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Preface

This book looks at computers, the most complex machines ever created,
and at the even more complex programs that those machines execute.
In a sense, though, it is complexity itself, rather than the machines and
programs, that is the book’s real subject. The methods for creating
and understanding such complexity are at the core of the field known as
computer science, and are the major lesson you will take away from
what you read here.

As an introduction to computer science, The Most Complex Machine
is a bit unusual in that it does not follow either of the two most common
patterns for such an introduction. It is not designed to teach you to
program, nor does it seek to make you an expert computer user. Instead,
it attempts to introduce you to the fundamental ideas and principles on
which the field is built. It was written to be used in a survey course
directed mainly to students not currently majoring in computer science.
It provides an overview of the field that is appropriate for such students
whether or not they continue their study of computer science.

This book might also be used as a supplement in a first course in
programming, to broaden student’s exposure to the ideas of computer
science. It might even make a good required introduction to the major,
particularly for students with little previous experience with computer
science. Finally, it should also be useful to the individual reader who
wants to understand something of what really goes on inside a computer.

There are very few prerequisites for reading The Most Complex Ma-
chine. I do assume that you have some familiarity with computers, and
it would certainly be useful for you to have had some experience using
a computer. But all you really need to know is that a computer is a
machine that can run programs. A program is a set of instructions for
a computer to execute; you can make a computer do a wide variety of
different things by giving it different programs. Even if you are fuzzy on
these basic ideas, they should become more clear to you as you read.

v



vi Preface

Some of the discussion in the book is mathematical; some of it is
rather technical. But I try to cover everything at a level that can be
followed with very little previous mathematical or technical experience—
at least if you are willing to do some careful reading and thinking.

The first chapter, titled “What Computers Do,” is really an introduc-
tion to the subject of complexity. This chapter is fundamental, in that
it introduces many of the ideas that are covered more fully in the rest of
the book. So, while you don’t need to understand in detail everything
in this chapter the first time through, you should pay close attention to
the main ideas.

The next two chapters explain how computers can be built, step-by-
step, out of very simple components. By the end of Chapter 3, you will
understand how a physical object can be built to execute an arbitrarily
complex set of program instructions. This is the most technical part
of the book. If you decide to skip over it, you will not be at a great
disadvantage for the rest of the text. However, you will miss some really
neat ideas, and I encourage you to browse through at least Section 2.1
and the beginnings of Sections 3.1 and 3.3 at least. And of course, you
can read the chapter summaries.

Chapter 4, on “Theoretical Computers,” shows that all computers,
from the simple model computer constructed in Chapter 3 to the most
advanced supercomputer, are really equally powerful except for their
speed and the amount of memory they have. Furthermore, they are all
subject to certain surprising limitations on the problems they can solve.
The idea of “computational universality,” covered in Section 4.1, is quite
important; the rest of the chapter is interesting but not vital to later
chapters.

The next chapter turns for the first time to real computers. It surveys
their history, examines their social impact, and discusses how practical
machines differ from the simplified model computers considered in the
previous chapters.

Chapters 6, 7, and 8 cover computer programming. Chapter 6 intro-
duces the basic concepts, such as variables, loops, and decisions. Chap-
ter 7 concentrates on methods for writing very large or complex pro-
grams. And Chapter 8 finishes by looking at some of the many different
languages available for writing programs.

The last chapters of the book, Chapters 9 through 12, deal with
applications of computing. After a general survey of applications in
Chapter 9, the next three chapters cover three of the most important
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and exciting areas of computer science: computer graphics, parallel and
distributed processing, and artificial intelligence. These four chapters
can be read in any order.

∗ ∗ ∗
The book is supplemented with a set of computer programs and with

lab worksheets based on those programs. The programs are currently
available only for Macintosh computers, but I am working to make them
available to run under Windows as well. The programs are closely tied
to the ideas covered in the text. They are not essential to understanding
the material in the book, but the hands-on experience they give could
certainly help to make some of the ideas presented here more accessible.
(They are also, as far as I can judge them myself, rather fun.) The
programs include:

• xLogicCircuits, which lets you build and run simulated circuits made
from AND, OR, and NOT gates, like those discussed in Chapter 2;

• xComputer, which implements the model computer, xComputer,
constructed in Chapter 3;

• xTuringMachine, in which you can enter rule tables for Turing Ma-
chines, as discussed in Chapter 4, and watch them as they move along
their tapes and perform the computations you have programmed;

• xTurtle, a programming environment for the programming language
xTurtle, which is discussed in Chapters 6, 7, and 10;

• xSortLab, a program for experimenting with the sorting algorithms
mentioned in Chapter 9; and

• xModels2D and xModels3D, programs for simple geometric mod-
eling and animation, based on the material on computer graphics in
Chapter 11.

The programs and the lab worksheets are available free on the Inter-
net for personal, private use, and they can be freely used in courses that
have adopted The Most Complex Machine as a textbook. I stipulate
that they cannot be used in other courses. You should be able to find
the programs in standard Macintosh FTP sites and bulletin boards. If
you have access to the World Wide Web, you can get more information
at the URL:

http://math.hws.edu/TMCM.html

My electronic mail address is eck@hws.edu. I can also be reached by
regular mail at the address: David Eck, Department of Mathematics
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and Computer Science, Hobart and William Smith Colleges, Geneva NY
14456. I encourage comments, questions, and general communication
(but do not guarantee a response to every message I receive).

∗ ∗ ∗
The chapters of the book are divided into numbered sections, which

are in turn divided into subsections. When I refer to “Subsection 3.2.4,”
I mean the fourth subsection of the second section in Chapter 3. If I refer
simply to “Section 2,” I mean the second section in the current chapter.
Figures are also numbered within chapters, so that “Figure 3.7” means
the seventh figure in Chapter 3.

There is an annotated bibliography at the end of the book. Bibli-
ographic references within the text are indicated by the author’s name
enclosed in brackets, with a page number if appropriate. For example,
[Eck, p. 42] would refer to page 42 of a book in the bibliography by
someone whose last name is Eck.

Each chapter ends with a set of questions. Almost all of the ques-
tions are meant to be thought-provoking and to require more than short,
straightforward answers. The questions are part of the book and are
meant to be read and pondered. My answers to most of the questions
can be found in the last section of the book. You should read these
answers—after thinking about the questions on your own—since they
often provide more perspective on the ideas covered in the chapter itself.

∗ ∗ ∗
I gratefully acknowledge the help and the encouragement of Kevin

Mitchell and Richard Palais, who read large parts of this book when
it was less readable than it is now and whose comments have certainly
made it a better book than it would have been otherwise. (And you
should obviously assume that any parts you don’t like are among the
parts they didn’t get to read in advance.) I would also like to thank
the copyeditor, Seth Maislin, and the people at A K Peters Ltd: Joni
McDonald, Alexandra Benis, and Klaus Peters.



Chapter 1

Introduction:
What Computers Do

WHAT COMPUTERS DO, of course, is compute. That is not the end of
the story, though. The real question is, how can computers do all the
remarkable things that they do, just by computing?

The essence of computing is the mechanical manipulation of
symbols. When people compute, in the ordinary sense, the symbols
are numbers, which are mechanically manipulated according to the rules
of arithmetic. For example, a person who memorizes a fairly small set of
rules and applies them correctly can multiply numbers of any size. The
rules include basic facts about the sum and product of any two digits,
along with a procedure that determines the steps to be carried out in
doing the multiplication: “Write down the numbers, one beneath the
other, with the rightmost digits lined up, and draw a line beneath them.
Multiply the top number by the rightmost digit of the bottom number,
writing the result under the line. . . .”

This example reveals several important aspects of computation. First
of all, it is very boring. There are rules to be followed. They tell you
exactly what to do. No creativity. No fun. One small mistake and the
answer will be wrong. (This is what we mean when we say that compu-
tation is mechanical.) It is no surprise that people find it so difficult to
get through a large multiplication problem without error. Computers,

1



2 Chapter 1. Introduction: What Computers Do

on the other hand, have no such difficulty. They follow the rules without
error and without complaint.

Second, computation is, in itself, meaningless. This is hard for people
to understand, because people generally compute for a reason. A person
who multiplies 16 by 127 is likely to be doing it to find out how much 16
light bulbs cost at $1.27 each or how many calories are in 127 potato chips
if each one contains 16. But doing the multiplication involves following
the rules, putting aside all thought of calories or light bulbs. It may
be that the number “127” being multiplied represents 127 potato chips,
but those chips are external and irrelevant to the computation. This is
what we mean when we say that a computation manipulates symbols. A
symbol is something that, while meaningless in itself, can stand in for
some sort of external meaning. It is the nature of computation, however,
that any external meaning is irrelevant to the computation. Again, this
tends to make computation difficult for people, who deal naturally with
meaning and find it hard to ignore it.

It is important to understand one other aspect of computation from
the start. Although the term commonly refers to the arithmetical ma-
nipulation of numbers, it can refer to the manipulation of any sort of
symbols according to definite, mechanical rules. For example, the editor
who counts the number of words in a book, or who checks each word to
see whether it can be found in an official dictionary, is computing in this
sense. The symbols being manipulated in this case are words, and the
editor’s activities are examples of the type of “word processing” that can
be done more easily and more accurately by a computer, since counting
words or looking them up in a dictionary can be done by applying simple
rules that require no understanding of the words’ meanings.

All this is just the beginning of an explanation of what computation
is, but it is enough to introduce the questions which will occupy us for
the remainder of this book: How can a machine be built that can carry
out complex computations? How can those computations accomplish
things that seem to be much more than the mechanical manipulation of
symbols? And what are the limits to what can be accomplished, just by
computing?

1.1. Bits, Bytes, etc.

We can start with the question of what sort of symbols it is that comput-
ers manipulate. When people do arithmetic, the basic symbols are the
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digits 0 through 9. It is important to realize that the particular symbols
used are arbitrary. It makes no difference, for example, if the symbol 2
is replaced by %, as long as the rules are also changed in an appropriate
way (“6 times % is 1%”), and as long as you remember what % stands
for when it comes time to interpret an answer (“%03% is an awful lot of
calories!”).

For a computer, the basic symbols are the two digits 0 and 1. Since
there are just two of them, zero and one in this context are called binary
digits, which is almost always abbreviated to bits. Again, it makes no
difference if we use different symbols. We might, for example, decide
to represent the two possible bits as % and #, or by 7 and 3 for that
matter. Since there are two binary digits, they tend to be represented
as things that naturally come in pairs, such as true/false, on/off, and
black/white. We will use whatever representation seems most natural in
context.

Now, two symbols don’t seem to give us a lot to work with. For
that matter, the ten symbols of ordinary arithmetic might seem a bit
inadequate to cover the infinite range of numbers that can be represented.
You know how this dilemma is resolved: Any number of digits chosen
from 0 through 9 can be strung together to give a compound symbol,
such as 2032. By stringing together basic symbols, we can represent any
number whatsoever. The same principle works when there are only two
basic symbols. When we have more than two things to represent, we
can turn to strings of bits, such as 10011, to provide us with as many
different (compound) symbols as we need. If we are careful, we can
represent anything that a computer might have to deal with.

1.1.1. Binary Numbers. Among the most important things com-
puters deal with are numbers. As our first exercise in combining bits,
we can construct representations for the most basic type of numbers,
the counting numbers, or nonnegative integers. Using the digits zero
through nine, we write these numbers as

0, 1, 2, . . . , 9, 10, 11, 12, . . . , 99, 100, . . . .

This way of writing numbers is called the base ten or decimal repre-
sentation, since ten digits are used and since the number ten plays such
an important role. It is useful to visualize counting in the base ten by
thinking of the way a car’s odometer keeps track of the number of miles
traveled. In a brand new car, the odometer reads all zeros: 000000. Ev-
ery time the car travels one mile, the rightmost digit increases by one,
from 000000 to 000001, up to 000009. At this point you run out of digits;



4 Chapter 1. Introduction: What Computers Do

the rightmost digit goes back to zero and the digit next to it increases
by one. This takes you up to 000099. At that point, you’ve run out of
digits in both the first and second places, so the zero in the third place
changes to one, giving 000100. (Ordinarily, of course, we don’t write the
zeros on the left—for one thing, there would be the problem of just how
many of them we should write!)

When we use just the two binary digits, 0 and 1, we are working in
the base two or binary system. To avoid confusion, I will subscript any
binary number with a 2, so you can tell the difference between 101102
(base two) and 10110 (base ten). To count in binary, you just need to
imagine an odometer with only zeros and ones: start with 02, then 12—
oops, ran out of digits, so the last digit becomes 0 and the next digit
rolls over—102, 112—ran out of numbers in both places this time—1002,
1012, 1102, 1112, 10002, 10012, . . . . We obtain a translation between
binary and decimal simply by matching up the numbers in each system
as we count:

0 1 2 3 4 5 6 7 8 9 10 11
02 12 102 112 1002 1012 1102 1112 10002 10012 10102 10112

This is not a very satisfactory way to find a translation for, say, the
binary number 10011101012. However, a little analysis provides a more
satisfactory mechanism. I will work through the details of this analysis
not because the details are important, but because it shows how a simple
idea can be developed into a more complicated, but more efficient, com-
putational procedure. If you are not interested in this, you can safely
skip ahead to Subsection 1.1.2.

