprise you. If you
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have a computer program sitting in front of you, and you want to know
what it does, the only general way of finding out for sure is to run it.
Using the method of simulation, you can run it on any machine you
like—you might get your answer faster by running it on a fast, complex
machine, but even a very simple machine will do. But no method of
analysis will allow you to predict in advance what all programs will do
when they are run.

Questions

1. Figure 4.1 shows a logic circuit represented in xComputer’s mem-
ory in a way that will allow it to be simulated using the six-step procedure
outlined in Subsection 4.1.3. Follow this procedure by hand to trace the
effect of several ticks of the clock on the circuit in this figure. Do you
believe that this procedure can be used to simulate any circuit, including
a complete computer?

2. After each step in its calculation, a Turing machine must move
either one cell to the left or one cell to the right on its tape. Why don’t
we also allow the possibility that it can stay in the same cell? Would it
make any difference if this were allowed? Explain.

3. Give a complete specification for a Turing machine that subtracts
one from a binary number, provided that number is greater than zero.
You should probably start by figuring out how to do such subtractions
by hand. Trace the calculation performed by your machine for several
different inputs. What does your machine do if you ask it to subtract
one from zero? Once you have a machine to subtract one, you might
want to try to build a Turing machine to add any two binary numbers,
as described in Section 4.2.2.

4. Fill in as many details in the construction of the computer-
simulating Turing machine described in Section 4.2.3 as necessary to
convince yourself that it exists. You might want to work on the method
of dealing with addresses that was discussed in that section. You might
also try designing a machine that copies a binary number from one place
to another on a tape. Assume that the number to be copied is marked
by a y at the right end of the number. Also assume that beyond the left
end of the data on the tape, there is a z that marks the place where the
number is to be copied. All the cells between the z and the y contain 0,
1 or #. For example, you would want to transform the tape:
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Your machine will have to copy one digit at a time. To remember which
digit it is “carrying,” it will have to use different states when it is carrying
a 1 and when it is carrying a 0. I suggest that your machine move the y
to the left as it copies the number, leaving it on the square to the left of
the number as shown. During the calculation, the y marks the original
position of the digit that is currently being copied.

5. At the end of this chapter, after showing that no Turing machine
can solve the halting problem, I made the leap to the assertion that,
“We can’t give any definite rules for answering the question: Will a
given computation ever end?” Is this leap justified? What does this
have to do with the Church-Turing Thesis? (See Subsection 4.1.3.)

6. Imagine a scene from Star Trek in which Dr. McCoy and Mr.
Spock are walking beside a lake arguing about the usefulness of logic.
Dr. McCoy picks up a rock and says, “All right, Mr. Spock give me a
demonstration of your famous logical ability. Make me a prediction: Will
I throw this rock into the lake or not?” What can Spock do? Compare
his predicament to that of H in our proof of the unsolvability of the
halting problem. What does this question show about the limitations of
logic?
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Chapter 5

Real Computers

CYBERSPACE IS HERE, though perhaps not everyone has gotten the news.
The term Cyberspace, apparently invented by William Gibson in his sci-
ence fiction novel Neuromancer, refers to the developing global network
of interconnected, intercommunicating computers. In the minds of many
who visit it whenever they use one of those computers, Cyberspace is a
real place, a sort of alternative reality, where you can make friends, do
your shopping, play games, discuss the things you care about, and per-
haps earn a living. All this is here now, even while Cyberspace is still in
the process of being born.

Computer science had its beginnings in mathematics, and many of
the early workers in the field were mathematicians. But there are no Tur-
ing machines in Cyberspace (although I might argue that they provide its
fundamental mathematical substance). The real computers that make
up Cyberspace are incredibly fast, with large memories and sophisticated
input/output capabilities. They communicate over high-speed data links
that make it possible for someone like me, sitting in front of my com-
puter in my home, to use computers all over the world in real time.
They exist because of the efforts and dedication of many thousands of
people in many different professions—programmers, engineers, computer
scientists, and others. And their influence extends beyond this technical
community to all the people who use computers directly, or whose lives
are affected by them.

137
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We are told that we are living at the beginning of the Information
Age, a post-industrial society in which information will be the most im-
portant commodity, and the material needs of the population will be met
by a small part of the workforce overseeing sophisticated, perhaps intel-
ligent, machines. The defining technology, and most important symbol,
of this new age will be the computer. Many social theorists who speak
of the Information Age imagine a utopia in which people, freed from the
drudgery that many workers face in today’s jobs, will develop their full
human potential in creative employment and increased leisure. Others
see at least as many dangers as opportunities. They warn of a world in
which the commodification of information makes personal privacy obso-
lete, and in which computers are an instrument of social control rather
than individual empowerment. It is worth noting that Gibson’s Neu-
romancer presents a gloomy view of a post-industrial society in which
many of these fears have been realized.

My own opinion is that the transformation of society will not be
as far-reaching or as quick as some writers have predicted, but that the
new information technology does present us with both great opportunity
and great danger. What is certain is that we, as a society, need to be
informed about the technology and about its potential impact if we are
to decide wisely about how it will be used. This entire book is, of course,
meant to provide a basic overview of computers and computer science,
but in this chapter on “real computers,” in addition to explaining how
real computers differ from the model computers introduced previously,
I will be more explicit about dealing with the technology in a historical
and social context.

Computers have come a long way in the half-century since the first
of their kind were invented. They have penetrated into all aspects of
daily life, in many cases to the extent that they have become effectively
invisible. It is unlikely that any reader of this book needs a description
from me of what a standard computer looks like, or what a keyboard
or mouse is for. However, for most people a computer is a “black box.”
That is, they know something about how a computer is used and what it
can be used for, but they have very little idea about what goes on inside.

The first few chapters of this book have opened that box up to some
extent. What you learned there does apply to real machines, but it is
only a part of their story. The rest of this book carries on the process of
opening the black box by looking at real computers and real computer
programs. We start in this chapter with a historical look at how real
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computers came to be invented, followed by a survey of some funda-
mental aspects of the design of real computers. The final section of the
chapter deals with their actual and potential impact on society. Then,
the next three chapters will cover the basic concepts of computer pro-
gramming and programming languages. The four final chapters of the
text deal with computer applications; Chapter 9 surveys several basic
applications, and Chapters 10, 11, and 12 deal with three of the most
exciting and active areas in computer science today: networks and par-
allel processing, computer graphics, and artificial intelligence.

5.1. A Brief History

The use of calculating devices is probably at least as old as the abstract
idea of number.! The prehistoric herder who kept track of the number
of sheep in a herd by making notches in a piece of wood was engaging
in an activity not so much different from the modern accountant who
enters sales figures in a computer. The abacus, which has been in use
for thousands of years, allows calculation at a speed that rivals that of
anything else available before the introduction of computers.

The first machine that we would recognize as a calculator in the
modern sense was invented by a German professor, Wilhelm Schickard,
in 1623, but his work was forgotten after his death in 1635 and remained
unknown until 1935. More influential were the devices created by the
philosophers Blaise Pascal and Gottfried Leibnitz later in the seventeenth
century. Pascal’s calculator could add and subtract using a system of
geared wheels similar to the mechanism in a car’s odometer. Each wheel
had ten positions, representing the digits from 0 to 9, and the wheels
were connected so that as one wheel advanced from 9 to 0, the wheel to
the left would be advanced one position. This is the same basic mecha-
nism used in more modern mechanical calculators. Leibnitz, building on
Pascal’s work, designed a more complex machine that could do multipli-
cation and division. The method used for these computations involved
repeated additions, subtractions, and shift operations. Essentially the
same procedure is used in computers today.

LTt is impossible in this short section to give more than a sketch of the
complex history of computing devices and computers. Most of the material
in this section can be found in more detail in any history of computers. My
discussion here is based on material from [Augarten], [Goldstine], [Hodges], and
[Kurzweil].
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But being able to do individual arithmetic operations does not make
a machine a computer. One thing that makes a computer different from
a mere calculator is its programmability. Now, the idea of a mechanism
that can perform complex, programmed actions without human inter-
vention is also not new. Devices called automata, or “self-movers,”
which could imitate complex movements of living animals or people,
have been constructed at least since the time of ancient Greece. And
mechanical clocks, which have existed since the fourteenth century, were
among the most complex and accurate machines of their time. They
provided the Newtonian revolution of the seventeenth century with its
image of a “clockwork universe” whose complexity could be explained
in terms of mechanism—that is, in terms of fundamentally simple parts
moving in complex patterns but completely controlled by a small number
of physical laws.

But these early automata and clocks were not computers. What
makes computers unique among machines is their universality, as dis-
cussed in the preceding chapter. It’s not just that computers can carry
out complex computations autonomously. It’s that the same computer
can be programed to carry out any computation. To be a true com-
puter, a device must operate under the direction of a program that can
be changed, and the range of programs that it can execute must include
all possible computations.? The first devices that met these criteria were
constructed in the 1940s, during and just after World War II, but there
was an interesting near-miss a century earlier, when Charles Babbage
conceived and designed a computer he called the Analytical Engine.
The inspiration for this programmable machine came not from lifelike
automata or clocks, but from the mechanical loom.

5.1.1. Weaving Algebra. Ada Lovelace, a supporter and col-
league of Babbage who is often called the world’s first computer program-
mer because of her work developing programs to run on the Analytical
Engine, wrote that, “We may say most aptly that the Analytical Engine
weaves algebraic patterns just as the Jacquard loom weaves flowers and
leaves.”

2 Of course, this is literally impossible since any finite machine will in some
cases run out of resources such as memory. The point is that the individual
operations that it can perform, and the methods provided for combining them
into complex computations, must be sufficient to express any possible computa-
tion, although the computer might lack sufficient time, memory or some similar
resource to actually complete the calculation.
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The Jacquard loom, invented by Joseph-Marie Jacquard in 1801, is a
programmable device that can weave cloths with very complex patterns.
Cloth can be woven from two sets of threads running perpendicularly to
each other. These two sets of threads are referred to as the warp and
the weft. Think of one set running east/west and the other north/south.
When cloth is woven on a loom, the warp threads are strung on the loom
and then the weft threads are added one at a time. Some of the warp
threads are lifted to lie above a given weft thread while the others lie
below, holding it in place. The set of threads that lie above is changed
after each weft thread is added. The pattern in which the warp threads
on the loom are raised and lowered as the cloth is woven determines
the pattern in the cloth. A complex pattern requires threads of sev-
eral different colors to be raised and lowered in just the right sequence.
Controlling the threads by hand is time-consuming and error-prone.

In a Jacquard loom, the warp threads are controlled by programs
consisting of holes punched in cards.? Each card corresponds to one
weft thread; each hole in the card allows some particular warp thread
to be raised as that weft thread is added to the cloth. The pattern of
holes on all the cards determines the pattern woven into the cloth. The
cards are physically connected into something like a ribbon, and after a
given card is used, the ribbon is advanced so that the next card takes its
place. The two ends of the ribbon can be connected to form a loop. In
that case, the pattern will be automatically repeated over and over.

This should sound familiar. The loom’s cards correspond to machine-
language instructions in a computer that are executed automatically
one after the other, and the loom shares with the computer the ability
to repeat a loop of instructions. However, the Jacquard loom does not
perform computations as such, and in particular, it has no way of testing
conditions and making decisions between alternatives. But the basic idea
is there of how a single machine can be made to perform a wide variety
of tasks, simply by giving it different programs to execute. Clearly, Ada
Lovelace’s comparison of the Analytical Engine with the loom was more
than just poetic imagery.

Today, in a time when trigonometric and logarithmic functions can be
computed on demand by a ten-dollar calculator, it is difficult to imagine

3 Note that a program here means a physical deck of cards. The idea of a
program as information that can be stored in a computer’s memory came much
later, as we will see below, and was an essential step in the development of the
modern computer.
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that in the not-too-distant past people depended on printed tables of
the values of such functions. The production of these tables demanded a
vast amount of time and effort from people known as “computers,” aided
at most by mechanical calculators to do the basic arithmetic operations.
Charles Babbage was inspired to begin work on his calculating engines
by a vision that such tables might be computed and printed by machine,
automatically and without error.

Babbage’s first design was for a machine called the Difference En-
gine, which was to compute such tables using a mathematical process
called the “method of constant differences.” The Difference Engine was
designed as a special-purpose device, implementing just this one pro-
cedure, but it would have been a mechanical calculator on a grander
scale than anything that had been seen before. A small demonstration
device was built in 1822, and Babbage obtained government support to
continue the project. A decade later, a section of the complete machine
was constructed, containing 2000 out of a projected 25,000 parts. But
the project never advanced beyond this stage, partly because of disputes
between Babbage and the government and his chief engineer, and partly
because Babbage realized in 1834 that the methods employed in the Dif-
ference Engine could be used to produce an altogether superior machine:
the Analytical Engine.

The great originality of the Analytical Engine lay in the fact that
it was to be a general-purpose, programmable calculating machine. Its
programs were to be coded as punched cards strung together into rib-
bons, similar to those used in the Jacquard loom. The instructions on
the cards were not loaded into the Engine’s memory; instead, the cards
themselves directly controlled its operation.

Aside from the fact that it was controlled by punched cards rather
than by a program stored in its memory, the Analytical Engine was
strikingly similar to a modern computer. It had a processing unit, which
Babbage called the mill, and a memory unit for data, which was known
as the store. It was not limited, like the Jacquard loom, to follow-
ing a sequence of instructions from beginning to end. Like a modern
computer, it was designed to perform loops, conditional jumps and sub-
routines. These were executed by physically moving the ribbon of cards
back and forth through the card reading mechanism, under the control of
the program instructions. Because of these abilities, Babbage’s Engine
was the first computationally universal machine ever conceived.

The Analytical Engine was never built, and it has sometimes been
claimed that the complexity and precision of engineering it would have
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required were simply not available at the time. But in 1991, a team of
engineers at the London Science Museum completed a working model
of Babbage’s Difference Engine No. 2, a more advanced version of his
first Difference Engine. Its 4,000 parts were made using some modern
methods, but were machined only to the same precision that Babbage
achieved on the parts he did construct. The builders of Difference Engine
No. 2 believe that the Analytical Engine could have been built in the
nineteenth century [Swade].*

5.1.2. Beginnings. Although it was not until the late 1940s that
devices as versatile as the Analytical Engine were actually produced, me-
chanical calculating devices of increasing sophistication and practicality
continued to appear. A watershed in their development occurred in 1890,
when the results of the U.S. census were tabulated by machine for the
first time. The machines used for that census were invented by Herman
Hollerith, whose company later, after a merger, became the heart of the
International Business Machines Corporation (IBM). The keyboard cal-
culator, a mechanical desktop calculator in which numbers are entered by
pressing keys, was introduced at about the same time. Soon, mechanical
computing devices were in common use in business and science.

In the meantime, technologies not obviously related to computing had
produced the switching elements that were to be crucial in the design of
early computers. Three types of switches have been used in computers:
relays, vacuum tubes, and transistors. In all of these, the connection be-
tween an input wire and an output wire is switched on and off by current
on a control wire. Transistors were not invented until 1947, but by the
30s, relays were in common use in telephone networks, and vacuum tubes
were used in radio. The relay, a mechanical device thousands of times
slower than the vacuum tube, was used in some early computers. Most
computers, however, have been electronic, based at first on vacuum
tubes and later on transistors.

By the late 1930s, then, the time for general-purpose computers seems
to have arrived. By that time, several independent projects were under-
way in three countries: Germany, Great Britain, and the United States.
The development of the computer can be traced through the entire
decade of the 1940s. It is a twisted history, involving many individuals

41t is interesting to imagine a world in which the Industrial Revolution
brought with it the introduction of steam-powered, mechanical computers. This
possibility provides the background for at least one science-fiction novel [Gibson
and Sterling].
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working on a number of mostly independent projects. The history is
complicated by the fact that much important work was done during
World War II, on classified projects. It was not until 1948 and 1949 that
several machines appeared with all the characteristics of a modern com-
puter. These were the first general-purpose, electronic, stored-program
computers. The first of these machines, a fairly small prototype, was
the Mark I which ran its first program at Manchester University in Eng-
land on June 21, 1948. A year later, the first such full-scale computer,
the EDSAC, became operational at Cambridge University. It had taken
about twelve years for all these ideas to come together in one machine.

The first programmable computing machine was the Z3, built in 1941
by a German engineer, Konrad Zuse, who was inspired to work on the
problem of automatic computation by the drudgery of computing solu-
tions to differential equations by hand. The Z3 was the third in a series
of machines built by Zuse, starting in 1938. It was made from 2600
relays and used the binary number system. The Z3 was programmable
in the sense that it could automatically execute a program encoded as
holes punched in a paper tape. However, it could only carry out those in-
structions from beginning to end. It had no way of making decisions, so
although it was “general-purpose” in that it could carry out any sequence
of operations automatically, it was not computationally universal. Many
of the early machines that are called computers share this limitation and
therefore are not quite computers in the modern sense of the term. The
73 saw some use in the German missile program during World War II,
but for the most part, Zuse received little support for his machines from
the German government.

The German military effort did, however, depend on another machine
known as the Enigma. This was a device for encoding and decoding
messages which was used by the German military throughout the war.
The breaking of the Enigma code was the target of the major wartime
computing effort in Britain. This 10,000-person secret project, code-
named Ultra, was able to successfully decode German communications
throughout the war and is considered to be one of the major factors in
the Allied victory. One of the significant players in this project was Alan
Turing, who had already made a major contribution to computer science
with his invention of Turing machines.

The Ultra project produced two series of code-breaking computers,
Robinson and Colossus, of increasing sophistication. The Colossus com-
puters were electronic, with thousands of vacuum tubes. They were
special-purpose machines, but they were programmable to a limited ex-
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tent. In particular, they could make decisions about what to do next
based on the result of a previous computation. Perhaps more impor-
tant for the history of computers than the machines themselves was the
pool of expertise produced by the project, which made possible the great
post-war achievements in British computing.

In the United States, several projects produced computing machines
during the war years. The Mark I, begun in 1937 by Howard Aiken at
Harvard University and completed in 1943 with the support of IBM, was
the first computer to become widely known to the public. It was based
on decimal numbers and used rotating wheels as well as relays. It could
execute sequences of instructions punched on paper tape. In some sort
of unintentional tribute to Babbage’s vision of the Difference Engine, it
was to spend most of the next sixteen years calculating mathematical
tables. However, with regard to the future development of computers, it
was a dead end.

More important was the ENIAC, which was the first electronic, pro-
grammable computer. Conceived in 1943 by John W. Mauchly and
J. Presper Eckert, it was built in secrecy with military support at the
University of Pennsylvania. It was completed in 1945, three months af-
ter the end of World War I1.> Although it was designed for a specific
task—computing tables to be used in artillery targeting—the ENTAC
was universal in the sense that it could be used to perform any compu-
tation. Programming the ENTAC, however, involved a physical modifi-
cation of the machine: Connections between different components had
to be rewired by plugging and unplugging connecting cords, and a bank
of 6000 switches had to be set. As a result, it took several days to set up
a program. If the definition of a universal machine is that an unmodi-
fied machine must be able to perform different computations when given
different programs, then the ENIAC does not meet this standard.