The first step in our analysis is to find out how many binary numbers
there are that are made up of k (or fewer) bits. For k = 1, there are only
two such one-bit numbers, 02 and 12. For k = 2, there are four two-bit
numbers: 002, 012, 102, and 112. (It will useful to write some extra zeros
on the left, so that each number in the list is a sequence of exactly k bits.
If you leave off the leading zeros, you have a list of numbers with “k bits
or fewer.”) Let’s consider the case k = 3 more carefully. A sequence
of three bits must begin with a 0 or with a 1, so we can divide such
sequences into two groups:

Starting with zero: 0002 0012 0102 0112
Starting with one: 1002 1012 1102 1112

You can get the numbers in the first group by taking the list of all two-
bit numbers (00, 01, 10, and 11) and tacking a zero onto the beginning
of each. If you tack on a one instead, you get the second group.
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Now, there are two groups of numbers here. Each group contains
just as many members as there are two-bit numbers. This is just a way
of saying that there are exactly two times as many three-bit numbers as
there are two-bit numbers. By the same argument, there are exactly
sixteen four-bit numbers—just twice as many as the number of three-
bit numbers. We can list the four-bit numbers in two groups of eight
numbers each as

00002 00012 00102 00112 01002 01012 01102 01112
10002 10012 10102 10112 11002 11012 11102 11112

This argument works for any number of digits. For any number k, there
are twice as many (k + 1)-bit binary numbers as there are k-bit binary
numbers. There are 2 one-bit numbers, 2× 2 two-bit numbers, 2× 2× 2
three-bit numbers, and so on. In general there are 2k k-bit numbers,
where 2k is the kth power of 2, that is, 2 × 2 × · · · × 2, with k factors
of 2.

Now, let’s return to the problem of trying to convert a binary number
to the base ten. First, note that the binary number consisting of a one
followed by k zeros represents the number 2k. You can see this by noting
that, for example, in order to count up to 1002 you have to count past
the four two-bit numbers, so that 1002 corresponds to 4—that is, to 22.
(It corresponds to 4, rather than 5, because you start counting with zero;
the first four numbers are 0, 1, 2, 3.) Similarly, to get up to 100002, you
have to count past the 24 four-bit numbers, so 100002 corresponds to 24,
or 16. (Note that the rule works even for k = 0 or k = 1, using the facts
that 21 = 2 and 20 = 1.)

The more complicated number 101102 corresponds to 24 + 22 + 21.
This can be justified directly by considering how you count up to 101102.
You must count past 24 numbers to get to 100002, then past another 22

to get to 101002 and finally past 21 more to get to 101102. Alternatively,
you could anticipate the meaning of addition for binary numbers and
write

101102 = 100002 + 1002 + 102 = 24 + 22 + 21 = 16 + 4 + 2 = 22.

The general rule for converting a binary number to the base ten is to
add up the powers of two corresponding to each 1 in the binary number.
To find the appropriate power, simply count bits from the right, starting
from 0 for the rightmost bit. As a final example, we can compute

10011101012 = 29 + 26 + 25 + 24 + 22 + 20

= 512 + 64 + 32 + 16 + 4 + 1
= 629.
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Binary Number Power of 2 Decimal Number

12 20 1

102 21 2

1002 22 4

10002 23 8

100002 24 16

1000002 25 32

10000002 26 64

100000002 27 128

1000000002 28 256

10000000002 29 512

100000000002 210 1024

100000000000000002 216 65,536

10000000000000000000000002 224 16,777,216

1000000000000000000000000000000002 232 4,294,967,296

Figure 1.1. Some powers of two and their representations as binary
and as decimal numbers. Adding a zero onto the end of a base-two
number multiplies that number by 2, just as adding a zero to the end
of a base 10 number multiplies it by 10.

After all that, you might be wondering why computers use binary
numbers instead of just sticking to the more familiar decimal numbers.
In fact, it’s sort of an accident. Early mechanical calculating devices
generally represented numbers with wheels or gears that could be in one
of ten positions, one for each decimal digit. Such calculators worked
directly in the base ten. Modern computers are made out of electronic
components—for very good reasons involving speed and reliability. The
most natural “positions” for a wire in a circuit are on and off, which
correspond in a natural way to the two binary digits. Although it might
be possible to represent ten digits by using ten different voltage levels
in a wire, such a scheme would have two disadvantages: The inevitable
inaccuracy in measuring a voltage would lead to a much higher proba-
bility of error than occurs when only the difference between on and off

must be detected. And the complex circuits necessary to work with such
a representation would be very difficult to design and build.

1.1.2. Text. If you are like most people, there is something that
might be bothering you at this point. You might reasonably point out
that you have been working quite happily with computers for years—
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typing papers, drawing pictures, or whatever—without ever having heard
or thought of binary numbers. Although bits and binary numbers are
an essential aspect of the internal workings of computers, it’s true that a
person who simply wants to use a computer can do so without knowing
anything about them. Nevertheless, as you sit there typing on your
computer, everything that the computer does is in fact accomplished by
manipulating bits. We need to understand how so much can be done
with just the two values zero and one.

Let’s start with the simple question of how a computer can represent
the characters you type as binary numbers. The answer is also sim-
ple: Each possible character is assigned a unique binary code number.
Most computers use a code called ASCII (American Standard Code for
Information Interchange). In this code, each character is represented by
an eight-bit binary number. For example, the lowercase letter ‘a’ corre-
sponds to 011000012, while the comma ‘,’ is represented by 001011002.
As we saw above, there are 28, or 256, different strings of eight bits, so
the ASCII code allows for 256 different characters. Only the first 128
of these are assigned standard meanings; on a particular computer, the
extra code numbers are either not used or are used for special charac-
ters such as the accented e, ‘é’. Of the 128 standard codes, not all of
them stand for characters that might appear on your computer screen.
Some are used for so-called “nonprintable” or “control” characters, such
as a tab or carriage return (which have codes 000010012 and 000011012,
respectively).

An eight-bit binary number is also called a byte, so that it takes ex-
actly one byte to specify one character in ASCII. Data is often measured
in bytes rather than bits. For example, a document stored on the com-
puter might contain 10,000 bytes. That is another way of saying that it
contains 10,000 characters, or 80,000 bits.

Now, any ASCII code number could just as easily be written as a
decimal number somewhere in the range from 0 to 255. In base ten, the
codes for ‘a’, comma, and tab are 97, 44, and 9, respectively. In some
sense, though, the binary numbers are closer to reality. When you press
the letter ‘a’ on your keyboard, the eight bits 0, 0, 1, 0, 1, 1, 0, 0 are
transmitted to the computer. If the computer is storing the letter ‘a’,
then somewhere inside it that sequence of bits is stored in some way. As
a user of the computer, you don’t have to be aware of any of this—as far
as you are concerned, the computer simply understands the letter you
type. However, its “understanding” is all based on pushing bits around,
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and the people who design computers (or who try to understand them)
must sometimes deal with things on that level.

The particular code number used for each letter is arbitrary; the
code is a symbol for the character, whose meaning is established only by
convention. As long as everyone knows what convention is being used,
no problems arise. In fact, some computers use codes other than ASCII
internally, but ASCII is currently used for most communication between
computers.1

Once individual characters are coded as binary numbers, the step
up to representations for words, sentences, or longer pieces of text is
easy. To represent a word such as ‘cat’, just string together the codes
for the individual letters ‘c’, ‘a’, and ‘t’. Using the ASCII codes for
the individual letters, this would give 0100001101100001011101002. An
entire document in a word processor could be represented simply as a
(very long) string of bits. Special features, such as the beginning of a
new paragraph, might be indicated by inserting ASCII codes for non-
printing characters. Admittedly, this is not the only, or even the best,
way to encode a large document. In fact, each word-processing program
tends to use its own encoding. Once again, the person using the program
doesn’t need to know what that encoding is.

1.1.3. Everything Else. Counting numbers, characters, and text
represent only a few of the types of data that computers must deal with.
A partial list of other data types would include negative integers, decimal
numbers, fractions, dates and times, sounds, pictures, animated images,
chess boards, airline flight schedules, computer programs, and textbooks
about computers. No matter what type of data is being considered, it
must be represented in the computer as a pattern of bits.

For example, when I look at the letter ‘t’ displayed on my computer’s
screen, what I actually see is a picture of a ‘t’. If I look closely, I can see

1 This might change. A new standard code called Unicode has been proposed
(and has been adopted for the new Microsoft operating system Windows NT).
Unicode uses a sixteen-bit code number for each character. Thus, Unicode takes
up twice as much space as ASCII, but it provides for 216, or 65,536, different
characters. It includes standard code numbers for all the characters available in
ASCII as well as the Arabic, Hebrew, and Cyrillic alphabets, complete sets of
Japanese, Korean, and Chinese characters, and many mathematical and other
special symbols, with room for much more [Custer, p. 42–44]. (As an exercise in
developing your “number sense,” you might consider how merely doubling the
size of the representation gives such a huge increase in the number of different
things that can be represented.)
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that that picture is just a grid of black and white dots. In fact, the entire
screen is simply a grid of dots, each of which can be either off (black)
or on (white). The individual dots are called pixels, short for “picture
elements.” The computer controls what is displayed on the screen by
turning each individual pixel on or off.2

This off/on distinction should remind you of the 0/1 of binary num-
bers, and in fact, the state of each pixel on the screen can be represented
by a single bit. From there, representing the entire screen is easy—it can
be represented by a string of bits, with one bit for each pixel. On my
Macintosh SE/30, with its 512 by 342 grid of pixels, that’s a 175,104-bit
number! The number that represents the current image displayed on
the screen is actually stored somewhere inside the computer, in what we
might call video memory. When the computer needs to change the
image displayed on the screen, it modifies the number in video memory
in the appropriate way. (The changes made to this memory are auto-
matically reflected on the screen; we won’t worry for now about how this
happens.)

For example, to display a ‘t’ on the screen, the bits representing a
picture of a ‘t’ are copied to the appropriate place in video memory,
depending on where on the screen the ‘t’ is to be displayed. Figure 1.2
shows how ‘t’ might be represented as a grid of pixels, and how that grid
is in turn equivalent to a binary number.

Any image that consists of just two colors (black and white) can be
represented in the same way. Of course, the amount of detail that can
be shown is limited by the size of a pixel. On a typical computer screen,
individual pixels are clearly visible. But if small enough pixels are used,
the result appears to the eye as a continuous image. The process of
representing an image as a string of binary digits is called digitizing
the image. Color pictures and pictures consisting of shades of gray can
also be digitized. Each shade to be used in the image is assigned a
binary code number, so that the color of each pixel can be indicated by
specifying one of the possible codes. The full image is then represented
by stringing together all the codes for the pixels.

2 Most computers now have color screens. Instead of being restricted to off
or on, each pixel can be set to one of some specified number of colors. On one
common type of system, each pixel can be one of 256 different colors. Since 256
is 28, the color of each pixel can be represented by an 8-bit binary number; we
say that such a color image requires one byte per pixel. Systems that use 24,
216, or 224 different colors are also common. Can you guess why the number of
colors is generally a power of two?
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0 1 0 0 0
1 1 1 1 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 0 0

01000111100100001000010000100100110000002

Figure 1.2. A picture of the letter ‘t’, represented as a grid of (big)
pixels, as the corresponding grid of bits, and as a binary number. The
40-bit number is obtained by stringing together the rows in the grid of
bits.

You should now see how representations can be built for just about
any data using only binary numbers. For data whose possible values are
not already numbers, there are really only three basic methods that are
needed: combination, enumeration, and digitization.

To represent something that breaks down naturally into a finite num-
ber of pieces, find a representation for each of the pieces and combine
them to represent the whole. This is how we dealt with words—by
stringing together codes for each individual character in the word. And
to represent a date, we can combine separate codes for the month, the
day, and the year.

When you encounter a type of data whose possible values can be
listed, you can simply enumerate those values and assign each a code
number. The ASCII code is just such an enumeration of characters.
Similarly, we often represent the months of the year by the numbers 1
through 12. On a somewhat more abstract level, suppose you want to
represent the contents of a square on a checkerboard. There are five pos-
sible values, which can be enumerated as: empty, red piece, black piece,
red king, and black king. One possible binary representation is obtained
by encoding “empty” as 02, “red piece” as 12, and so forth. (Then, of
course, given that a checkerboard consists of 64 squares, you can repre-
sent a complete board position by combining the 64 code numbers that
represent the contents of the individual squares.)

The third method of representation, digitization, is used when there
is an unreasonably large, or even infinite, number of possibilities to be
dealt with. A perfect representation of a picture would specify the color
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of each of its infinitely many mathematical points; as we have seen,
though, specifying the color of points in a finite grid gives an adequate
approximation. Note that this can be seen as an approximate application
of the first representation method, combination, to the case where the
data has an infinite number of parts. If the data has an infinite number
of possible values, then an approximate version of enumeration can be
used. This is what we do when we encode only a selected finite number
of colors out of the theoretically infinite range. Thus, a digitized color
image involves both types of approximation.

As a final example, consider digital sound recording, which is used to
produce the disks used in compact disk players. A sound can be specified
by giving its intensity, or amplitude, at each instant of time. Digitizing
the sound involves two approximations: The intensity is recorded at only
a finite sample of points in time, and the recorded intensity is limited to
only a finite number of possible values. For a compact disk the intensity
is sampled 44,000 times per second, and each intensity measurement
is encoded as a 16-bit binary number (so a full hour of music on such
a disk requires about two-and-a-half billion bits). The fact that the
recorded sound is only an approximation has little practical effect. Any
recording method will introduce some error, and the errors introduced
by digitization are very small and (according to most people) inaudible.

1.1.4. Structured Complexity. We have now seen how all the
data to be used by a computer can be represented as a collection of bits,
which can then be directly manipulated by the computer. However, we
have been sweeping under the rug the issue of how that collection of bits
is organized.

Suppose I were to point to some particular sequence of bits inside
a computer and ask what it represents. Without further information,
the answer could be almost anything—the current date, the color of
some particular pixel on the screen, the board position in a game of
computer chess, Joe DiMaggio’s batting average in 1939. . . . What it
actually means is determined not just by the sequence of bits but also
by the physical structure of the computer itself, by the overall structure
of the data encoded in the computer, by the program that is running,
and by the intentions of the person using the computer. All these things,
except perhaps the intentions of the user, are subjects of study in com-
puter science. At this point, you might be thinking that it is hopeless
to try to understand such complexity, but in fact, our discussion of data
representation holds some clues to how such understanding is possible.
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The key is that the data in a computer is not really just a massive
jumble of bits. Instead, the data is carefully organized into complex
structures. The structure is a natural result of the way that complex
representations are made by combining simpler representations.

Consider the problem of representing an airline’s flight schedule. Such
a schedule could be simply a list of data for individual flights. The data
for each flight in turn has a certain structure, perhaps including the date
and time of the flight, the names of the cities where the flight originates
and terminates, and the flight number. The name of each city is in turn
a string of characters, which can be represented in ASCII code. The date
consists of a month, a day and a year, and so forth. Furthermore, the
flight schedule will itself be only part of an airline’s database, which will
have its own complex structure. The meaning of any particular part of
this structure depends on its role in larger components of the data. Thus,
a particular group of bits would represent the year 1993 because it is a
certain part of the representation of a date; that date would represent
the departure date for a particular airline flight because it happens to
be stored in the proper corner of the data for that flight; the flight data
can be recognized as such because it occupies a particular place in the
list of data for all flights.

In practice, complex data can be managed because it can be viewed
as being made up of simpler “chunks,” which are combined together in
some reasonably straightforward way to give the whole. Of course, each
chunk might be made up of even simpler pieces. Eventually, though, the
process bottoms out in simple data, such as single characters or numbers,
that can be represented directly. Although the overall structure is very
complex, it is comprehensible because the chunking that occurs on each
level is manageable.

The theme of levels of structured complexity is one that will come up
over and over again in this text (starting with the next section). Indeed,
it is in some ways the central theme of computer science.

1.2. Transistors, Gates, etc.

What makes a computer such a remarkable machine is its versatility. A
single computer can perform any number of different tasks. From another
point of view, though, a computer does only one thing: It executes
programs. A program is nothing but a list of instructions for performing
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Data to memory

Data from memory

Address for

reading/writing

data

1011100001

Program

counter:

CPU

Memory
(Location 0)

(Location 1)

(Location 2)

(Location 3)

(Location 10)

00101110
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10111111
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00000111

10100110
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Figure 1.3. A crude illustration of a computer, showing two of its ma-
jor components: the memory and the central processing unit. Mem-
ory holds data and programs in a sequence of numbered locations. The
CPU reads and executes the programs stored in memory. Three connec-
tions exist for communication between the CPU and the memory. The
first two carry data and program instructions back and forth. The third
is used by the CPU to specify which location in the memory it wants to
access. A much fuller depiction of a computer is given in Chapter 3.

a particular task. To get a computer to perform a new task, you just
have to give it a new program to execute.

A computer is built to execute programs. From the moment it is
turned on, it mindlessly follows instruction after instruction, and it does
so because that’s the way it is physically put together. In order to
understand what is meant by this, you need to have some idea of the
main parts of a computer and how they operate. For now, it is enough to
know about the computer’s memory and its central processing unit
(CPU).

The memory holds a large collection of bits, representing both the
data and the programs currently available to the computer, encoded as
patterns of bits. Memory is organized as a sequence of locations, with
each location holding some fixed number of bits. (On most computers,
each location holds eight bits, so that the memory can be considered to
be a long sequence of bytes.) Each location is identified by a number,
which must be specified whenever the contents of that location are to be
read or changed.
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The central processing unit is the active part of the computer; it ac-
tually executes a program stored in memory. The program, remember,
is simply a list of instructions stored in a sequence of memory loca-
tions. The CPU executes the program by repeating the same two-step
procedure over and over: It reads the next instruction from memory
and then executes the instruction. This process is called the fetch-
and-execute cycle. The CPU has a small internal memory called the
program counter in which it keeps track of which memory location
contains the next instruction to be executed. The program counter is
automatically updated as part of the fetch-and-execute cycle, so when-
ever it needs to fetch a new instruction, the CPU simply needs to read
the contents of the memory location indicated by the program counter.
(If you imagine yourself as the CPU following a list of instructions, the
program counter is like a finger that you run down the list to keep track
of your place. When you are ready for a new instruction, you just look
to where your finger is pointing; after reading that instruction, you move
your finger down to the next one on the list.)

Like anything else stored in memory, an instruction read into the
CPU is really just a binary number, that is, a pattern of zeros and
ones. The CPU doesn’t think about what the instruction means or
interpret it in any way—it is just constructed in such a way that it
will physically react to the pattern by performing the action which the
instruction represents. The patterns of zeros and ones understood by
the CPU are called the machine language of the computer. Each type
of computer has its own machine language, and any program for that
computer must ultimately be encoded into machine language before it
can be executed. Each machine language instruction is very simple and
accomplishes very little. The power of the computer comes from its
ability to execute millions of such instructions per second.

This short description is a start at understanding how a computer
works, but it is by no means obvious how a pile of electronic components
can be assembled into a device that will “execute instructions” when
it is turned on. It is not easy to design such a device, even when the
instructions to be executed are kept very simple. Fortunately, we have
already encountered a way of dealing with such complexity: Instead of
trying to understand everything at once, we try to see how it can be
built up, level by level, out of simpler chunks. We will begin on the very
lowest level.
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1.2.1. Switches. It is a nice visual image to imagine the processing
of data and programs inside a computer as a swirl of zeros and ones being
moved around in complex patterns. Of course, in reality the zeros and
ones are represented by the absence or presence of currents on wires.3

Moving the zeros and ones around really means switching the currents
on and off. This switching is the fundamental operation on which the
overall operation of the computer is based. In modern computers, the
switches are transistors.

You can think of a transistor as a box connected to three wires: one
for input, one for output, and one to control the switch. (What’s inside
the box is a subject for physics rather than computer science and need
not concern us here.) Each wire can be either on or off. The transistor
acts like a gate. When the control wire is off, the gate is open, and
whatever current is on the input wire will flow through to the output
wire; if the control wire is on, the gate is closed, and the output will
be off regardless of the state of the input. It is probably more useful
to think in terms of a flow of information rather than a flow of current.
The input wire carries information (a 0 or 1) into the transistor. If the
control wire is off, that information flows through to the output. If it
is on, no information about the input gets through—the output will be
off, representing a 0, but this will be true regardless of the input, so that
looking at the output gives no information about the state of the input.
(Remember that turning the control wire on closes the gate and blocks
the information.)

Note that the input, output, and control of the transistor are really
all the same sort of thing—wires that can be either off or on, represent-
ing zeros and ones. This has profound implications. It’s what makes it
possible for patterns of bits to act either as data (input and output) in
computations or as instructions in a program (which control the compu-
tations). In fact, there is nothing to stop you from hooking up the output
of one transistor to the control of another, which is the basis for allowing
computations to be controlled by data. The distinction between data
and programs becomes a matter of point-of-view, rather than a matter
of fact. The same bits that are at one moment being manipulated as data
might at the next moment be controlling the manipulation of other bits.

3 This is not quite true. It would be more correct to talk about the “elec-
tric potential on the wire being set to −5 or 5 volts” (or some other values).
Note also that other physical representations for a bit are possible, such as
a static electric charge or the orientation of a magnetic field, and that such
representations are used in certain types of computer memory.
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Input Output

equals Input

Input Output
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Control
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Figure 1.4. Schematic representations of a transistor, shown with the
control wire turned off on the left and on on the right. These drawings
are meant to illustrate that turning the control wire on will break the
connection between input and output, cutting off the flow of informa-
tion.

We can now form a (slightly) clearer idea of what happens as the CPU
executes an instruction. Loading an instruction from memory means
turning certain wires in the CPU on or off, according to the pattern of
bits in the instruction. This is supposed to bring about the computation
that the instruction represents. The computation is performed by tran-
sistors, generally in a number of stages. The wires encoding the instruc-
tion, along with wires encoding any data to be manipulated by the in-
struction, are connected to the inputs and controls of transistors, and the
resulting outputs from those transistors represent the first stage in the
computation. The output wires are connected to other transistors which
continue the computation, until eventually the instruction has been com-
pleted. While we are still a long way from really understanding this pro-
cess, this description shows what it means to say that the CPU executes
instructions mechanically, simply because of the way it is put together.

As we start building circuits, we need a way of drawing transistors.
The picture I will use is not based in the least on the way transistors
actually look or work, nor is it the picture used in electrical engineering;
rather, it is intended to depict the function of the transistor in a trans-
parent way. Figure 1.4 shows a transistor as we will draw it in its two
possible states, with the control wire either on or off.

Since we are so little concerned with the physical nature of transistors,
you might guess that other physical objects that have similar behavior
could also be used to build computers. You would be right. Some very
early computers were built out of relays, mechanical devices that really
do look a lot like our schematic illustrations of transistors.4 Computer

4 In a relay, turning on the control wire activates an electromagnet which
pulls a metal rod into a position that physically closes the connection between
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Figure 1.5. A NOT gate constructed from a single transistor. This
circuit has one input and one output. The output is determined by the
rule that the output is off whenever the input is on, and vice versa.

designers soon turned to electronic devices, which can be switched on
and off more quickly than relays. The first electronic computers used
vacuum tubes as their switching element. The basic ideas are the same
whether they are implemented in relays, vacuum tubes, or transistors.
As we design new circuits, keep in mind that it is the rules that govern
the behavior of their components that are important, not the physical
details of their construction.

1.2.2. Circuit Building. It’s time to descend from generalities
to considerations of how we can actually put transistors together into
circuits that perform useful computations. We start by building basic
circuits for some very simple operations. Later, we will see how to build
more complex circuits from these basic building blocks.

The first circuits we consider have one or two input wires and one
output wire. The value on the output wire is determined by some fixed
rule from the input bits. For a single input and a single output, there
are only two possible rules: Either the output is the same as the input,
or it is the reverse of the input (on when the input is off and off when
the input is on). The first case is rather boring, since the “circuit” could
be nothing but a wire connecting the input to the output. A circuit that
reverses its input, however, is very useful. It can be built from a single
transistor.

Such a circuit is diagramed in Figure 1.5. Note that the input to
the circuit is used as the control wire for the transistor. The transistor’s
input is connected to a wire that is permanently on. This wire must
be connected to the computer’s power source, which of course must be

input and output. This is different from transistors, in which a signal on the
control wire breaks the connection, but this difference forces only minor changes
in circuit design.
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turned on before the circuit can do anything. (All of the circuits we build
have such internal connections to a power source, which are not counted
as inputs to the circuits since their values never change; they provide the
power that drives the computer, but they do not carry information.)

We should check that this circuit behaves as advertised. If the cir-
cuit’s input is off, then the transistor’s control is off, so the transistor’s
input passes through to its output wire; since its input is on, so is the
output, as desired. Turning the circuit’s input on will turn on the tran-
sistor’s control wire, which will cause its output to be off, again as
desired.

The circuit we have built is called a NOT gate. The use of the term
“gate” here is standard, but has nothing to do with gates that open and
close, except in the sense that the output can be on or off. The word
“NOT” can be justified if we think of a bit as having one of the two
possible logical values, true or false, instead of a numerical value, one
or zero. In logic, “NOT” reverses the truth of a statement: NOT true is
false, and NOT false is true. We will have a lot more to say about
the relationship between logic and circuits in the next chapter.

We turn now to circuits that have two inputs and one output. Since
each input can be separately set to be on or off, there are exactly four
possible states that the input can be in: on/on, on/off, off/on, and off/off.
The behavior of the circuit is determined by what output it gives in each
of these four cases. One such circuit is the AND gate, which follows
the rule that the output is on if both inputs are on and is off in the other
three cases. (The output is on exactly when input 1 is on “AND” input 2
is on.) An AND gate can be constructed from four transistors, as shown
in Figure 1.6.

The last basic circuit that we need is the OR gate, which also has
two inputs and one output. The output of an OR gate is on if either the
first input is on, OR the second input is on, OR both are on. The output
is off only if both inputs are off. An OR gate can be constructed from
three transistors. You might want to construct a table and diagram for
an OR gate like those given in Figure 1.6 for an AND gate.