But even before the the construction of the ENIAC was begun, Eckert
and Mauchly had the crucial insight that would make possible the first
truly universal machines®: that a program could be treated as a type of

5 Neither Colossus nor ENIAC was the first electronic calculating device.
That honor belongs to the ABC computer, built in 1940 by John V. Atanasoff at
Towa State University. However, the ABC was a fairly small, nonprogrammable
device. Mauchly was aware of Atanasoff’s work and had visited his lab.

6 Although in hindsight we might look on the creation of a universal com-
puter as the culmination of all the work that came before, there was no research
program whose goal was to produce a universal machine as such. I am not sure
when it became clear to the researchers involved that such a thing was possible
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data and stored in a computer’s memory. The result of this insight was a
proposal to build the EDVAC, which was the first truly modern computer
to be conceived. A draft report on the design of the EDVAC was written
by one of Eckert and Mauchly’s colleagues, the well-known mathemati-
cian John von Neumann, who contributed many of his own ideas. This
report outlined the design of the modern computer in all its essential
details: a central processing unit based on Boolean algebra and using bi-
nary arithmetic, with a random-access memory containing both data and
programs. Because of his association with this report, computers of this
general design have come to be known as von Neumann machines.
The first von Neumann machines to be completed were the two
British computers, the Manchester Mark I and the EDSAC, mentioned
above. Their builders learned about the idea of a stored-program com-
puter from von Neumann’s report on the EDVAC and from a series of
lectures given by Eckert and Mauchly at the University of Pennsylva-
nia in the summer of 1946. The EDVAC itself was not completed until
1952. By that time, Eckert and Mauchly had left the University of
Pennsylvania and started a computer company, where they completed a
stored-program computer known as the BINAC in late 1949.7

5.1.3. Generations. With the development of the von Neumann
machine, the history of computers entered a new stage. From a theo-
retical point of view, computers already had all the computational abil-
ity that they would ever attain, and future development would merely
make them smaller, faster, cheaper, and easier to use. But the extent of
these “merely” practical improvements has been truly astonishing and
has made possible a world not only in which computers themselves are
household appliances, but in which an appliance as mundane as a mi-
crowave oven might be controlled by a microchip with more circuitry
than was to be found in the ENTAC.

Computers have decreased in size and increased in speed and com-
plexity more or less continuously since their invention. But there have

or even desirable, but the credit should most likely go to John von Neumann,
who was familiar with Turing’s work.

7 One unusual feature of several early computers, including the EDVAC and
the EDSAC, was the type of memory they used. Their memory units consisted
of tubes of mercury, which stored data in the form of sound waves! The sound
waves traveled from one end of the tube to the other, where they were detected,
amplified, and fed back into the first end. Numbers could be read from memory
only as they completed their trip through the tube. New numbers could be
stored by changing the value fed back into the tube [Goldstine, p. 188-191].



Section 1. A Brief History 147

been several changes in computer technology whose impact was so great
that each can be considered to mark the beginning of a new genera-
tion of computers. The first generation, including most of the machines
mentioned above, used vacuum tubes as switching elements. Although
transistors were invented in 1947, techniques for manufacturing them in
quantity and at reasonable cost did not exist until the mid-1950s, and it
was 1957 before the first computer of the second generation—using tran-
sistors as switching elements—was introduced. Besides being smaller,
cheaper, and faster than vacuum tubes, transistors were much more re-
liable. (Many engineers believed that the ENIAC, with 17,000 tubes,
would be so plagued with burned-out tubes as to be almost useless.) By
the early 60s, most new computers were transistorized.

The invention that led to the third generation of computers was the
integrated circuit. An integrated circuit replaces a number of sep-
arate transistors, along with interconnecting wires and other electrical
components, with a single “chip.” A chip is a small, thin piece of sili-
con, or other semiconducting material, which contains the equivalent of
a complete electronic circuit.® The result was a new level of miniatur-
ization, together with another increase in reliability resulting from the
smaller number of individual parts and interconnections. The transition
to computers based entirely on integrated circuits took place from the
mid 1960s to the early 70s.

The first integrated circuits contained only a few transistors. For
example, a complete AND gate could be fabricated on a chip. The first
integrated circuits containing a large number of components were mem-
ory units, which are relatively easy to design and manufacture because
of the orderly, repetitive structure of computer memory. In 1968, a
random-access-memory chip holding 256 bits of storage was introduced,
and it took only a few months to raise that to 1,024—that is, 2'0—bits.
This rate of progress has continued. As I write this in March 1993, the
current issue of Byte magazine includes a short news item on the intro-
duction of the first memory chips with a capacity of 226 bits, more than
64 million! This represents a doubling of capacity each year over the
course of fifteen years.

As the number of components in an integrated circuit increased, it
was inevitable that someone would have the idea of putting an entire

8 The manufacture of integrated circuit chips is an impressive technology
which involves diffusing other elements into the silicon, layering materials onto
it, and etching parts of those layers away—all on a microscopic scale of detail.
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central processing unit on a single chip. The first such CPU-on-a-chip,
or microprocessor, was invented in 1971. This can be seen as the
beginning of the fourth generation of computers, based on very large
scale integration, or VLSI. By the end of the decade, microcomput-
ers, built around microprocessors, could be purchased for home use, and
general-purpose microprocessors with special-purpose programs perma-
nently burned into their memories were being developed for use in print-
ers, compact disc players, cars—and microwave ovens.

Microprocessors can contain millions of transistors on a fingernail-
sized chip. Circuitry equivalent to the entire, room-sized ENIAC com-
puter would be a barely visible dot on that chip. Its cost, as a propor-
tional part of the cost of the entire chip, would be on the order of a few
dollars.

What is the fifth generation of computer hardware? The term is gen-
erally used to refer to multiprocessing computers, which use a number
of processing units working together to solve a problem. I will discuss
multiprocessing in Chapter 10. There might even be a sixth generation of
computers on the horizon, consisting of devices that use light rather than
electricity to store programs and to process information. Such devices
are still in the early stages of research, but as integrated circuits near
the limits imposed by basic physical law, light-based computers hold the
possibility of continuing the progress of computers to new levels of speed
and miniaturization.

5.2. Usable Computers

The first commercial computers were used by universities, government,
and large corporations, and they required highly trained staffs of pro-
grammers and technicians to keep them operating. Computers have be-
come smaller and more affordable, but this in itself would not have put
computers in homes, small businesses, and elementary school classrooms
if computers had not also become more and more easy to use. Today’s
computers can be used with no special training at all. And although pro-
gramming a computer might never be truly easy, the payoff for a given
amount of programming effort has certainly increased with time. The
increased usability of computers is not due simply to faster CPUs and
larger main memories. To be usable at all, a CPU and memory must be
part of a computer system, which also includes other hardware, such as a
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keyboard, monitor, and disk drive, as well as software for the computer
to run.”

5.2.1. From Input/Output to Dialog. The way people interact
with computers has been fundamentally transformed since the introduc-
tion of the first commercial computers. In the beginning, computers were
machines for processing input into output. Programs and data were la-
boriously prepared on punched cards, or in some other machine-readable
form. The cards were loaded into a mechanical card reader which would
translate the pattern of holes on each card into the electrical signals that
would load the input into the computer’s memory. Then, as the program
ran, any output it produced could be printed, punched onto cards, or
rendered in some other form that could be used, however inconveniently,
by humans.

Most computer users never even got close enough to the machine
to observe this interaction, such as it was, first-hand. The user would
prepare a deck of punched cards on a typewriter-like machine and then
submit that deck to a technician. The technician would bundle the deck
together with decks submitted by other users into a batch to be loaded
into the card reader. Eventually—and that might mean hours—the input
deck would be returned to the user, along with any output produced.
Pity the poor programmer who might get back as output only the single
line, “Error found on line 357 of program”!

This mode of using a computer, in which a program is submitted to
be processed by the computer without further interaction, is still called
batch processing, even though the programs are no longer processed as
batches of punched cards. Most computer systems still allow some type
of batch processing, since it is appropriate for programs that take a long
time to run and that require no interaction with a user while they are
running.

9 The term hardware refers to any physical part of a computer system,
while software refers to programs that are executed by the hardware. While
software has to be carried around on a piece of hardware, such as a computer
disk, the software itself is information, which has an abstract rather than a
physical sort of existence. It’s like “the short stories of Edgar Allen Poe.” If
you want to read the stories, you need a book in which they are printed. But
the stories are not the book or the paper or the ink, but rather the information
that is conveyed by the arrangement of dots of ink to anyone who knows how
to read English. This analogy highlights another aspect of software: It is only
useful to a computer that “understands” it, so that programs written for one
type of computer system will not necessarily work on another.
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It was clear that computers could be used more productively if users
could get faster and more immediate feedback. But computers were large
and very expensive machines, and it was very unusual for a computer
to be devoted to a single user. By the early 1960s, a solution to this
dilemma had been developed by researchers at MIT [Augarten, p. 255].
The solution, known as timesharing, allowed a large number of users
to interact with the same machine at the same time. Each user could
engage in a kind of dialog with the computer, typing in a line of input
and receiving an almost immediate response. The great speed of the
computer enabled it to rapidly shift its attention from user to user, giving
each user the illusion of having the machine’s undivided attention.

Timesharing made it possible for large numbers of users to experience
the direct interaction with a computer that had previously been available
only to a few researchers.!? It became possible for programmers to find
and correct errors in a program in a few minutes rather than hours,
for businesses to make their records instantly accessible on a computer
screen, and for everyone to play interactive computer games.

The style of human/machine interaction used on early timesharing
systems—in which the user types some input and the computer types
back a response—is called a command-line interface. Although it is
a big improvement over batch processing, a command-line interface still
requires the user to learn a cryptic and unnatural command language.
When personal computers were introduced, they used a similar interface.
People with the time and inclination to become expert with the system
could achieve a sense of having an easy and natural dialog with the
machine. For most people, however, the interface was a barrier.