We could go on indefinitely building more and more complex circuits
from transistors, but as it turns out we don’t have to. In fact, transistors
will hardly be mentioned again in this book. The AND, OR, and NOT

gates we have built from them will provide the basis for all further work.
These gates can already be said to perform simple computations, in the
sense that they manipulate bits according to certain rules. We will see
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First Input Second Input Output of AND Gate

on on on

on off off

off on off

off off off

ON

ON

ON

Output

First

Input

Second

Input

Figure 1.6. A table specifying the behavior of an AND gate, a circuit
with two inputs and one output. The diagram shows how an AND gate
can be constructed from four transistors. In the diagram, the first input
is on, the second is off, and the output is off, as specified in the table.
You can check that the other three lines in the table are also satisfied.

that every computation that a computer needs to do can be performed
by a circuit put together out of AND, OR, and NOT gates.

The circuits we will build will be very complex. Fortunately, their
complexity is structured; that is, complex circuits (like complex data
structures) can be viewed as made up of simpler components, which can
themselves be made of even simpler components and so on, until the
process bottoms out on a level where the components are trivial. In the
case of data, the trivial components are individual bits; for circuits, the
trivial components are transistors. We have already taken the first step
towards complexity by assembling transistors into gates. In Chapters 2
and 3, we will build more and more complex circuits, one (reasonably)
easy step at a time, until in the end we see how to build an entire
computer.

For now, you should carry away a sense that what’s going on inside
a computer is a complex flow of zeros and ones, representing data, being
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manipulated by circuits under the control of other zeros and ones, rep-
resenting program instructions, with all this activity adding up to useful
and meaningful computations—and you should at least be starting to
believe that eventually you’ll be able to understand the whole process.

1.3. Instructions, Subroutines, etc.

If computers are complex circuits that manipulate data under the di-
rection of programs, then there is one more topic that belongs in this
introductory chapter: What are programs and how can they be con-
structed?

We have already encountered the rather vague idea that programs
are lists of instructions, and we have seen that the most primitive pro-
gram instructions are patterns of bits called machine language. To really
understand programs you need to know (1) what types of things ma-
chine language instructions can do and (2) what methods are available
for building complex programs, starting with simple machine language
instructions as a base.

1.3.1. Instructions, Decisions, and Loops. Although different
computers can have very different machine languages, there are certain
generalizations that can be made. Every machine language, for example,
must include instructions that tell the CPU to perform basic operations
such as addition and subtraction. Also required are instructions that
move data back and forth between memory, where it is stored, and the
CPU, where all calculations are performed. These commands need some
way of picking out particular pieces of data in memory. Recall that
memory is made up of numbered locations, so picking out data just
means specifying which memory location it is in. Typically, a machine
language instruction has two parts, a binary code number specifying
what operation is to be performed, and a number (also represented in
base two) indicating the location of the data to be operated on.

While it is not universal, one common way of building a CPU is
to provide it with an accumulator. The accumulator provides memory
inside the CPU for one piece of data. (Here, “piece of data” means a cer-
tain number of bits; the number depends on the computer but is typically
thirty-two or sixteen.) An instruction for moving data from memory into
the CPU would then say, in effect, “Copy the data from memory loca-
tion N into the accumulator,” where N is the location number included
as part of the instruction. Similarly, the machine language would have
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an instruction that says, “Copy the contents of the accumulator into the
memory at location N (replacing what’s there now).”

Instructions for arithmetic operations also use the accumulator. An
addition instruction, for example, specifies just one address in memory,
where one of the numbers to be added is to be found; it is assumed that
the other number to be added is already in the accumulator. After the
numbers are added, the answer replaces the former value in the accumu-
lator. Thus, adding two numbers together requires three instructions:
one to copy the first number from memory into the accumulator, one to
add the second number to the accumulator, and finally one to copy the
answer from the accumulator back into memory. (The name of the accu-
mulator comes from the fact that it is used to “accumulate” the answer
in a step by step computation.)

Besides instructions to move data around and instructions to perform
operations on data, there is just one more essential type of machine
language instruction that you need to know about: Instructions that
change the value in the program counter.

Recall that the CPU uses the program counter to keep track of where
it is in the program it is executing. The program counter contains the lo-
cation in memory of the next instruction in the program to be executed.
Now, if all the CPU could do is move down the program at the rate of a
few million instructions per second, it would run out of program pretty
quickly! It must be able to reuse the same set of instructions over and
over. In fact, much of the power of a computer comes from this ability to
repeat a task over and over without human intervention. A list of instruc-
tions that the computer cycles through more than once is called a loop.

The solution is simple. The machine language can include a jump
instruction whose effect is to change the value stored in the program
counter. Since the only way the CPU knows which instruction to exe-
cute next is to look at the value stored in the program counter, a jump
instruction—by changing that value—says in effect, “Take the next in-
struction to be executed from memory location N ,” where N is the (bi-
nary) number included as part of the jump instruction. The execution
of the program will then continue automatically from the new location,
at least until another jump instruction is encountered. A loop can be
implemented by putting a jump instruction at the end of the loop to
transfer execution back to its beginning.5

5 Note again the mechanicalness of all this. Although we might say that the
jump instruction means “jump to a new location,” the way the jump happens
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A variation of the jump instruction called a conditional jump pro-
vides another of the computer’s essential abilities, by allowing a program
to make decisions between alternative courses of actions, depending on
circumstances. A conditional jump changes the value of the program
counter only if a certain condition holds. The condition to be tested is
built into the instruction, so that a different instruction must be included
in the machine language for each type of test it allows. The tests are of a
very simple type, such as checking whether the value in the accumulator
represents a binary number greater than zero. Such a conditional jump
instruction would mean, “If the number in the accumulator is greater
than zero, then take the next instruction to be executed from memory
location N (and otherwise continue as usual).”

Such a test can be more useful than it might appear at first, if the
number in the accumulator is the result of some meaningful calculation.
On your tax return, you might see the instructions, “Subtract line 60
from line 53. If the result is greater than zero, send in a check for this
amount; otherwise you are entitled to a refund.” This could easily be
paraphrased in three machine language instructions as something like:
“Get the number from memory location 53; subtract the number in
location 60; if the answer is greater than zero, then go to the instruction
in location number 1375 (or wherever the program for sending in a check
is to be found).”6

Conditional jumps also play an important role in loops. If they did
not exist, the computer would have to continue in the loop forever. In
practice, the instructions in the loop would include at least one con-
ditional jump to some memory location outside the loop. Each time
through the loop, the condition will be checked; if the test is satisfied,
the jump will take place, and the computer will break out of the loop.

1.3.2. Building Programs. The capabilities of individual ma-
chine language instructions are extremely limited. Building a program
to perform some complex task from such primitive components seems a

is entirely automatic. The jump instruction is fetched from memory into the
CPU; the resulting activity in the CPU causes a new value to replace the current
value of the program counter; when the CPU goes to fetch the next instruction
to execute, it takes that instruction from the location indicated by the program
counter, just as it always does. The CPU doesn’t “know” that it has jumped
to a new location.

6 Perhaps people have trouble filling out tax returns because the instruc-
tions for them are more appropriate for computers. People, fortunately for our
dinner-table conversation, don’t think much like computers.
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daunting prospect. I’m sure by now you can guess the solution: Complex
tasks can be decomposed into simpler tasks, which themselves might be
capable of further decomposition, until the process bottoms out in triv-
ial operations. Although you might find it unlikely now, for any task
that can be performed by a computer, this process of decomposition ul-
timately must bottom out at just the sort of trivial operations provided
by machine language.

Loops and decisions provide two ways by which instructions can be
“chunked” into larger, meaningful structures. From one point of view,
a loop is just a bunch of bits, in which the bits at the end happen to
encode a jump instruction. But to the person who designed the program,
the instructions inside the loop perform some meaningful task, and the
loop as a whole performs the slightly more complicated task: “Do this
[the inside of the loop] over and over.” Similarly, decisions can be used
to build program chunks that say: “If such-and-such a condition holds,
then do this; otherwise do that,” where this and that are simpler
chunks that perform some meaningful tasks.

Most machine languages provide one other mechanism, subroutines,
to support the construction of programs through chunking. It is in-
evitable that a programmer will think of certain sequences of instructions
in a program as performing certain subtasks in the overall operation of
the program. Without subroutines, this breakdown of tasks into sub-
tasks would exist only in the mind of the programmer; with subroutines,
it can be reflected in the physical structure of the program.

A subroutine is a list of instructions, which is stored beginning at
some location in memory. (It could hardly be anything else.) What
makes it special is the availability of a machine language instruction,
which we can call jump-to-subroutine, that says in effect, “Go exe-
cute the subroutine that starts at memory location N , and after it is
finished, return to the current location in the program and continue on
from there.” That is, when a jump-to-subroutine instruction occurs, the
entire subroutine will be executed, and then the computer will return to
the location in the program where the jump-to-subroutine instruction is
located and continue on from there.7

7 A jump-to-subroutine is similar to a simple jump to the start of the subrou-
tine except that before the jump is executed, the current value of the program
counter is stashed somewhere where it can be found when needed. Restoring
the program counter to this value will, in effect, send the computer back to
where it was when the subroutine was called. The subroutine must end with
another new instruction called return-from-subroutine. The effect of this
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Note what is happening here: The single jump-to-subroutine instruc-
tion acts as a stand-in for the entire subroutine. You can think of that
single instruction as performing the entire task specified by the subrou-
tine, no matter how complicated. It’s almost as if a new instruction for
performing that task has been added to the machine language. And of
course, that’s just how the programmer should think of it—the subrou-
tine is a meaningful chunk which, once constructed, can be used as a
building block in more complex structures.

Although machine language is the native language of the computer,
most computer programmers never write a program in machine language.
They write instead in what are called high-level languages, such as
BASIC and Pascal. The programs they write must be translated into
machine language before the computer can execute them, but the trans-
lation is itself an automatic process that is done by computer programs
called compilers. So, the programmer really has no contact with ma-
chine language at all—any more than a person using a word processor
has contact with the structure of bits that represent a document in the
computer.

Machine language tends to be a concern for people designing—or,
like you, trying to understand—computers, rather than people who just
use them or write programs for them. This book deals with machine
language mostly in Chapter 3, where computer design is discussed. In
Chapters 6 and 7, we will turn to programming itself as an object of
study, and in those chapters we will use a high-level language. Even when
we get to that point, though, your experience with machine language
won’t be wasted. Although high-level languages are much easier to work
with than machine language, they are based on the same capabilities we
have been discussing in this section, including moving data around, basic
arithmetic operations, loops, decisions, and subroutines.

1.4. Handling Complexity

Computers are among the most complicated artifacts that people
have ever constructed, and the programs that they execute can be even

instruction is to get the stashed program counter value and to restore the pro-
gram counter to that value; this accomplishes the jump back to proper location.
Note that since the computer “remembers” where it is supposed to return to
after the subroutine finishes, the same subroutine can be called from several
different places in the program. The computer will always to manage to return
to the right place.
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more complex. Any attempt to understand computers and programs
on more than a superficial level must acknowledge that complexity, and
must have some method for dealing with it.

We have now seen the same method in three different areas: comput-
ers, programs, and complex data structures. In fact, the method we have
used may well be the only way people have for dealing with complexity.8

A person seeking to build or to understand a complex structure must
approach it at many different levels, one level at a time. These levels
form a hierarchy of increasing complexity. Except for the bottommost
level, items on each level are built from items on the level below. The
step from one level up to the next must be simple enough to be eas-
ily grasped. The final result—on the top level—can be vastly complex
yet still comprehensible. The applicability of this approach extends far
beyond computer science.

On the bottom level of the hierarchy are things that are not con-
structed from components simpler than themselves, such as the bits that
make up data structures, the transistors that make up computer circuits,
or the machine language instructions that make up programs. Every-
thing on higher levels is built out of these fundamental parts, but it is
the way that the parts are structured, not just the parts themselves, that
makes comprehension possible.

But wait—what’s this about machine language instructions being on
the bottom level? Aren’t machine language instructions made up of bits?
So can’t they be decomposed into simpler parts? Actually, in practice,
what constitutes the bottom level is a matter of choice. You are free
to choose where to stop analyzing things into simpler parts, and you
stop when you judge that further analysis is not necessary or helpful.
In this chapter, I chose to take machine language instructions as the
fundamental building blocks of programs, because I was interested in
the way programs are actually executed by computers. Such a point of
view would not be useful to someone writing a program in a high-level
language; that person would rightly consider the instructions of the high-
level language as basic, even though from the computer’s point of view,
such instructions must be further decomposed into machine language
instructions before they can be executed.

8 All right, I admit to exaggerating here. I can think of at least one other
important method for dealing with complexity, that is, by explaining it as
arising from the action of simple, generally mathematical laws. This is the
canonical approach in physics, for example, but its application elsewhere, even
in the other sciences, is more limited than is often appreciated.
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The whole idea of levels of complexity is a resource available to you
when you need it, not a rigid rule handed down from above that you
are forced to obey. Using it well takes practice and ingenuity but offers
rewards of great intellectual satisfaction. I think you will find that this
is a source of much of the fascination that computers hold.

Chapter Summary

A computer computes by executing a program, which is a list of machine
language instructions. All that the computer does is fetch an instruction
from its memory, execute it, and then repeat the same process over and
over. It does this mechanically : An instruction is a binary number, a
pattern of zeros and ones, that causes certain wires in the computer to be
turned on and off. These wires turn other wires on and off and so forth,
until the net result is that an instruction has been executed—without
any awareness or thought about what the instruction means.

Each individual machine language instruction is almost absurdly sim-
ple, and the only way that complex programs can be composed from such
simple parts is by grouping together instructions into meaningful—to the
programmer not the computer!—components, which can themselves be
used as parts to build even more complex components, and so forth until
programs of extraordinary complexity have been created. The methods
available for building structures of instructions include loops, decisions,
and subroutines.

This type of structured complexity has many applications besides pro-
gramming. The data manipulated by a computer are one such applica-
tion. On one level, all data are made up entirely of zeros and ones. But
these are combined into meaningful structures of many different types,
including binary numbers, text, pictures, and sounds.

The computer itself is another application. In one sense, a computer
is just a pile of almost absurdly simple components, such as transistors,
that individually can do very little. But these components are organized
into more complex components, such as AND, OR, and NOT gates. As
you we will see in the next two chapters, these can in turn be assembled,
step-by-step, into a complete computer.

At the beginning of this chapter, I said that what computers do is
compute. That should mean a lot more to you now than it did then.
In a sense, the rest of this book is just filling in details in the picture
presented in this chapter. That doesn’t mean it will always be easy, but
I hope you will find it to be a grand adventure.
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Questions

1. The problem of converting a base 10 number to base 2 was not
covered in the text. Here is an example of one method. Consider the
number 53. Our object is to write 53 as a sum of powers of 2, with each
power appearing at most once. Being familiar with the powers of 2 (see
Figure 1.1), you recognize that 32 is the largest power of 2 that is less
than or equal to 53, so that 53 = 32+21. Similarly, we see that 16 is the
largest power of 2 that is less than or equal to 21, so that 21 = 16 + 5.
Finally, 5 = 4 + 1. To put it all together,

53 = 32 + 16 + 4 + 1

= 25 + 24 + 22 + 20

= 1000002 + 100002 + 1002 + 12

= 1101012.
Apply this procedure to several other base 10 numbers. Discuss why this
method works. Why is it necessary at each step to choose the largest
possible power of two?

2. When we counted the number of binary numbers with k bits,
including possible leading zeros, we found that there are 2k of them. To
be sure you understand this analysis, you might consider a related prob-
lem from biology. A molecule of DNA is simply a sequence of simpler
molecules called nucleotides. There are four nucleotides, represented as
A, T, C, and G. A complete DNA molecule corresponds to a string of
such letters, such as AATCCGAC. The number of molecules of DNA
containing exactly k nucleotides is thus the same as the number of se-
quences of k letters, where each letter is A, T, C, or G. How many such
sequences are there, and why?

3. In a circuit with two inputs and one output, there are four ways
to set the input values: on/on, on/off, off/on, and off/off. A table to
describe the behavior of such a circuit therefore has four rows, with each
row specifying the output for one of these combinations of inputs. Now
consider a circuit with k input wires and one output wire. How many
different possible ways are there to set the k input wires, and why?
Again, if you want to make a table describing the behavior of such a
circuit, this is how many rows you will need. Now, here is a harder
question: How many different ways are there to fill in the output values
in such a table? That is, counting only their input/output behavior, how
many different circuits are there with k inputs and one output?
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4. A three-input AND gate is a circuit with three input wires
and one output wire which behaves as follows: If all three of the inputs
are on, then the output is on; in all other cases, the output is off. Show
how such a circuit can be built directly from six transistors. It is also
possible to build the circuit from two normal, two-input AND gates; try
to figure out how. Discuss advantages and disadvantages of these two
approaches: building the circuit directly from transistors, or building it
from two-input AND gates.

5. A subroutine is just a list of machine language instructions. It is
possible for that list to include a jump-to-subroutine instruction, which
will cause the second subroutine to be executed as if it were part of the
first. This possibility makes it a bit tricky to find a place to stash the
old program counter value while the subroutine is executing. Why is
that? Can you think of any solution? Explain why it is essential for a
subroutine to be able to make use of other subroutines, given the role
that subroutines play in building complex programs.

6. Computer science is by no means the only field where complexity
is dealt with by breaking complex structures into simpler components. In
music, for example, every piece of music is made up of individual notes,
but there are several levels of structure between these two extremes:
measures, themes, and movements, for example. Make a list of different
fields and terms they use to describe levels of structured complexity.



Chapter 2

Teaching Silicon to Compute

IN THE NINETEENTH century, an English mathematician named Charles
Babbage designed what would have been the first computer, if it had ever
been built. It would have been made from metal parts—rods, levers,
gears—and powered by steam. Babbage did produce a working auto-
matic calculator, similar in conception to his grand design. One of his
colleagues said of it that “the wondrous pulp and fibre of the brain had
been substituted by brass and iron; he had taught wheelwork to think”
[Swade, p. 88].

Modern computers are built from transistors rather than “wheel-
work,” and the foundation of their calculating ability is the silicon from
which those transistors are made, rather than brass and iron. But we
can still understand the awe that a person might feel on first encoun-
tering a mechanical device that displays capabilities similar to our own
highest reasoning skills. Whether or not such devices actually think,
they certainly perform difficult computations. The controversial ques-
tion of thinking machines is left to a later chapter on artificial intelli-
gence. For now, we consider how it can be that silicon can be taught to
compute.

Over the course of the next two chapters, we will answer this question
by designing a working computer. The device we design will be much
simpler than real computers in use today, though not all that much sim-
pler than the first working computers built in the 1940s. In this chapter,
starting from the three types of logic gates introduced in Chapter 1, we

29
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will build an arithmetic-logic unit—a circuit that can perform addi-
tion, subtraction, and other operations on binary numbers. Later we will
see how logic gates also can be used to construct memory circuits. The
circuits we build in this chapter will be used in the computer designed
in Chapter 3.

The design of circuits built from logic gates has surprising connections
to a branch of mathematics called propositional logic or Boolean
algebra. We will use some basic ideas and notation from this branch of
mathematics, without covering it in full detail.

2.1. Logical Circuitry

In the common usage of the term, a logical person is someone who,
like Sherlock Holmes or Star Trek ’s Mr. Spock, reasons from facts to
conclusions using infallible laws of deduction (rather than fallible human
emotion). If the facts are true and the rules are followed correctly, there
can be no doubt that the conclusions are true.

As shown by the image of the emotionless Mr. Spock, there is some-
thing machinelike about logic, and it is perhaps no surprise that logic
should have some role in the operation of computers. More surprising,
perhaps, is the extent of the role. In a very real sense, logic is all that
computers do.

In its simpler applications, logic is easy. Suppose I were to tell you
that the statements “Mozart wrote operas” and “Venus is heavier than
the Earth” are both true. You could then immediately draw the logical
conclusions that the statement “Mozart did not write operas” is false,
and that “Mozart wrote operas and Venus is heavier than the Earth”
is true. If I then confessed that I lied and that actually, Venus is not
heavier than Earth, you would reverse your second conclusion.

Now, these are not great feats of intellect, but having read the pre-
vious chapter, you know that very complex structures can be built from
trivial beginnings.

Suppose we start with any two statements whose truth or falsity is
already known. Rather than pick specific examples, let’s just give them
names, say A and B. (If you like, you can think of A as standing for
“Mozart wrote operas” and B for “Venus is heavier than Earth.”) We
can then form the statements “A AND B” and “A OR B.” Playing a
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A B A AND B A OR B NOT A

true true true true false

true false false true false

false true false true true

false false false false true

A B A AND B A OR B NOT A

on on on on off

on off off on off

off on off on on

off off off off on

A B A AND B A OR B NOT A

1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Figure 2.1. The logical operations and, or and not, defined in three
equivalent tables. The top table is given in terms of the usual logical
values true and false. The second table, simply replaces these with
on and off, which are appropriate for logic gates thought of as physical
circuits. Finally, the third table uses the zeros and ones that are appro-
priate for logic gates as manipulators of bits inside a computer. You
should be able to switch easily among these points of view.

little loosely with English grammar, we will also say that “NOT A” is a
statement, meaning, “It is not the case that A.”1

Since we know the truth or falsity of A and B, we can immediately
deduce whether A AND B is true or false. There are only four cases to
consider. Either A and B are both true, A is true and B is false, A is
false and B is true, or both are false. Only in the first of these cases is

1 A reminder about the power of mathematics, even in something as simple
as notation: By using arbitrary names like A and B instead of specific examples,
we can deal with all the infinitely many different possible examples at once.
Furthermore, since nothing is known about A and B except whether they are
true or false, it is made perfectly clear that for the purposes of propositional
logic, all true statements are equivalent, as are all false statements.
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the compound statement A AND B true. The statements A OR B and
NOT A can be dealt with similarly. The truth values for these statements
in all possible cases are shown in the first table in Figure 2.1. This table
is worth memorizing. (The English word “or” is a source of some possible
confusion. As shown in the table, we take A OR B to be equivalent to
“A or B or both.”)

2.1.1. Propositional Logic. We have here the whole foundation
for propositional logic. A proposition is a statement that can be either
true or false. Propositional logic deals with atomic propositions, rep-
resented by individual symbols such as A or B, and all the compound
propositions that can be constructed from them using the operators
AND, OR, and NOT.2 Complexity arises because compound propositions,
once formed, can then be used as pieces in larger compound propositions.

In ordinary English, from the three statements “Today is Monday,”
“Today is Friday,” and “I can’t work,” any number of compound state-
ments can be formed. For example:

•Today is Monday or today is Friday, and I can’t work.
•Today is not Monday and I can’t work.
•Today is Monday and today is Friday and I can’t work.
•Today is Monday and I can’t work, or today is not Friday and I
can’t work.

If we represent the three original statements by A, B, and C, then these
compound statements can be expressed as the compound propositions

• (A OR B) AND C
• (NOT A) AND C
•A AND B AND C
• (A AND C) OR ((NOT B) AND C)

The parentheses are used here to avoid ambiguity; they indicate which
part of the expression should be evaluated first. There is a difference
between the statements “(A OR B) AND C” and “A OR (B AND C).”
(If it happens to be Monday and I can work, the first of these would be
false, while the second would be true.) English has no foolproof method
of avoiding such ambiguity. In the sentences above, I have tried to use
punctuation to indicate the intended meaning. Logic has no room for
such ambiguity.

2 Statements of the form “If A then B” play an important role in logic.
However, we can do without such statements since, in propositional logic, “If A
then B” is defined to be equivalent to “(NOT A) OR B.”
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Mathematicians typically avoid ambiguity in a rather curious way.
They say that officially, parentheses are always required, but then they
immediately give rules for leaving them out in certain cases. The rules
determine which operations are done first when parentheses are omit-
ted; in such cases, NOT has first precedence, followed by AND, with
OR having the lowest precedence. For example, given the proposition
NOT A AND C, the operator NOT has precedence, so the proposition
means “(NOT A) AND C” rather than “NOT (A AND C).”3 Similarly, in
the fourth example above, all the parentheses could be omitted without
changing the meaning. On the other hand, the parentheses in (A OR B)
AND C are required; without them, A OR B AND C would be interpreted
as A OR (B AND C), since AND has precedence over OR. Generally, it is
better to avoid confusion by putting in parentheses even when they are
not required.

As a final technical point, consider A AND B AND C. Should this
mean “(A AND B) AND C” or “A AND (B AND C)”? Here, it turns
out that the ambiguity doesn’t matter. The two alternatives give the
same answer, no matter what the values of A, B, and C. The answer
is true only when all three of A, B, and C are true; it is false in all
other cases. The general rule is that when AND’s are strung together,
the order in which they are evaluated doesn’t matter. The same rule
applies to a string of OR’s. A OR B OR C is true if any one of A, B,
and C is true, and is false if all three are false.

2.1.2. Gates and Circuits. Now of course, you remember en-
countering AND, OR, and NOT in Chapter 1. In that chapter, they were
used to name certain circuits—the AND gate, OR gate, and NOT gate—
constructed out of transistors. You can now see that when we built
these circuits, we were “teaching silicon” to perform the most elemen-
tary computations of logic. This is just a matter of point of view. Input
and output wires in a circuit have two states, on and off. You have al-
ready seen that on and off can be interpreted as standing for the binary
digits one and zero, but this is just an interpretation. There is nothing
to stop us from decreeing, when it is convenient, that on is going to stand
for the logical value true, while off represents false.

When the inputs and output of an AND gate are interpreted in this
way, it becomes an implementation of the logical meaning of the word
and. Suppose that A is a statement which is known to be true, while B

3 The proposition NOT (A AND C) is hard to express in English. You would
have to say something like “It is not the case that both A and B hold.”
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AND gate OR gate NOT gate

Figure 2.2. Standard pictures for the three types of logic gate. Input
wires are shown sticking out of the left side of the gate, output wires to
the right. Larger circuits can be built out of gates by connecting output
wires from some gates to input wires of others.

is a statement known to be false, and suppose you want to know whether
A AND B is true. Instead of working it out for yourself, you can use an
AND gate to compute the answer! Just use the first input of the gate to
represent A and the second to represent B. Since A is true, turn the first
input on, and since B is false, turn the second input off. Sure enough,
the output of the gate will be off, telling you correctly that A AND B
is false. No matter what the truth values of A and B, the AND gate
will give the correct answer. Similarly, OR and NOT gates implement the
words or and not, as shown in Figure 2.1.