This situation changed with the introduction of the graphical user
interface, or GUIL In a GUI, cryptic commands are replaced by manipu-
lation of graphical representations of objects and by choosing commands
from menus. Instead of typing “rm mydoc.txt,” the user can drag a pic-
ture, or icon, representing mydoc.txt to a picture of a trash can. Instead
of remembering the command “mkdir,” the user can select “New Folder”
from a menu.

The graphical user interface brought the experience of communicat-
ing with a machine to many people who would never be comfortable
memorizing long lists of commands. Although at the heart of the com-
puter there is still a CPU mechanically processing input into output, the

10 And to a few computer “hackers” at MIT. These hackers were among the
first people to understand the full potential of computers. See [Levy, Hackers].
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computer as experienced by the user has become something else entirely:
an independent, responsive entity that can be an active participant in a
dialog. We will return to the implications of this view of computers at
the end of this chapter. But first, we should try to understand some of
the technology that lies behind these modern, interactive computers.

5.2.2. Multiple Devices. It is easy to imagine how a punched-
card reader might be used to load a program into a computer’s memory:
Small metal probes pass through the holes, closing electrical circuits
that directly load the number encoded on the card into memory. It is
not much harder to imagine output values from the computer’s memory
being used to directly control some sort of output device. But in mod-
ern computer systems, the CPU and main memory are only two devices
among many, and the relationships among all these devices are not al-
ways so simple. We will take a look at some of these devices and how
they can communicate with the CPU.

Fundamentally, there is only one way for components to communi-
cate: One component turns one or more wires on or off, and another
component connected to those wires reads the values they carry. This
can be modified by using a memory location or a register accessible to
both devices as an intermediary in the communication. One component
can load a value into the shared memory, and the other can read that
value at its convenience. In general, whichever method is used, the two
devices will need some way to control the flow of information between
them. For example, one device might need to signal the other that it has
data ready to send, or that it is ready to receive data. It is easy enough
to reserve some of the connecting wires or memory bits for such control
messages, while the remaining wires or bits are used to transmit data.

Let’s consider the two most basic input/output devices first: the
monitor and the keyboard. We will look at some of the ways that these
might work before discussing how a complex system with many devices
can be constructed.!!

The most common method of managing communication between the
CPU and a video display monitor was already mentioned in Chapter 1.
The image displayed on the monitor is simply a reflection of data stored
in video memory, a region of the computer’s memory reserved for this

11 My discussion is written to apply to a personal computer system, since
that is what most people are familiar with, but large multiuser computers are
not essentially different.
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purpose. On a black and white screen, each pixel on the screen corre-
sponds to one bit in memory. The pixel is off if that bit is zero and is on
if the bit is one. Color and grayscale monitors use several bits to specify
the color of each pixel. This color information is read approximately
sixty times per second by a special-purpose video controller chip, which
repeatedly draws and redraws the image on the screen based on the in-
formation it finds. The CPU changes the image on the screen simply
by changing the data stored in video memory. This method of commu-
nication, using locations in main memory accessible to both devices, is
known as memory-mapped 1/0.

Now, this explanation of the way a monitor works is incomplete in at
least two ways. First, it is easy enough to say that the video controller
chip and the CPU both have access to the video memory. But memory
is constructed in such a way that only one location can be accessed at
a time—the location indicated by the value on its Address wires. If two
devices actually tried to set up different addresses at the same time, the
result would be chaos. There has to be some method of controlling access
to memory by the CPU, the video controller chip, and any other devices
that need it.

The second remark has to do with a difference between the picture
I have given you of memory and the actual memory in a computer. It
is convenient to picture memory as a tall stack of numbered locations,
each holding a certain number of bits. This is a “logical” picture of the
structure of memory—the picture you should have of it in your mind,
that tells you how it works. But there is no reason for the physical
structure of memory to be anything like this. For example, two bits
that are logically part of the same location might be physically on two
altogether separate memory chips. More to the point, there is no need
for the video memory to be physically anywhere near the rest of memory.
All that matters is that when the Address wires are set to a certain value,
the corresponding location in memory, wherever it is physically, becomes
accessible for reading or storing data. The video memory, for example,
can be physically a part of the circuitry that controls the display. We
will see that a computer system might contain many devices, each with
its own chunk of memory.

We find an even more complicated situation when we look at the
keyboard, which is used to input characters into the computer. The
quantity of data from a keyboard is really very small, but that data can
come at any time, at the whim of the user.
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Although it is not likely to be literally true in a real system, let’s
imagine first that there are several wires connecting the keyboard directly
to the CPU. The binary number carried by these wires encodes the key
currently being pressed (along with any modifiers such as the shift or
control key). If no key is pressed, the value on the wires is zero. In the
simplest case, the CPU could simply execute a loop in which it reads
the value on the keyboard wires over and over. When the value changes,
indicating that the user has pressed a key, the CPU can process the
character that was typed and then return to the loop to wait for the
next input. The CPU, or rather the program it is running, will have to
be smart enough not to process the same input twice, unless the user
holds down a key long enough so that it should “auto-repeat.”

This method of sitting in a loop, watching for some input to occur, is
called polling. Polling has several disadvantages. First of all, the CPU
wastes much of its time just waiting for input to occur. Even worse is the
possibility that the CPU might take so long processing one input that it
misses other inputs that come along while it is not watching for them.

As an alternative to polling, we can imagine a two-way flow of com-
munication between the keyboard and the CPU. In addition to the actual
data flowing from the keyboard to the CPU, there will be control sig-
nals sent by each device to the other to regulate the flow of data between
them. Of course, this requires that the keyboard be more than a “dumb”
mechanical device. Some of the processing that we have imagined being
done by the CPU must be done instead by a “keyboard controller cir-
cuit,” which acts as an intermediary between the mechanical keyboard
itself and the CPU. This circuit will detect the input coming from the
keyboard and do some preliminary processing of that input. It will en-
gage in a sort of two-way conversation with the CPU to transmit the
input data to it in an orderly way.

In general, the devices in a computer system are “smart” in this sense.
They include their own processing circuitry, which might be very sophis-
ticated, even to the extent of including a full-powered microprocessor.
These devices should be thought of as participants in two-way commu-
nication with the CPU, rather than as passive sources or recipients of
data.

There are several ways of controlling the flow of data between two
devices. One simple type of control called handshaking can be used to
make sure that no data is sent until the recipient is ready to receive it.
The recipient sends a signal when it is willing to receive data; it might
do this, for example, by turning on a wire dedicated to the purpose.
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Another style of communication uses interrupts, an idea with far-
reaching implications. The idea here is that a device can interrupt the
CPU, which will put aside whatever it is doing to process the com-
munication from that device. Although this is one aspect of the CPU
that I have not mentioned previously, the fact is that every real CPU
is designed with the ability to handle interrupts. A device “signals” an
interrupt by turning on a wire connected to the CPU; the CPU “ac-
knowledges” the interrupt by turning on another wire leading back to
the device. Generally, a CPU can handle several different types of inter-
rupts, corresponding to different kinds of events that it must be able to
handle.

An interrupt is similar to a subroutine. When an interrupt occurs, the
CPU executes an interrupt handler, a sequence of machine-language
instructions designed to respond to whatever condition caused the in-
terrupt. After the interrupt handler finishes, the CPU must return to
whatever it was doing when the interrupt occurred. Before jumping to
the start of the interrupt handler code, it must stash away enough in-
formation to enable it to pick up where it left off. This information
will certainly include the current value of the program counter and may
include the contents of other registers.

Some CPUs are hard-wired to jump to a specific location in memory
when an interrupt occurs; the interrupt handler must be loaded at that
location. In other CPUs, the location of the interrupt handler can be
specified by a program. But in any case, the processing that is done
in response to an interrupt will depend only on the machine-language
instructions that the CPU finds at the location of the interrupt handler.
Thus, although an interrupt is a hardware event, the computer can be
programmed to respond in any desired way to the interrupt.

As an example of how interrupts can be used to control communi-
cation, a keyboard might be designed to signal an interrupt each time
the user presses a key. The interrupt handler can process the keystroke
immediately or, more likely, store the character where it can be found
when the program that is running is ready to process it.'? You can see

12 Typed characters are stored in a “queue” or “buffer” which can hold a
number of characters. You probably have had the experience of typing char-
acters that do not immediately appear on the screen because the computer is
busy with something else. Those characters have in fact been dumped into the
queue by an interrupt handler, where they will stay until some program removes
them for processing at its convenience. It is that program that will later write
them onto the screen, if appropriate.
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that interrupts provide a convenient way for the CPU to handle com-
munication with a large number of devices without having to monitor
all of them continually. In practice, communication in a large computer
system might involve a complex combination of memory-mapped 1/0,
polling, handshaking, and interrupts.

5.2.3. On the Bus. We seem to have created a new chaos of
devices, interconnections, and methods of communication. Somehow all
this has to be coordinated into a working computer system. Fortunately,
there is a clever and effective way of bringing order to this chaos: the
bus.

A bus is simply a set of wires that can be used for communication
among devices. What is special about a bus is the fact that many devices
can connect to it. Any of these devices can send signals along the bus
and read signals sent by other devices. Since only one device at a time
can send a signal over the bus, its design must include some way of
regulating when the devices are permitted to send signals.

A typical system might have three busses, a data bus, an address
bus, and a control bus, each devoted to carrying a different type of
signal. (A real system might well have more than three busses and might
include devices that communicate directly rather than over a bus. But for
the sake of simplicity, I will ignore such possibilities in this discussion.)
The control bus includes a number of wires used for sending control
signals, such as those used in handshaking and interrupts. These signals
are used to initiate or regulate the exchange of data between two devices.
The data itself is always transmitted over the data bus. When data is
being read from memory or loaded into memory, the address bus is used
to specify the memory location involved in the data transfer.