Because of their relationship to logic, AND, OR, and NOT gates are
referred to collectively as logic gates, and circuits that are built from
them are called logic circuits. In diagrams of such circuits, standard
pictures are used for the three types of gates. These pictures are shown
in Figure 2.2.

I will admit once again that the computation performed by an in-
dividual gate is not very impressive, but it really is an example of a
computation, defined as the mechanical manipulation of symbols. (It
is mechanical because the output is determined automatically, without
thought, from the inputs. It is dealing with symbols because the inputs
and outputs are really just presence or absence of current on wires; it
is merely an interpretation to say they are standing for the truth or fal-
sity of certain statements.) By combining a number of gates into a larger
circuit, we will be able to teach silicon do more impressive computations.

Circuits can do any computation that can be expressed in proposi-
tional logic. In fact, any compound proposition can be used as a blueprint
for a logic circuit that can compute the value of the proposition. A
compound proposition is built up from atomic propositions using the
operations AND, OR, and NOT. The corresponding circuit is built up in a
parallel way. Each different atomic proposition corresponds to an input
wire of the circuit. These input wires can be turned on or off to indicate
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A

C

B
B AND C

A AND C

NOT(B AND C)

(A AND C) OR

(NOT(B AND C))

Figure 2.3. The circuit corresponding to the proposition (A AND C)
OR (NOT (B AND C)). The output of each logic gate is labeled with the
expression that the gate computes.

true

false

false

true

true
false

false

Figure 2.4. The circuit corresponding to the proposition (A AND C)
OR (NOT (B AND C)), labeled to show the computation it performs
when A is true and both B, and C are false.

whether the corresponding atomic propositions are true or false. Each
AND, OR, and NOT in the proposition corresponds to a logic gate in the
circuit. The structure of the expression determines how these logic gates
should be wired together. Finally, the output of the circuit represents
the value computed for the expression, depending on the values of the
inputs.

The only part of this that might give you trouble is figuring out
how to wire together all the logic gates in the circuit. Just remember
that the inputs to each gate represent values already computed; the
output combines these input values into a more complicated expression.
Consider, for example the proposition

(A AND C) OR (NOT (B AND C)).

A circuit to compute this expression is shown in Figure 2.3. The inputs
to this circuit correspond to A, B, and C, the atomic propositions in the
expression. (Note that even though C occurs twice in the expression,
there is only one input wire for it; a wire can be connected to the inputs
of several gates.) When building such a circuit, it might be easiest to
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work backwards from the output to the input. It is easy to identify the
operator that produces the final answer. (If the expression is fully paren-
thesized, it is the only operator that is not nested inside parentheses.)
In the example, this operator is OR, so the circuit contains an OR gate
whose output is the overall output of the circuit. The inputs to this OR

gate must represent “A AND C” and “NOT (B AND C)”. You can now
build smaller circuits to represent each of these expressions and connect
their outputs to the inputs of the OR gate. Note that in the circuit for
NOT (B AND C), the NOT gate produces the final answer, and it gets its
input from the AND gate.

At this point, given any proposition, you should be able to construct
a circuit that computes it. Also, given specific values for the inputs
to the circuit, you should be able to trace by hand, step by step, the
computation that the circuit performs to produce the resulting value of
the proposition. A sample computation is shown in Figure 2.4. It would
be useful for you to feel comfortable doing such computations whether
the values are expressed as true/false, as on/off, or as 0/1. The tables
in Figure 2.1 contain all the information you need.

2.1.3. Circuits Made to Order. It might be aesthetically pleas-
ing that there is a relationship between circuits and logical expressions;
but to convince you that that relationship is useful, I will have to demon-
strate some application to building practical circuits that might find use
in a computer.

Suppose you know the exact behavior you want in a circuit. That is,
for every possible combination of inputs, you can specify what output
should be produced. Is it always possible to build a circuit with the
desired behavior? The answer is yes. This can be shown using propo-
sitional logic. Furthermore, logic can be used as a tool in designing the
circuit, based on its behavior.

Let’s start with a simple example in which you have an English de-
scription of a circuit’s behavior. Suppose you need a circuit with two
inputs and one output, such that the output is true when the inputs are
the same. Let’s call the inputs A and B. We can rephrase the require-
ment as saying that the output should be true if either A and B are both
true or if A and B are both false. This is starting to sound more like
logic: The output is true if (A is true AND B is true) OR (A is false
AND B is false). Now, here is a slightly subtle point. The statement
“A is true” is equivalent to the statement “A” by itself. (Just check
that they always have the same truth value.) Similarly, “A is false”
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A B C output

true true true false

true true false false

true false true false

true false false true A AND NOT B AND NOT C
false true true false

false true false true NOT A AND B AND NOT C
false false true true NOT A AND NOT B AND C
false false false false

A

B

C

Figure 2.5. Given any desired input/output behavior for a circuit,
it is possible to construct a circuit with that behavior. Here, the table
specifies the desired behavior for a circuit with three inputs and one
output. Beneath the table is the corresponding circuit. You can check
that it has the specified behavior in all cases. The construction of the
circuit is described in the text. Note: In this and all following dia-
grams, wires that cross each other do not actually intersect unless a
small circle is drawn at the crossing.

is equivalent to “NOT A”. So, finally, we reduce the description of the
circuit to saying that the output is given by

(A AND B) OR ((NOT A) AND (NOT B)).

From this description of the output, the circuit can be built immediately.

Translating from English to logic is not always so easy. And errors
can easily creep in during the translation, so that it is a good idea to
check that any circuit you build in this way gives the desired output
for all possible combinations of inputs. Fortunately, there is a more
mechanical procedure that is guaranteed to give a correct circuit.
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The behavior of a circuit can be described in a table listing all possible
combinations of inputs and the resulting output that the circuit should
produce in each case. An example of such a table is shown in Figure 2.5.
Here, there are three inputs, but the same principle applies no matter
how many inputs there are.

How can such a table be used to design a circuit that has the in-
put/output behavior specified by the table? It’s just a matter of de-
scribing the table “logically”! We really only have to look at the lines
in which the specified output is true. In English, we could say that the
output should be true whenever the inputs are those specified in any
one of these lines. To make this look more like logic, we would say, in
the example from Figure 2.5, that the output is true if

(the inputs are those on the fourth line)
OR (the inputs are those on the sixth line)
OR (the inputs are those on the seventh line).

All we need to do is translate “the inputs are those on the nth line” into
logic.

Any line in the table specifies that certain of the inputs are true and
others are false. That is, it says something like

A is true and B is false and. . . .

Of course, this can be rephrased in logical notation as

A AND (NOT B) AND. . . .

In Figure 2.5, a translation of the input conditions into a logical ex-
pression is shown to the right of each line where the output is true.
The specification for the entire circuit is obtained by stringing theses
conditions together with OR’s:

(A AND NOT B AND NOT C)
OR (NOT A AND B AND NOT C)
OR (NOT A AND NOT B AND C)

The circuit built from this expression is also shown in Figure 2.5. The
behavior of this circuit happens to have a simple English description:
The output is true if exactly one of the inputs is true. It would be
difficult to translate this description directly into a circuit, but it is easy
to use it to fill in an input/output table and then to use the table as a
guide for building the circuit.

This method can be easily extended to building circuits with more
than one output wire. It is only necessary to design a separate circuit
for each output.



Section 1. Logical Circuitry 39

The important point here is that this method will always work. Given
any input/output table, we can always build a circuit that gives the spec-
ified output for each possible combination of inputs. To convince your-
self that the method works in all cases, consider the expression we con-
structed corresponding to one line of the table (such as “A AND NOT B
AND NOT C” in the example). The circuit specified by this expression is
one whose output is true for one and only one combination of inputs—
the one given in that line of the table. For any other set of inputs, the
output value will be false.

Now, whenever outputs from several circuits are combined through
OR gates, the final output will be true if, and only if, at least one of the
outputs from the smaller circuits is true. The complete circuit we build
from the table is constructed in just this way—from smaller circuits,
corresponding to each line where the desired output is true, with their
outputs combined through OR gates. So the overall output of the circuit
is true precisely for the specified combinations of inputs.

2.1.4. The Laws of Thought. The method described above for
building a circuit with a given behavior will often produce very large cir-
cuits, much larger in fact than they need to be. It is certainly possible for
two circuits that look very different to have the same input/output be-
havior. In practical situations, the circuit that is simpler—for example,
the circuit with fewer gates—would be preferred. In general, finding the
simplest possible circuit with a given behavior is a very difficult problem,
but some help towards simplifying circuits comes from their association
with propositional logic.

In 1854, the mathematician George Boole published a book he called
An Investigation into the Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probability. It is this book that
established logic as a part of mathematics. Boole developed an algebra
of logic, which today is known as Boolean algebra. He designed a
mathematical system in which the logical values true and false would
play a role similar to the role played by numbers in ordinary algebra.

You have already seen the notation of Boolean algebra (somewhat
modified for our purposes): expressions built up out of “variables” like
A and B and the “operators” AND, OR, and NOT. But algebra consists
of more than a notation for writing down expressions. It also includes
rules for manipulating those expressions. These rules are Boole’s “laws
of thought.” It would perhaps have surprised him to find out that his
algebra would one day play a major role in designing circuitry for what
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A

B

C

A

B

C

Figure 2.6. The circuit on the right is obtained from the one on the
left by applying the distributive law, (P AND Q) OR (P AND R) ≡
P AND (Q OR R). The circuit on the left corresponds to the expression
(A AND NOT B) OR (A AND C). In this application, P stands for A,
Q for (NOT B), and R for C. The circuits are equivalent in that they
will always give the same outputs for the same inputs, but the circuit
on the right has one fewer gate.

have been called “thinking machines.” But then again, perhaps not;
Boole would have understood that in giving a mathematical formulation
to logic he was making it possible for logic to be applied mechanically.
His algebra can be seen as an attempt to make it possible to reason by
computing.

Of particular interest to us are rules that can be used to simplify
expressions. Two expressions are equivalent if they have the same value
for all possible values of the atomic propositions they contain. To sim-
plify an expression means to find an equivalent expression that is shorter
than the original. Since the expressions of Boolean algebra correspond to
logic circuits, simplifying an expression is the same as finding a smaller
circuit with the same input/output behavior.

As a trivial example, consider the algebraic fact that for any propo-
sition P , the expression NOT (NOT P ) is equivalent to P by itself. Each
NOT reverses the value it is applied to; two consecutive reversals have no
net effect. (Note that this applies whether P is an atomic proposition or
is itself a complicated expression.) When applied to circuits, this means
that two consecutive NOT gates can be eliminated from a circuit—and
replaced by a connecting wire—without changing the behavior of the
circuit.

Another, less obvious, example is the so-called distributive law,
which says that for any propositions P , Q, and R,

(P AND Q) OR (P AND R) ≡ P AND (Q OR R)

where I have introduced the symbol ≡ to mean “is equivalent to.” You
can check that this rule is valid by checking that it holds for all possible
values of P , Q, and R. Figure 2.6 shows an example of applying this
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rule to a circuit. Note that the net effect is a reduction in the size of the
circuit by one AND gate.

There are many other rules of Boolean algebra that can be helpful
in reducing the number of gates in a circuit. I have listed some useful
rules in Figure 2.7, but nothing in the rest of this text will require that
you memorize these rules or that you develop skill in using them. It is
not my purpose here to teach you Boolean algebra. My intent has been
to demonstrate that it is possible in principle to build a circuit with any
specified input/output behavior, and to indicate the power of Boolean
algebra as a tool in building the circuit and as an aid in reducing the
size of the circuit without changing its behavior.4

2.2. Arithmetic

We are now ready to move on to designing real computer circuits. Any
computer must be able to do arithmetic. In this section, we will design
circuits to perform some of the basic arithmetic operations.

Recall that numbers in a computer are represented in the base two.
Up till now, we have mostly thought of the inputs and outputs of circuits
as having the values on and off, or true and false. From now on, it
will be more appropriate to think in terms of ones and zero, since the
circuits we build are meant to manipulate binary numbers.

To understand these circuits, you will have to learn something about
arithmetic with binary numbers. Furthermore, there are certain pecu-
liarities of computer arithmetic that arise because the CPU has a limit
on the size of the numbers it can deal with. For example, the CPU
might be built to work only with sixteen-bit numbers (possibly includ-
ing some leading zeros). If you have ever used a calculator to multiply
two large numbers and gotten the answer Error, you know what this
means: There will be calculations that the CPU cannot do correctly be-
cause the answer is too large. We will need to keep in mind the fact

4 One final note on simplifying circuits, which might amount to stating
the obvious: When an expression occurs more than once as part of a longer
expression, it is not necessary to compute that smaller expression more than
once. For example, in

((A OR B) AND C) OR (NOT (A OR B)),

the subexpression (A OR B) occurs twice. A single OR gate can be used to
compute the value of A OR B, and the output of that gate can be used to
provide this value at both points where it is needed in the circuit.
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Commutative Laws:
P AND Q ≡ Q AND P
P OR Q ≡ Q OR P

Associative Laws:
(P AND Q) AND R ≡ P AND (Q AND R)
(P OR Q) OR R ≡ P OR (Q OR R)

Distributive Laws:
P AND (Q OR R) ≡ (P AND Q) OR (P AND R)
P OR (Q AND R) ≡ (P OR Q) AND (P OR R)

DeMorgan’s Laws:
NOT (P AND Q) ≡ (NOT P ) OR (NOT Q)
NOT (P OR Q) ≡ (NOT P ) AND (NOT Q)

Other Laws:
NOT (NOT P ) ≡ P
P AND (NOT P ) ≡ false

P OR (NOT P ) ≡ true

Figure 2.7. Some laws of Boolean algebra. P , Q, and R are arbitrary
propositions.

that all calculations are to be done with numbers with a limited, fixed
number of bits. For definiteness, we will assume the number of bits is
sixteen. We could just as easily use eight-bit or thirty-two-bit numbers,
and most real computers allow for all these cases by providing separate
machine language instructions for each type of number.5

I should remark that we know before we begin that it is certainly
possible to build circuits to do arithmetic (assuming we already know

5 The use of sixteen-bit numbers is quite common. This allows only 65,535
different numbers to be represented, which is really not a lot. Some serious
real-world errors have occurred because of failure to take this limited size into
account. Peter G. Neumann in his column Inside Risks in the January 1991
issue of the Communications of the ACM discusses a plague of computer failures
that occurred on September 19, 1989, affecting even the Pennsylvania Wildcard
Lotto computer. It seems that these computers represented the current date as
the number of days after January 1, 1900. On September 19, 1989, they ran out
of bits for this representation. (The Inside Risks column is a regular feature
of the Communications of the ACM and is a good source for cautionary tales
about putting too much trust in computers.)
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how to get the answers by hand). Suppose we want a circuit that adds
two sixteen-bit numbers. That is, we want a circuit whose input repre-
sents the two numbers to be added, and whose output gives the sum of
those two numbers. Our circuit will need thirty-two input wires, one for
each bit of the two numbers to be added, and sixteen output wires to
represent the sixteen-bit sum. Given any possible input, we know (or so
we are assuming) what the output should be. All we need to do is to
fill in a table to represent all the possible inputs and outputs and then
build a circuit from it, as described in the previous section, right?

Right—at least in principle. We know that a working addition circuit
exists because one could be built in the way described. However, in
practice, it is not so easy. With thirty-two input wires, a table that
includes all the possible combinations of input values would have 232

rows. That’s over four billion. Obviously, we need a different approach.
As you should expect after reading Chapter 1, our approach will be to
construct simpler components that will ultimately be assembled into a
complete addition circuit.

2.2.1. Adding Binary Numbers. Before we begin building
circuits that do addition, though, you need to know how to add binary
numbers by hand. The process is really no different from adding base-
ten numbers, except that it’s a lot easier. To add base-ten numbers, you
must first memorize the sum of each pair of decimal digits: “3 + 5 is 8,”
“6 + 9 is 5 and carry 1,” and so forth through all the other ninety-eight
possibilities. In the base two, the only digits are zero and one, and there
are only four basic sums you have to memorize:

02 + 02 = 02
02 + 12 = 12
12 + 02 = 12
12 + 12 = 102 (or “0 and carry 1”).

These are all the rules needed to add two one-bit binary numbers. Note
that the answer can be a two-bit number. It will be convenient to add a
zero to the front of the first three answers above, so that all the answers
have two digits. We call the two digits of the answer the carry-digit
and the sum-digit. In the first three cases, the carry-digit is zero. In
the last case, the sum digit is zero and the carry digit is one.

These rules are very simple, simple enough to implement easily in a
circuit. What we want is a circuit with two inputs, representing the two
digits to be added, and two outputs, representing the two digits of their
sum. Figure 2.8 shows a table of the possible inputs and the outputs
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A B Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

A B

Sum

Carry

Figure 2.8. A circuit that adds. The table shows the result of adding
all possible pairs of binary digits, A and B. The answer is broken into
two parts, a sum-digit and a carry-digit. The circuit on the right imple-
ments this table. It will compute the sum and carry for any combina-
tion of its two inputs.

they should produce. This table of inputs and outputs is just like the
ones we saw in the previous section, except that the values are given in
terms of 1/0 instead of true/false. Applying the methods developed
in the previous section to this table, we can write the outputs in terms
of the inputs, A and B, as expressions of Boolean algebra:

sum = ((NOT A) AND B) OR (A AND (NOT B))
carry = A AND B.

Using these expressions as blueprints, we can build the desired circuit,
as shown in the figure. The circuit we have built is called a half-adder.
We will use it as a basis for constructing more complicated circuits.

The rules for adding single-digit numbers can be applied to longer
numbers, using the method you learned in grade school: Write the num-
bers one above the other, and add the digits in each column; when the
sum in one column produces a “carry,” the carry should be added into
the next column to the left. For example, you might write out the sum of
the base ten numbers 3735 and 627 like this, writing any carry produced
at the top of the column to which it is added:6

6 Such sums can be computed by purely mechanical rules—which is why
we can teach computers to add. Unfortunately, some people have been taught
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1 1

3735
627
4362

or

1 0 1 0

3735
0627
4362

On the left, I have followed the usual practices of writing carries only
when they are nonzero and of not writing leading zeros in numbers. For
a computer, it is useful to regularize things by writing the zeros, as I
have on the right.

Binary numbers can be added in the same way. Note that to find the
sum of a column that includes a carry of 1 from the previous column,
you have to know how to add three digits, not just two. The only really
new rule for adding three digits is that 12 + 12 + 12 = 112, or “1 and
carry 1.” With this in mind, here are a few sample additions in the base
two:

0 1 0 0

1011
0010
1101

0 1 1 1 0

10111
00011
11010

1 1 1 1 1 0 1 0

01011101
00110101
10010010

The next step in designing a circuit to perform binary additions is
a full adder, which can compute the sum (and carry) of three binary
digits. One way to build a full adder is from two half-adders. This design
is based on the observation that three digits can be added by adding the
first two digits, then adding the third digit to the result. The resulting
circuit is shown in Figure 2.9. The three inputs represent the three
digits to be added. The third input is called carry-in because it generally
represents a carry from a previous column. The two outputs, sum and
carry-out, represent the sum of the input digits. You should check that
this circuit gives the correct outputs for all possible combinations of
inputs. Note how it works: The first half-adder adds the first two digits,
and then the sum-digit of the result is added to the carry-in by the second

these and other mechanical rules as if there were no meaningful justification for
them. One way to see why the rules for addition work is to write out the sum
as:

3735 + 627 = (3000 + 700 + 30 + 5) + (600 + 20 + 7)

= 3000 + (700 + 600) + (30 + 20) + (5 + 7)

= 3000 + 1300 + 50 + 12

= 3000 + 1000 + 300 + 50 + 10 + 2

= 4362.

“Carrying” here is seen as rearranging the numbers so that units, tens, hun-
dreds, etc., can be added separately.
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Half-adder

Half-adder

Sum

Carry-inCarry-out

A B

Adder Adder Adder Adder
Carry-in

Carry-

   out

First four-

bit input

Second four-

bit input

Sum digit 0Sum digit 1Sum digit 2Sum digit 3

Figure 2.9. A full adder constructed from two half-adders, and a four-
bit-adder constructed from four full adders.

half-adder. This gives the final sum digit for the full adder. A separate
analysis is needed to determine what the carry-out should be, but you
can check that the three-digit sum produces a carry of 1 exactly when
either the first half-adder or the second half-adder produces a carry of 1.
Thus the carry-out can be computed by an OR gate whose inputs are the
carries from the two half-adders.

We are now, finally, ready to produce circuits to add multi-bit binary
numbers. We will call a circuit that adds two k-bit numbers a k-bit
adder.7 A k-bit adder contains k full adders, one for each column in

7 This circuit can be used to add numbers with “k bits or fewer.” As usual,
if a number has fewer than k bits, you just have to add some leading zeros to
bring the number of bits up to k.
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the sum. The first two inputs for each full adder come from digits in the
numbers to be added. The carry-out produced for each column is simply
used as the carry-in for the next column to the left. This leaves the
carry-in for the rightmost full adder and the carry-out for the leftmost
full adder unconnected. When adding two k-bit numbers, the rightmost
carry-in should be set to zero. As for the leftmost carry-out, note that the
sum of two k-bit numbers can contain k + 1 bits, if the carry-digit in the
leftmost column is one. The value of the leftmost carry-out can be used
to check whether this occurs; ordinarily, this would represent an error:
an answer too large to be represented with the number of bits available.

As stated above, we are trying to design a computer that uses sixteen-
bit numbers. That computer will include a 16-bit adder. A 4-bit adder is
shown in Figure 2.9, since it is easier to draw, but clearly a 16-bit adder
could easily be built in the same way. We have completed a significant
step on our way to a working computer!

2.2.2. A Question of Time. When I first saw a multi-bit adder, I
was confused by one point which might be bothering you now. Suppose
all the inputs are zero, so that all the outputs, including the carry-out
wires, are off. Now imagine turning on the appropriate inputs to the
circuit, to represent the two numbers to be added. At the moment you
do so, all the carry-out wires will still be off, so it looks like the circuit
will not compute the proper sum! In order to compute the sum, all the
carries must be set correctly, but in fact, each of them is zero. What’s
wrong?

The problem with this analysis is that it ignores time (as I have been
doing in all of our discussion of circuits so far). A logic gate is a physical
device, which always takes some amount of time to change its state from
on to off or vice versa. If you turn on one of the inputs to an OR gate,
the output does not come on immediately; there is a definite time delay.
A complete description of using an OR gate would say: Set the inputs
to the desired values. Wait long enough for the gate to change its state.
Then read the resulting output.

The same comment applies to any circuit built out of gates. The
longer the path from the inputs to the outputs, the longer you have to
wait to make sure that the effect of changing the input has had time to
filter through to the output. If you check the output too soon, it might
be wrong.

Let’s see what really happens when you set the inputs of a multi-bit
adder. At that moment, the output of the circuit does not necessarily
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represent the correct sum. After a short time, the rightmost adder has
finished its calculation, and both the rightmost digit of the sum and
the rightmost carry-out are correct. It is only now that all three inputs
to the second adder—including its carry-in—are correct. After another
short time for the second adder to finish calculating, the outputs of the
second adder will be correct, and at that point, the third adder from the
right will have the correct inputs. This process continues until all the
digits of the sum have been correctly computed. So, our addition circuit
does work correctly, but it takes some time to do so.

Bringing time into the picture allows us to improve our image of the
activity inside a computer. Every computer has a clock which “ticks”
millions of times per second. (You might have heard the speed of a
computer described as so many megahertz. Each megahertz stands
for one million ticks of the computer’s clock per second.) This clock
does more than keep time; it is the ticking of the clock that makes the
computer go.

Before the clock ticks, all the gates in the computer are in some
definite, steady state. The clock has one output wire, which is connected
to the computer’s circuits. As the clock ticks, it turns this wire on. This
event can set off a whole cascade of activity, as gates connected to the
clock wire change state, then gates connected to those gates change, and
so forth. Eventually, though, the activity dies down, and once again, all
the gates are in a steady state. One step of the computer’s calculation
has just been completed. Then, the clock ticks again, and the next step
begins.8

2.2.3. Subtraction and Negative Numbers. After designing a
circuit to do addition, it is natural to try our hand at subtraction. When
we do so, though, we are faced with an immediate problem. When you
subtract a larger number from a smaller, the answer will be negative.
We have never discussed how negative numbers can be represented in
a computer. There is an obvious representation: Just add an extra bit
to a number to indicate whether it is positive or negative, coding, say,
“+” as a one and “−” as a zero. As it turns out, the representation we
use is nothing like this.

8 Note that the time between ticks must be long enough for the burst of
activity set off by the clock’s tick to settle down. This is why you can’t make a
computer run faster simply by using a faster clock. If the clock ticks too soon,
the computer will start the next step in the calculation before the results of the
previous step are available.
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Let’s reconsider the analogy between counting and the way a car’s
odometer keeps track of miles traveled. In Chapter 1, we used a “binary
odometer,” whose only digits are zero and one, to count in the base two.
This time, imagine running the odometer backwards: 0001002, 0000112,
0000102, 0000012, 0000002. What happens next? Mathematically, the
next number in the sequence should be −1. The number that actually
shows up on the odometer would be 1111112. Is it possible that 1111112
is −1? Well, not quite. In our computer, numbers are sixteen bits
long, and −1 is represented by 11111111111111112! (There are 16 ones
there; the representation we use for negative numbers depends on the
number of bits available. It we were using thirty-two-bit numbers, the
representation for −1 would be a string of thirty-two ones.) This might
seem silly, but just accept it for the moment and see where it leads.

Starting from −1, we can easily represent other negative numbers.
Remember that we are only dealing with binary numbers that can be
written with sixteen or fewer bits. For any such number N , we can write

−N = (−1−N) + 1 = (11111111111111112 −N) + 12.