Data transfer using the data and address busses is actually more gen-
eral that it first sounds, since it can be used for arbitrary communication
between devices via memory-mapped 1/O operations. Furthermore, as I
noted above when discussing video memory, the computer’s memory does
not have to be physically all in one place—it can be scattered in pieces
among various devices, with each device being assigned some subset of all
the available memory locations. A video memory that is physically part
of the video controller is one example of this. As another, the keyboard
controller might include a memory location that contains a code for the
key currently begin pressed; the CPU can simply read that location, as
it would read data from any memory location, to find out what key has
been pressed.
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Figure 5.1. A computer system with three busses: one for transmit-
ting data, one for specifying a memory address, and one for control
signals such as handshaking and interrupts. Busses provide a uniform
and conceptually simple way for all the devices in a complex system to
communicate. Furthermore, it is easy to add new devices by attaching
them to the bus. Most computers have “expansion slots” that are used
to plug devices into the bus. Here, the CPU is shown interfacing to the
bus via an input/output controller, which might actually be a physical
part of a CPU chip.

And as a final example, a sound device might include a memory
location whose contents determine what note it is playing. The CPU
could play a song simply by writing the appropriate sequence of numbers
to that location. As far as the CPU is concerned, it would simply be
using Store instructions to load numbers into memory. The fact that
doing so causes a song to be played is due to the way the computer
system as a whole, hardware and software, is constructed.

Computer systems are designed so that it is easy to connect new
devices into the system. These connections are made through ports and
expansion slots. An expansion slot provides a direct connection to the
bus; a card, known as an expansion card, containing all the circuitry
necessary to support a device, is simply plugged into the slot. In many
cases, the expansion card provides only an interface between the device
itself and the system. For example, to add a monitor to a system you
need a video expansion card, in addition to the monitor itself. The card
contains the video memory, the video controller circuitry, and a socket—
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Disk drives. These so-called “secondary memory devices” can
store large amounts of data and programs, which must be
loaded into main memory before they can be used by the
CPU. There are many different types of disk drives, using
various methods of data storage.

Modems. A modem can convert a stream of bits coming out
of a computer into a signal that can be sent over an ordi-
nary telephone line. It can also perform the reverse conver-
sion. Two computers can communicate over a phone line if
each is equipped with a modem.

Digital Signal Processing (DSP) chips. A DSP chip can
quickly perform complex operations used in processing au-
dio and video signals. The CPU itself could do such oper-
ations, but much more slowly. DSP chips are just one ex-
ample of special-purpose processors that can be added to a
system to speed up a particular type of calculation.

Optical scanners. An optical scanner digitizes an image so
that it can be displayed on a computer screen. It works
much like a photocopier, except that instead of duplicat-
ing the image, it converts it into a stream of bits that are
transmitted to the computer.

Voice recognition. A voice recognition device analyzes the
signal produced when the user speaks into a microphone,
and tries to determine what words the user is speaking.

Network connectivity. Networks provide a way of connect-
ing a number of computers so that they can communicate
with each other and share resources such as printers. A net-
work interface device in each computer handles communica-
tion between that computer and the network.

Figure 5.2. A brief beastiary of devices. This short list gives some
indication of the range of devices that might be found in a computer
system.

which sticks out the back of the computer—where the monitor is to be
connected.

A port also allows an external device to be plugged into the system.
It is similar to a socket on an expansion card—and in many cases may
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be exactly that. That is, a port consists of a socket and circuitry to
interface it to the bus (or perhaps directly to the CPU). The port pro-
vides a specific type of physical connection and style of communication.
Any device that physically fits the socket and uses that style of com-
munication can be plugged into the port. Most computers have both a
serial port, through which data is transmitted as a series of single bits,
and a parallel port, which allows eight or more bits to be transmitted
simultaneously over a set of “parallel” wires. A SCSI, or Small Com-
puter System Interface, port allows not just a single device but a chain
of different types of devices to be attached to the computer, with each
device plugging into the preceding device on the chain.

Expansion slots and ports allow a great number and variety of devices
to be added to a computer system, limited only by the imagination of
the people who design such devices. How can the CPU cope with such
a large and potentially expanding variety? All that the CPU ever does
is execute machine-language instructions. When a new type of device is
added to the system, software must also be added to enable the CPU
to communicate with and control that device. More generally, we say
that the system must be configured to use the new device. Besides
the loading of appropriate software, configuration can include making
physical changes, such as setting switches, when the device is installed.
And in the case of devices that include memory to be used for memory-
mapped I/0, it can include assigning the range of memory addresses to
be used by the device. Some parts of the configuration, such as loading
software, must be done every time the computer is started up. Before
discussing this in more detail, we need to consider the general question
of system software.

5.2.4. The Operating System. Every computer system includes
some software that is considered part of the system itself, rather than
merely a program to be loaded by the user when it is needed and thrown
away when it is not. This system software is called the operating sys-
tem. It is the operating system that gives the computer its “personality.”
Systems with identical hardware but running different operating systems
can appear completely different to the user. Programs which are not part
of the operating system are called application programs. Such pro-
grams are loaded at the user’s request to perform specific tasks such as
painting and drawing, word processing, and database management.

The computer’s CPU can perform only simple operations such as
adding or multiplying two numbers, or copying a number from one place
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to another. A usable computer system must perform more complex tasks,
such as displaying a character on a monitor, detecting when a button is
clicked on a mouse, sending output to a printer, or reading a program
from a disk and setting up the CPU to execute it. Such things are made
possible by the operating system. Fundamentally, the operating system
is a collection of subroutines and interrupt handlers for performing such
complex tasks.

System software also includes a program that runs when no applica-
tion program is running, accepting commands from the user and carrying
them out by calling operating system subroutines. This program goes
by different names in different systems, but I will refer to it generically
as the command shell. Note that while the command shell is usually
considered to be part of the operating system, it is possible to change
the command shell without changing the operating system in a funda-
mental way. The only thing that will be changed is the way that the
user interacts with the system.

Operating system subroutines can also be called directly by applica-
tion programs. Of course, this greatly simplifies life for the programmers
who write such programs, since they can simply use the operating system
subroutines as black boxes, without recreating them every time they are
needed and without understanding the details of how they work. The
rules for calling operating system subroutines from application programs
form what is called an application programming interface, or API.

At the moment when a computer is turned on it is, relatively speak-
ing, brain-dead—or more precisely, suffering from amnesia. The main
memory of most computers consists largely of dynamic random ac-
cess memory, or ARAM, which requires continuous power to retain the
data stored in it. This type of memory is erased whenever the computer
is turned off, so that any data and programs it contained are forgotten.
Among the things forgotten are all the programs that the CPU needs
to make it possible to communicate with other devices in the system!
So even though all the information it needs is still somewhere in the
system—stored in disk drives, for example—the CPU on its own doesn’t
know how to access that information.

The solution is to allow the CPU to keep some part of its memory
even when the power is off. This is done by building a portion of main
memory from ROM, or Read-Only Memory, instead of from dRAM.
ROM is a type of memory that retains its data permanently, even when
the power is off. The computer can read the contents of ROM but cannot
change the information that is stored there. The ROM might contain
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Figure 5.3. The operating system provides subroutines to perform
many common tasks, especially those that involve all the different hard-
ware components that can be part of a computer system. When a new
device is added to the system, the software necessary to control it and
communicate with it is added to the operating system. These software
components are called device drivers. Operating system routines are
made available to programs through an API (application programming
interface). They can also be used through a command shell that accepts
commands from the user and carries them out.

some basic parts of the operating system, but more important for the
present discussion, it contains a start-up program that is automatically
executed by the CPU when the computer is turned on. The CPU is
constructed in such a way that when the power is turned on, the address
of the start-up program in ROM is automatically loaded into the program
counter. The CPU starts executing instructions at that address, and it
never stops executing instructions until the power is turned off.
Executing the start-up program transforms the computer from a heap
of components into a complex, coordinated system. It does that by load-
ing essential parts of the operating system into main memory, doing any
necessary configuration of the system, and starting up the command shell
so that the user will have a way of interacting with and controlling the
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DOS. The single most common operating system, used on the
IBM PC and similar computers. The basic line-oriented
command shell is a program called COMMAND.COM, al-
though newer, menu-based shells are also used. System con-
figuration at startup time is controlled by a file called CON-
FIG.SYS, which must be maintained by the user to handle
all the devices included in the system.

Windows. Not quite an operating system itself, Windows
adds many system routines, a new API, and a graphically
oriented command shell to DOS. Windows-NT, a new op-
erating system, uses a similar command shell and API but
is not based on DOS and is much more sophisticated than
Windows.

The Macintosh OS. The Macintosh GUI is built right into
the operating system, which provides a very large API,
called the Toolbox, to support the GUI. The Toolbox allows
all programs to have a similar look and feel. The command
shell, a program called the Finder, uses the same interface.
One nice feature of the Mac OS is that system configuration
is done automatically, without burdening the user.

UNIX. UNIX is a multi-user, timesharing operating system
originally designed to run on large computers. It was de-
signed so that it could be implemented on many different
computer systems, and it is now available on personal com-
puters. The idea is to provide a single API for high-level
languages that will work on any machine running UNIX,
but the goal of compatibility has usually been met only
approximately. There are several command-line oriented
command shells for UNIX. The most basic one is called the
C shell.

Figure 5.4. A brief beastiary of operating systems, listing just a few of
the commonly used systems.

whole thing. Configuring the system means making any modifications or
additions to the operating system that are necessary to adapt it to the
particular hardware in the system and to the preferences of the user. For
example, many hardware devices require special software, called device
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drivers. A device driver is a set of routines that the CPU executes in
order to communicate with and control the device; without it, the device
is useless. The start-up program must make sure that all the software
needed to drive all the devices is available.

5.2.5. Multiple Processes. One aspect of the operating system
that might seem mysterious is its ability to allow several programs to
run “at the same time.” This is most apparent in time-sharing systems,
where there might be hundreds of people using the computer simulta-
neously. But even on personal computers, it is possible for the user to
be interacting with one program while at the same time other programs
are running in the background. For example, the user might be typing
a document using a word-processing program while at the same time,
another document is being printed, a spreadsheet program is perform-
ing a long calculation, and a clock program is displaying a continually
changing time. Somehow, the CPU manages to divide its time among
several users or several programs. How can it do this?!3

The answer is easier to understand after the idea of a process has
been introduced. As the computer executes a program, it passes through
a sequence of states. A state consists of all the information relevant to
the program being executed, such as the contents of the CPU’s registers.
A process is defined to be the sequence of states that the computer goes
through as it executes a program. A process is dynamic, like a movie;
it takes place over a period of time. The program itself is static; it just
sits there like the script for the movie. The point is that the process
can be interrupted at any time and restarted later, provided that the
computer is restored to the exact state that the process was in before it
was interrupted. If this is done, the process will continue on exactly as
it would have if it had never been interrupted.

In a timesharing system, each user has a separate process. Only one
of these processes is running at a given time. Every so often, many
times per second, the current process is stopped, its state is saved, and

13 T should mention that there are computers that have more than one CPU.

On such a computer, each CPU can work on a different task. Such multipro-
cessing computers are discussed in Chapter 10. On a standard computer,
the single CPU can only work on a single task at a time, but even a standard
computer usually includes a few devices that can do some processing on their
own. The obvious example is a video controller that can redraw the display
screen without help from the CPU. Another example is a network interface
chip that handles all the interaction with a network, communicating with the
CPU only when there is incoming or outgoing data.
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one of the waiting processes is restarted. This process-switching is ac-
tually done by an interrupt handler responding to interrupts that are
generated by a system clock. Timesharing is an example of preemptive
multitasking, in which the processes that are sharing the CPU have
no control over when they will be interrupted or how long they will be
allowed to run. Another type of multitasking, called cooperative mul-
titasking, is used on some personal computers, such as the Macintosh.
A process running under cooperative multitasking must explicitly give
up the CPU before another process can take over. The disadvantage of
this is that an “uncooperative” process might hog the CPU and prevent
any other process from running.

This section has shown how a complex computer system can operate.
But no matter how complex the system, the CPU just keeps doing what
it always does, fetching simple instructions from memory and execut-
ing them one-by-one, occasionally responding to interrupts by execut-
ing some instructions out of their usual sequence. It is the programs—
operating system, device drivers, application programs—that together
produce the great complexity and variety of behavior that the computer
displays. It seems that we have reached the point where we should turn
from hardware considerations to an attempt to understand how these
complex programs can be designed and written. Our serious study of
programs will begin in the next chapter. But first, having gotten some
idea of how real computers were invented and how they work, we consider
the impact they have on the real world.

5.3. Computers and Society

It would seem irresponsible on my part not to include a section such as
this one, on the impact of computers on society, in a book that claims
to be a survey of computers and computing. However, I should warn
you that I am dealing in a few pages with a topic that really requires a
book of its own, or several books. Everyone agrees that computers have
significantly changed the world,'* and that their influence will increase,

14 Inevitably, when discussing the impact of computer technology on soci-
ety, we think first of the industrialized countries where such technology is
widespread, and my discussion will be limited to this aspect of the issue. A
truly global discussion would have to consider how computer and information
technology can be applied in the developing world and how it might affect
North-South relations.
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but there is little agreement on the extent of their impact, on whether
it will be positive or negative, or on whether it will be driven mainly by
the technology itself or mainly by human choice.

It should be clear to any reader of this book that I consider the the-
ory of computers and the machines themselves to be among the great
creations of the human mind. It is tempting for me to believe, along with
some social theorists, that computers will be a liberating and democra-
tizing force. However, I am faced with the fact that computers were born
as machines of war and much computer research continues to be directed
towards their war-making capabilities; that computers can threaten jobs
and in some cases make existing jobs less interesting and less fulfilling;
and that their ability to manage large amounts of information can be
used to invade people’s privacy.

On the whole, I tend to believe that the technology itself is neutral
and that human choices will determine whether its effects will be positive
or negative. If this is true, it puts a burden on those who develop the
technology and on those who will be affected by it—and in the case of
the computer, that means essentially everyone—to become familiar with
the issues involved and to be activist in the decision-making that will
determine the technology’s effects.

In this section, I try to give a brief survey of some of the issues that
need to be considered. Inevitably, my own opinion plays a larger role in
this section than it does in the rest of the book. Interested readers will
find more subjects covered and greater depth of coverage in the survey
by Richard S. Rosenberg and in the collections of articles edited by Tom
Forester, all of which are listed in the bibliography.

5.3.1. Computers Everywhere. One way to begin a discussion
of the impact of computers on society would be with a list of all the
different ways in which computers are used. But those uses are so many
and so varied that such a list would surely fill a book. The obvious uses—
with a person sitting in front of a terminal or microcomputer—are only
the beginning of the story. Computers are so pervasive that they affect
virtually every aspect of life.

People drive cars in which microprocessors increase performance and
safety, acting on information from sensors that monitor things like en-
gine temperature and fuel consumption. Some people fly jet fighters
that would crash and burn if their computer systems failed, because an
unaided human is simply not capable of reacting fast enough or with
enough precision to keep such a plane in the air.
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Most people trust their money to a banking system in which that
money will become a piece of data in some computer’s memory—or they
pay it to the government in taxes that will be recorded in one of the
largest computer systems in existence. If they happen to be criminals,
they might be inspired to find novel ways of extracting other people’s
money from its electronic storage places.

Their telephone calls are routed to their destinations by computer.
The stories they read in newspapers were written on computers, and are
laid out with the aid of computer programs. The pictures in those papers
are processed and enhanced by computer, and they might just as easily
be falsified.

They can spend their leisure time playing games on computers. When
they go on vacation, they book their airline flights and lodgings on na-
tionwide computer reservation systems. If they stay home and watch
an old movie on TV, it might well have been “colorized” by a computer
process that can add color to black and white video.

But I will discuss many specific applications (at least the ones that
have something interesting to teach us about computers) in the last
four chapters of the book. Rather than try to give an exhaustive (and
exhausting) list of computer applications, I will concentrate here on the
potential of some aspects of computer technology to bring about real
social change.

5.3.2. Computers and the Workplace. Some social theorists
claim that we are seeing the emergence of a post-industrial society or
information society, in which information will be the primary source
of wealth and the majority of the workforce will be employed in produc-
ing, processing, and communicating information. Before the industrial
revolution, a majority of people worked in agriculture. Today in the
United States, the agricultural needs of the country are met by about
three percent of the workforce. It is not that less food is produced but
that the productivity of agricultural labor has greatly increased. Pro-
ductivity refers to the output produced by a given quantity of human
labor. If a worker driving a tractor can accomplish the same work as
several manual laborers, productivity is increased severalfold. Comput-
ers have the potential to increase productivity in traditional goods and
services industries, perhaps to the extent where they consume the labor
of as small a proportion of the population as agriculture currently does.

When general levels of productivity in a society increase, the same
goods and services can be produced with a smaller amount of labor. In
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the first analysis, it might seem that the necessary consequence of this
decreased demand for human labor will be an increase in unemployment.
But while unemployment in specific industries will tend to increase, the
effect on society as a whole is not so clear and can be influenced by social
policy.

When productivity in one industry increases because of the intro-
duction of new technology, jobs that are eliminated in that industry
are balanced to some extent by new jobs that support that technology.
Tractor manufacturing might contribute to agricultural unemployment,
but it also creates manufacturing jobs that were not there before. In
the same way, robots working on assembly lines displace workers, but at
the same time, new jobs are created for the people who design, build,
program, and maintain those robots. In general though, new technology
will not be introduced unless the net effect is a lowering of costs, and
that will presumably translate to a net loss of jobs, even counting any
new jobs created in supporting industries.

Looking at this loss of jobs in a positive way, as human labor and
creativity now freed to be devoted to new purposes, we can ask how
society will use this resource. In the worst case, it could be wasted,
with high levels of unemployment driving down overall wage levels and
impoverishing not just the unemployed but society as a whole. On the
other hand, it could be used to raise the standard of living of the entire
society and could support the creation of completely new industries based
on the new technology. It could allow people to devote more of their time
to creative work and to leisure. This is the vision of the Information
Society. But the extent to which computer technology will change the
workplace, and who will benefit from those changes, will be determined
to some extent by social policy, even if that policy is to do nothing and
allow the changes to be driven purely by economic forces.

Turning from theoretical considerations to actual applications, we
can ask what changes computer technology brings to the workplace. In
some cases, these changes mean complete automation of tasks previously
performed by humans. Perhaps the most dramatic example here is the
replacement of human workers on an assembly line by robots. The robots
in this case, currently at least, are neither intelligent nor human-like.
They are machines of size and shape appropriate to the task that simply
repeat the same programmed sequence of actions over and over. Tasks
that require a significant degree of flexibility are difficult or impossible
to automate, but the design of more “intelligent” robots is an active area
of research.
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More commonly, though, computers are introduced as tools to be
used by people. Examples in this category include the computers used
in offices for word-processing, accounting, and storing and retrieving all
the data necessary to run a business. Other computers running CAD
(Computer-Aided Design) programs replace pencil and paper as design
tools for engineers and draftsmen. Managers can use programs called
spreadsheets to help forecast the results of various decisions by numericly
modeling the effects they might have.

There are many success stories about the introduction of computer
technology, but the results do not always live up to expectation. In
particular, it seems to be generally agreed that massive investment in
computer technology in the office has not had the promised impact on
productivity. There are many reasons for this, but a principle reason
seems to be that merely introducing technology, without analyzing and
modifying procedures and personnel structures to take advantage of it,
will not automatically lead to improved productivity.

When we consider computers in the workplace from the point of view
of the affected worker, we must ask questions about how they will affect
the quality of jobs, not just the quantity. One concern is the possibility
of de-skilling. This refers to the replacement of well-paying, interesting,
high-skill jobs with jobs that require fewer skills and offer fewer rewards.
It has been proposed that computers, by allowing skill to be embedded
in the tools used for a task, would decrease the level of skill needed by the
worker. De-skilling is not unique to the computer age: Its primary sym-
bol is the assembly line, where a sequence of workers each performing one
small, repetitive, almost mindless task assemble a complex product that
might otherwise have required the efforts of a team of skilled craftsmen.
It seems possible that computers might allow the de-skilling of a whole
new range of occupations. So far, though, computers have not brought
about massive de-skilling. In fact, there is some evidence that computers
lend themselves more easily and more effectively to “human-centered”
systems which seek to take full advantage of human skill and flexibility
[Forester, 1989, p. 13].

5.3.3. Computers and the Individual. One of the most dis-
turbing aspects of computer technology is the threat it holds for indi-
vidual rights, especially the right to privacy. The ability of computers
to maintain large databases of easily accessible information means that
an unprecedented amount of information about people is being collected
and stored.
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Any person living an ordinary life in an industrialized country con-
stantly generates data that flows into computer databases, some of them
public and some with access restricted to use for specific purposes. This
data flow consists not just of major events such as birth, death, mar-
riage, and property transfers. Transactions using checks or credit cards,
subscriptions to magazines and newspapers, telephone calls (the num-
ber dialed and the length of the call), mail-order purchases—all are
recorded electronically, along with educational records, tax and employ-
ment records, medical history, criminal record, credit reports, and so on.
Much of this data has always been available, on paper in filing cabinets
and storage boxes. But once it has been entered into a computer, it
becomes almost instantaneously accessible. Furthermore, the speed and
power of the computer makes it possible to gather and correlate large
amounts of data from many sources. And once data about an individ-
ual has been collected, it can be bought and sold, usually without the
permission or knowledge of that person.

Although a number of laws have been passed dealing with privacy
issues and computer databases [Rosenberg, p. 203-209], questions about
who should have access to the data and what it can legitimately be used
for are far from being settled. In a few cases, such as the databases
used to generate credit reports, people have the legal right to know what
data about them is contained in a database and to demand correction
of erroneous data. The privacy of some records is protected by law,
but there is a tension between the individual’s right to privacy and the
public’s right to know. For example, court proceedings are a matter of
public record, but they can and have been used by employers to deny jobs
to workers who have filed a worker’s compensation claim against another
employer and by doctors to deny treatment to patients who have in the
past sued a doctor for malpractice [Rosenberg, p. 213].

Even more troubling, though, are potential abuses of government
power that are made possible by the government’s ability to gather huge
amounts of data about people and their activities. The question here is
whether information technology, which has the potential to be a democ-
ratizing and empowering force, will be used instead as an instrument of
social control and oppression.

5.3.4. Electronic Mirror. One other aspect of the impact of
computer technology deserves to be mentioned. Computers are a new
sort of thing in the world. They behave differently from other artifacts
(which for the most part do not have any “behavior” at all). We can
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ask what impact this new type of machine has on people’s views of
themselves, of their human nature, and of their place in the order of
things.

In her book, The Second Self: Computers and the Human Spirit,
Sherry Turkle reports on her sociological studies of several components of
the computer culture: children encountering computer toys, adolescents
learning about computer programming in school, hackers who “love the
machine for itself,” personal computer users, and artificial intelligence
researchers. She found a wide range of responses of people to computers
and a wide variety of styles of using them (and she urges a “healthy
skepticism toward any who propose simple scenarios about the impact
of computers on society”).

Turkle found that for many people the computer is an object that lies
uncomfortably on the boundary—between living and nonliving, between
psychological and mechanical, between mind and non-mind. It is easy
to experience computers as responsive entities rather than as mechani-
cal devices. They can display what looks like rationality and purpose.
As objects on the boundary, computers raise questions. They invite a
consideration of what it means to be human or to be a machine. A user
who experiences a computer as a partner in a dialog and who sees it
performing what seem to be difficult intellectual tasks might be led to
ask, “If a machine can do so much, am I then (merely) a machine?” Or,
alternatively, “Is it possible for a machine to be human?”

Of course, I don’t plan to answer these questions, although we will
return to them again at the very end of the book, as part of a discussion
of artificial intelligence. I raise them now to point out how thoroughly
the computer has infiltrated our consciousness, our metaphors, and our
very self-conception.

Chapter Summary

This chapter has presented a kind of whirlwind tour of mechanical calcu-
lation, from its beginnings in the seventeenth century through the inven-
tion of the first computationally universal devices in the 1940s and on
to the development of today’s fast, powerful, and “user-friendly” desk-
top computers. These real computers are quite a bit different from the
small model computer designed in Chapter 3 and from the Turing ma-
chines from Chapter 4. But the differences are more quantitative than
qualitative. Ultimately, computation consists of a large number of very



170 Chapter 5. Real Computers

simple individual steps, and computing machines are built from a large
number of simple parts. This chapter makes clear the extreme degree of
complexity that can be achieved when such simple parts are assembled
into complex systems.

Today’s computers are von Neumann machines that store their pro-
grams as information in memory and do their calculations in a central
processing unit. But a complete computer system includes many other
types of devices. The interaction of the CPU with these devices and
with the user is controlled by the operating system, which includes de-
vice drivers that the CPU executes to communicate with and control the
other devices in the system. Communication among these devices often
takes place over a bus which allows for the exchange of data as well as
the transmission of control signals such as interrupts.

Mechanical calculating devices have brought the possibility of a fun-
damental transformation of society, perhaps as fundamental as the In-
dustrial Revolution. We are in the process of moving from an industrial
age into an information age. This transformation brings both oppor-
tunities and dangers, as we as a society decide whether to control the
technology or to be controlled by it—or let the decision be made for us
through inaction.

Questions

1. Isay that the ENIAC was not really a computationally universal
device because changing its program involved rewiring. Is this fair? Do
you think the ENTAC deserves to be considered a computationally uni-
versal computer? How is unplugging and plugging a few wires any differ-
ent from loading a new program into a computer’s memory, or changing
the deck of program cards in the Analytical Engine?

2. At one point in this chapter, I say that appliances like microwave
ovens might contain general-purpose microprocessors with special pur-
pose programs permanently burned into their memory. What does this
mean? Why is the program permanently stored in memory? Why would
anyone use a general purpose CPU for such a specific application, when
its program will never be changed?

3. A mouse is a device that can be used to “point” at things on a
display screen. As the user moves the mouse around on a desk, signals
are sent from the mouse to the computer that cause a cursor or pointer to
move on the screen. The mouse has one or more buttons that the user
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can press; these send other types of signals to the computer. Discuss
how a mouse might work. What happens when a signal is sent to the
computer? How does the cursor get moved? What happens to the part
of the displayed image that is beneath the cursor? The object of this
question is for you to figure out various ways a mouse might work, not
to find out how a real mouse works.

4. Suppose I have two identical computers sitting side by side, run-
ning two different operating systems (say, UNIX and DOS). I would like
to take a machine-language program from one of those machines and run
it on the other, but I find that it doesn’t work. Why not? If the CPUs
in the machines are identical, shouldn’t they be able to execute exactly
the same machine-language programs? Are there any machine-language
programs that would run on both machines?

5. In Mary Shelly’s novel, Frankenstein, Dr. Frankenstein creates
and gives life to a “monster.” He recoils in horror from his creation and
abandons it. In the end, of course, the monster has its revenge. It is
generally thought that Dr. Frankenstein paid for trying to take on God-
like powers by creating life. But perhaps his real crime lay in refusing
to take responsibility for his creation. Comment on this (in the context
of Section 5.3).

6. Make a list of all the computerized databases that might contain
information about you. Use a large sheet of paper.
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Chapter 6

Programming

THE NICE THING about computers is that they will do exactly what you
tell them to do. Unfortunately, they will do it exactly, so you need to
get your instructions exactly right.

Computers work by following programs which determine in excru-
ciating detail every little step that they take. The process of creating
those programs is called programmsing. For most people, programming
is an unnatural activity, in the literal sense that it is not something that
they do naturally. In some sense, programming is similar to giving an-
other person a set of instructions, or a recipe, for performing some task.
But when you give instructions to people, you rely on their intelligence
and their huge pool of background knowledge to fill in the details and to
work out any ambiguities. A computer has no intelligence or background
knowledge and absolutely no tolerance for ambiguity. To be correct, a
program must specify the exact procedure to be followed, in full detail,
taking all possible contingencies into account. And the programmer has
only a small number of resources to work with—some basic instructions
and a limited number of ways of combining them into more complex
structures.

Writing programs for something as literal-minded and as simple-
minded as a computer can be difficult and frustrating. But it can also
be rewarding and fun. Writing such programs is a skill that seems to
come more naturally to some people than to others, but it is a skill that
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can be learned by anyone. Not that everyone needs to learn program-
ming, any more than everyone needs to be an automobile mechanic—but
anyone who wants to claim a basic understanding of computers needs to
encounter at least the basics of how they can be made to carry out com-
plex tasks. Such an understanding can be gained without becoming an
expert programmer, and you should not expect to become an expert
programmer just by reading this book. However, what you do learn here
will, I hope, deepen your understanding and appreciation of computers.
Furthermore, the techniques and skills that are used in programming
have more widespread application to dealing with complex systems and
to problem solving in general, so learning about them is useful for their
own sake.

Curiously, the techniques and skills that the typical programmer uses
to write very short programs are quite different from those needed to de-
sign the massive, complex programs on which professional programmers
spend most of their time. Short programs can be composed more or less
on the fly, from a design that exists nowhere but in the individual pro-
grammer’s head. This seat-of-the-pants style of programming is called
hacking (one of several different meanings for this common term). Al-
though hacking can be both exciting and satisfying, it is not necessarily
the best way to write even short programs. Sooner or later—usually
sooner than they would like to admit—all programmers run up against
problems too complex to solve without a more organized approach. The
alternative to hacking is known as software engineering. Like all en-
gineering, software engineering deals in the systematic analysis of prob-
lems and in the careful design of correct solutions. You will find the
engineering theme of good design running throughout my discussion of
programming.

In this chapter and the next, I will discuss programming in my own
made-up high-level language, which I call xTurtle. The design of this
language puts it in the mainstream of programming languages, along
with such commonly used “real” languages as Pascal, C, and Ada. Pro-
grams written in these mainstream languages imitate machine-language
programs fairly closely, even though a single instruction in a high-level
language can correspond to many machine-language instructions. There
are other, very different types of programming languages, and I will dis-
cuss some of these in Chapter 8.

xTurtle includes a set of so-called turtle graphics routines. These
routines can be used for drawing pictures on the computer’s screen.
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Turtle graphics were introduced in the language Logo, developed by Sey-
mour Papert at MIT. Logo was designed to be used in teaching children
how to program. The original “turtle” was a small, motorized robot
on wheels that would move around on a large piece of paper under the
control of a Logo program. It carried a pen that traced out its path as
it moved. Turtle graphics routines represent commands that would be
appropriate for such a robot, such as telling it to move forward five units.
Of course, in xTurtle, these commands draw on the computer screen in-
stead of on a sheet of paper. Except for the basic graphics routines,
though, xTurtle and Logo are not closely related languages.

I have chosen to include turtle graphics in my language in order to
make the programs less abstract and easier to follow than programs that
simply move numbers around inside the computer’s memory. But keep
in mind that the pictures are not the main point. The main point is
the programming process: the analysis of a complex problem and the
construction of a set of instructions that the computer can follow to
solve that problem.

6.1. The Power of Names

In folk magic, names are believed to be a source of power. The name
is an essential part in magical incantations and spells, so that know-
ing a person’s true name can give you magical power over that person.
Whatever the validity of this idea in the realm of magic, names really
do play an important and powerful role in the “incantations and spells”
that control computers.

Understanding the way names are used in computer programs is the
essential first step in understanding how to program. Many different
types of things in programs are referred to by name. To program effec-
tively, you need to know the rules for assigning names to things and for
using those names.

Now, when you are trying to learn a language, there are two different
types of rule that you have to pay attention to: rules that tell you
what something looks like, and rules that tell you what it means. More
formally, the rules that specify appearance or structure are referred to as
the syntax of the language, while those that determine meaning make
up the semantics of the language. Every language, including English,
has a syntax and a semantics, but for programming languages the syntax
and semantics must be specified completely and unambiguously.
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It is easy enough to deal with the syntax of names in our programming
language, xTurtle, although even in this simple case a full specification
can become rather painful. A name in xTurtle is a sequence of char-
acters where each character is a letter, a digit (‘0’ through ‘9’), or an
underscore (‘_’); the first character must be a letter or an underscore;
the name can contain no more than thirty-one characters; upper- and
lowercase letters are considered to be the same, so that Quack, quack,
and qUaCK are just different ways of writing the same name; a few
words (which I won’t bother to list) are reserved for special purposes in
the language and so cannot be used as names.

Now, this sort of detail certainly alienates many people, and with
some justice. Do you really need to remember all this? Well, yes and
no. For the most part, in fact, you can get by with a general feel for
what names are like. If I told you that names are things like Rate, Num,
z1, 2, and length_of_side, you would already know enough about names
to follow all the examples in this book and to use names correctly in
programs of your own. In fact, because of your intelligence and huge pool
of background knowledge, you would understand all sorts of things that
are not at all apparent from reading the complete formal description. You
would know that names are more or less like English words, except that
underscores can be used to write multiword names such as length_of _side,
while digits are clearly meant to be used in similar names for related
things, such as 7 and z2. And I think you would be pretty sure that
_3xW1_7 is not really meant to be used as a name, even though it is
perfectly legal according to the rules. However, computers deal only in
formal rules, and sometimes it is necessary to be familiar with exactly
what those rules say. This is especially true when you are trying to figure
out what is wrong with a program that contains a violation of the rules.
The point is to avoid being scared off by the details. Concentrate on the
examples, but remember that the details are there to look up if you need
them.

When we turn from syntax of names to their semantics, we find that
there is even more to understand. But here again, the basic idea is
straightforward. A name refers to something. The meaning of a name
is the thing it refers to. In xTurtle, there are really only three things
that a name can refer to: a chunk of program code, an item of data, or
a location in memory.

Names that refer to chunks of program code are called subroutines.
We already encountered the basic idea of subroutines in Chapter 1: The
instructions necessary to perform a certain task are chunked together
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into a unit that can then be used as a black box whenever that task
needs to be performed. With subroutines, the analogy to a magic spell
is not so farfetched. The name of a subroutine is a single word which
can have a complex and far-reaching effect.

A name which refers to a location in memory—or to the data stored
at that location—is called a wariable. (This is a poor choice of terms,
since it suggests a mathematical analogy which is not really correct and
not very helpful, but unfortunately the term is too traditional to be
avoided.) In general, the same variable name can be used with either
meaning, depending on the context in which it is used. This duality
of meaning can be a source of much confusion to novice programmers,
but usually only because the distinction is not pointed out to them or
because they do not pay attention to it.

6.1.1. Built-in Subroutines.  Our goal is to understand how
complex programs can be constructed. The idea, of course, is that cer-
tain basic operations are available, along with methods for combining
operations into more complex structures. The most basic operations are
simple things like moving data from one place to another or performing
simple arithmetic calculations. In xTurtle, as in most programming lan-
guages, the combination methods are loops, decisions, and subroutines.
Loops and decisions will be covered in the next section; the methods for
writing new subroutines are deferred until the next chapter.

It’s a long way from data-shuffling and simple arithmetic to a com-
plete, working program. Every high-level programming language pro-
vides some large, prefabricated pieces to help simplify the work. These
pieces are the built-in subroutines of the language. A built-in sub-
routine is a true black box. The programmer who uses one knows what
task it is supposed to perform but might well have no idea how it accom-
plishes that task. Every language includes some built-in subroutines for
performing input and output. As we saw in the previous chapter, I/0
operations involve complex coordination between the CPU and hardware
I/0 devices. All this complexity can be hidden inside subroutines, leav-
ing the programmer free to imagine that input and output are simple,
basic operations.

The built-in subroutines in xTurtle include the turtle graphics rou-
tines for drawing on the computer screen. These routines control a sim-
ulated “turtle” that moves around on the screen. The direction in which
this turtle is facing is called its heading. Its position is given by two num-
bers, an x-coordinate for the horizontal position and a y-coordinate for
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Figure 6.1. In the examples in this text, the turtle moves around in

a 20-by-20 square, in which its horizontal position is given by a num-
ber between —10 and 10, and similarly for its vertical position. Grid
lines are shown here for reference, but are not part of the picture that
would be seen on the screen. The turtle always starts in the center of
the square at the position (0,0), facing toward the right. Shown here

1s the path it would draw as it follows the sequence of commands: for-
ward(4) turn(45) forward(4) turn(185) forward(10). The turtle itself is
shown as a small triangle at the position and heading it would have at
the end of this sequence of commands.

the vertical. (See Figure 6.1.) The two most basic routines are forward,
which causes the turtle to move, and turn, which causes it to change its
heading. The imaginary turtle carries an imaginary pen which it can
use to sketch its path on the screen as it moves. This pen can be either
up or down; it only draws when it is down. Two routines, PenUp and
PenDown, cause the turtle to raise and lower its pen; these routines are
used to control whether or not the turtle draws as it moves.

An instruction in a program that tells the computer to execute a
subroutine is called a subroutine call statement, and using such an
instruction is known as “calling” the subroutine. A subroutine call state-
ment for the routine PenUp, for example, consists simply of the name of
the subroutine.

For the subroutines forward or turn, a call statement must include
some extra information besides the name of the routine. An instruction
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to move forward must include the distance to move; an instruction to
turn must specify how many degrees to turn. This extra information is
listed in parentheses after the name of the subroutine. For example, the
command

forward(5)

will cause the turtle to move five units forward in whatever direction it
is currently facing, and

turn(90)

will cause the turtle to make a 90-degree left turn. (Angles are measured
in degrees, with positive numbers specifying a counterclockwise rotation
while negative numbers specify a clockwise rotation.)

The “5” and the “90” are called parameters.! Recall that a sub-
routine works like a black box. A parameter is like a “slot” in that box
through which information is passed into or, as we see later, out of the
box. It is possible for a subroutine to have zero, one, two, or more param-
eters. PenUp and PenDown are simple commands with no parameters.
The command moveTo, which tells the turtle to move to a point with
specified coordinates, has two parameters. For example, moveTo(3,—7)
causes the turtle to move to the point with horizontal coordinate 3 and
vertical coordinate —7. Notice that when there is more than one param-
eter, the parameters are listed in parentheses and separated by commas.

At this point, we alr