Now, the point here is that 11111111111111112 − N is very easy to
compute. For example, for N = 221 = 110111012, we could compute:

1111111111111111
− 0000000011011101
1111111100100010

What makes this easy is that in each column, the lower digit is no larger
than the upper digit, so it is not necessary to “borrow” from the column
to the left. Furthermore, it is trivial to design a circuit to do the compu-
tation. Note that each digit in the answer is the reverse of the digit in
the number N on the line above. The circuit that reverses a single digit
is the NOT gate. What we want here is a circuit with sixteen inputs and
sixteen outputs, where each output is the reverse of the corresponding
input. The circuit can be built with sixteen separate NOT gates, each
computing one digit of the answer. We call this circuit a 16-bit-NOT

circuit.
If the input to a 16-bit-NOT circuit represents the binary number N ,

note that the output represents −1−N , not −N . The representation
for −N is obtained by adding one to this output. The output of the 16-
bit-NOT is called the ones-complement of its input. The name comes
from the fact that it is obtained by subtracting each digit of the input
number from 1. When 1 is added to the ones-complement, the resulting
number is called the twos-complement. The name in this case seems to
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refer to the fact that the twos-complement of a sixteen-bit number could
also be obtained by subtracting the number from 216. Some computers
actually use the ones-complement to represent negative numbers. Others
use the twos-complement, as do we.

In the above example, where N = 221, taking the twos-complement
gives 11111111001000112 as the representation for −221. Here are two
more examples of forming the ones-complement and twos-complement of
binary numbers, along with translations into the base ten. In the second
example, note that the negative of −221 is 221, as it should be.

1111111111111111
− 0000000000010100
1111111111101011

+ 1
1111111111101110

(−1)
− (20)
(−21)
+ (1)
(−20)

1111111111111111
− 1111111100100011
0000000011011100

+ 1
0000000011011101

(−1)
− (−221)

(220)
+ (1)
(221)

Now, remember that the representations chosen for data in a com-
puter are arbitrary. They are symbols for the data that are meaningless
in themselves but which can stand for anything we choose. So, we are
free to represent negative numbers as described. The question remains,
though, is it a good idea? As it turns out, the representation chosen for
negative numbers makes subtraction very easy for us. It turns out that
when the twos-complement representation for negative numbers is used,
M −N can be computed by adding the negative of N to M using the
same circuit we have already designed for addition of positive numbers,
and ignoring any carry-out that is produced by that circuit.9

Why should this be true? One way to see it is to think about how
addition could be done using a sixteen-bit binary odometer.10 To add
two positive numbers M and N , you could set the odometer reading
to M and then advance the odometer N times (by driving N miles, for
example). Assuming that M +N is not too large to be represented with
the number of digits available on the odometer, the reading would then
be the sum of M and N .

9 In the usual base-ten representation, you need a completely new method to
do subtraction. While it is still true that M −N = M + (−N), this is used to
convert a sum involving a negative number into a subtraction problem, rather
than the reverse.

10 For those with more mathematical background than I am assuming: If you
know about “clock arithmetic” or “arithmetic modulo N ,” you might recognize
that all that’s going on here is arithmetic modulo 216. The point is that if you
start the odometer at zero and advance it 216 times, it will be back to zero
again.
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Now consider M − N . Assume for definiteness that they are both
positive and that M > N . (If you like, you can check all other cases as
an exercise.)

One way to compute M − N would be to set the odometer to zero,
advance it M times, and then turn it back N times. This is essentially
the ordinary way of doing subtraction. However, suppose we start with
the odometer at zero, first turn it back N times, and then advance it
M times. Clearly, the order in which these operations are done doesn’t
matter, so the answer will be the same for either order. Doing the
operations in the latter order corresponds exactly to adding M to the
twos-complement representation of −N . This is because when you start
the odometer at zero and turn it back N times, the number on the
odometer will be the twos-complement representation of −N . Then,
advancing the odometer M times is just adding M to this in the usual
way. (Note that, since M > N , the odometer will roll over from all ones
to all zeros at some point while you are advancing it M times. This
corresponds to the fact that a carry from the leftmost bit is produced
when M and the twos-complement representation of −N are added. In
this case, the carry does not mean that the sixteen-bit answer is incorrect,
which is why I said above that it should be ignored.)

It is now easy to build a subtraction circuit. We start with a sixteen-
bit addition circuit, but we feed each digit of the second sixteen-bit
input number through a NOT gate to compute its ones-complement. We
should add one to this to get the twos-complement before doing the
addition. However, we can take care of that extra one with a rather
cute trick. Recall that the sixteen-bit addition circuit had a carry-in
input to the rightmost bit which was unused. If this carry-in is turned
on while the subtraction is being performed, the extra one being carried
into the rightmost column will add one to the answer. This takes care
of the extra one that we needed for the twos-complement. A subtraction
circuit constructed in this way is shown in Figure 2.10.

Before leaving the topic of subtraction, it might be a good time to
consider the consequences of restricting ourselves to sixteen-bit num-
bers. There are only 216 different strings of sixteen binary digits, so
no matter what we do, we cannot hope to represent more than 216 dif-
ferent numbers. But we do have a choice of which numbers we want
to represent. It might seem that the most natural choice would be to
represent the numbers from zero through 216 − 1. In this case, a string
of sixteen ones corresponds to the number 216 − 1, or 65,535. How-
ever, if we do this, we have no negative numbers to work with at all.
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Four-bit Adder

Carry-out

ON

First four-bit input Second four-bit input

Four-bit Difference

Figure 2.10. A subtraction circuit, drawn for four-bit inputs rather
than sixteen-bit. It uses the addition circuit that was designed previ-
ously. Note that the carry-in input of the addition circuit is set to on.
This is required for the subtraction to be done correctly.

Another choice is to use half of the available representations for neg-
ative numbers and half for positive numbers. If we make this choice,
we can decree that a string of sixteen bits represents a negative number
if the leading bit is a one. Thus, bit-patterns from 0000000000000000
to 0111111111111111 correspond to numbers from zero to 32,767, while
the patterns 1000000000000000 through 1111111111111111 correspond
to the negative numbers from −32,768 to −1, represented using the twos-
complement.

In fact, though, we are free to imagine that we are using either of
these representations. The computer we are designing will work exactly
the same way in either case. If you tell it to add or subtract two num-
bers, it will do so by feeding those numbers through the appropriate
circuit. The bits in the result will be the same, no matter what repre-
sentation you imagine you are using. However, your interpretation of the
answer will be different. Suppose, for example, that your program tells
the computer to subtract 5 from 3. The answer, as a pattern of bits,
will be 1111111111111110. If your intention is to represent both positive
and negative numbers, then this is the correct answer, −2, represented
as its twos-complement. If, however, your intention is to represent only
positive numbers, then the correct answer cannot be represented at all,
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and the actual result represents 65,534, which is certainly not correct.
If you find it confusing to talk about the result of a computation in the
computer depending on the user or programmer’s intentions, it might be
because you are forgetting that the symbols manipulated by the com-
puter never have any meaning in themselves!

2.2.4. Multiplication and Division. Besides addition and sub-
traction, the other arithmetic operations that a computer must be able
to do are multiplication and division. Note once again that circuits
to perform these operations can certainly be built, since in principle it
would be possible to make a table of inputs and desired outputs. Indeed,
some computers do include circuits to perform multiplication and divi-
sion. The machine languages of such computers include multiplication
and division instructions.

Our model computer will not include multiplication and division cir-
cuits. However, it will include circuits for certain other simple operations
that will make it possible to write subroutines to perform multiplication
and division.

The method for multiplying binary numbers by hand is the same
as that used for ordinary base-ten numbers. It is much easier, though,
because the only digits you need to multiply by are zeros and ones. Here
are examples of multiplication of base-ten and base-two numbers:

2731
× 508
21848
0000

13655
1387348

1101
× 101
1101
0000
1101
1000001

The numbers between the two lines are shifted to the left to line up
the digits properly, and then they are added together to give the final
answer. (Although it is not written, you should imagine that a zero is
added to the end of a number when it is shifted left.) In the case of binary
multiplication, note that each of the numbers being added is either zero
or is equal to the top number that is being multiplied, suitably shifted
to the left.

It follows that a computer that can perform additions and left shifts
can be programmed to do multiplication. It turns out that binary divi-
sion can be similarly reduced to subtraction, left shifts, and right shifts.
We already have circuits to do addition and subtractions. Circuits that
do left and right shifts are trivial to design, as shown in Figure 2.11.
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OFF OFF
Flag Flag

Four-bit Input Four-bit Input

Figure 2.11. The rather trivial circuits that perform left and right
shifts on four-bit numbers. When a number is shifted left, a zero is
added to the right end, and one bit is lost from the left end. An extra
output from the circuit, labeled “flag” in the diagram, can be used to
check whether this lost bit was a zero or one. Similar comments apply
to a right shift.

Our model computer will include 16-bit left-shift and right-shift circuits.
With these circuits, we now have in hand everything a computer needs
to do all arithmetic operations.

2.2.5. Logical Operators. Besides the usual arithmetic op-
erations on sixteen-bit numbers, our computer will also do the logical
operations AND, OR, and NOT on sixteen-bit numbers. Ordinarily, these
three operators act on single bits. We have already seen that the ones-
complement of a number can be computed by applying a NOT operation
to each of its bits. Similarly, we can extend AND or OR to apply to a pair
of sixteen-bit numbers by applying the operation to each corresponding
pair of bits. For example,

0001110101011110
AND 1011000001110101

0001000001010100

0001110101011110
OR 1011000001110101

1011110101111111

Here, the answer in each column is computed separately, by applying
AND or OR to the two top bits in that column.

It is, of course, easy to build sixteen-bit AND and OR circuits to
do such computations. These circuits have two sixteen-bit numbers as
inputs and one sixteen-bit output. Each bit of the output is computed
by a separate AND or OR gate.

2.2.6. An Arithmetic-Logic Unit. As a final step in teaching
silicon to compute arithmetic and logic operations, we can assemble all
the circuits we have developed into a single unit. The resulting multi-
purpose circuit is called an arithmetic-logic unit, orALU. The ALU is
the part of the central processing unit that actually performs arithmetic
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Select-Add

Select-Subtract

Select-Shift-Left

Select-Shift-Right

Select-AND

Select-OR

Select-NOT

First sixteen-bit Input Second sixteen-bit Input

Sixteen-bit OutputFlag Ouptput

16-bit Add

16-bit Shift-left

16-bit AND

16-bit Subtract

16-bit Shift-right

16-bit OR

16-bit NOT

Figure 2.12. An arithmetic-logic unit that can perform each of the
seven basic arithmetic and logical operations. None of the internal
wiring is shown here. The input wires along the left side are used to
determine which operation it actually performs. When one of these
wires is turned on, the result of the corresponding operation is output
by the circuit. The extra single-bit output labeled “flag” will represent
the carry-out of an addition or subtraction operation, or the “lost bit”
of a shift operation.

and logical calculations. The inputs to the ALU will include two sixteen-
bit numbers. It will be able to compute the sum, difference, logical AND

or logical OR of those two numbers. It will also be able to compute
the logical NOT of the first input, shift that input left, or shift it right.
We have designed circuits to do each of these operations. The ALU
contains a copy of each of these circuits, with their inputs connected to
the corresponding inputs of the ALU.

The ALU outputs a single sixteen-bit result. Since it can do seven
different operations, we need some way of telling it which one to do. We
do this by adding seven more input wires, one for each operation. These
wires are used to control the circuit, as opposed to the other inputs,
which are used to provide data for the operation to be performed. From
now on, it will be useful to distinguish between data inputs and control
inputs to circuits. We can say, then, that the ALU has two sixteen-bit
data inputs and seven (one-bit) control inputs.

The method for using the ALU is to put the input data for the op-
eration on the data inputs, and at the same time to turn on the control
input that corresponds to the desired operation. The answer will appear
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Select-Add

Select-Subtract

Select-Shift-Left

Select-Shift-Right

Select-AND

Select-OR

Select-NOT

from Addition Circuit

from Subtraction Circuit

from Shift-left Circuit

from Shift-right Circuit

from AND Circuit

from OR Circuit

from NOT Circuit

Figure 2.13. The circuitry used in the ALU to control which opera-
tion it performs. In fact, it actually performs all seven operations, but
only one of the results makes it to the output. A circuit identical to the
one shown is used for each of the sixteen bits of the output.

on the output wires after the short time it takes for the circuit to do the
computation. Note that exactly one of the control wires must be turned
on for the ALU to work properly. If none of these wires is on, the output
of the ALU will be zero; if more than one are on, the output will be
meaningless.

The ALU has a seventeenth output wire, which is used to provide
extra information about the result of the computation performed. If the
operation is addition, for example, this bit represents the carry-out from
the leftmost bit. Our computer will be able to use the value of this
output to make decisions about what to do next in a program. I will say
more about it in the next chapter.

To finish a complete design for the ALU, we need only determine
how to wire up the inside of the ALU to make the control wires work
correctly. The way we do this is surprising in one respect, in that the
ALU actually performs all seven computations all the time, no matter
how the control wires are set. The control wires merely determine which
of the seven results gets through to the ALU’s output.
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We use the same wiring diagram shown in Figure 2.13 for each of the
ALU’s sixteen output bits. An output bit is connected through such a
circuit to the seven control wires and to the corresponding output bit
from each of the ALU’s seven computational circuits. Understanding
this circuit provides a good exercise in understanding how AND and OR

gates work.
Let’s suppose that Select-Add, the control wire for addition, is turned

on and that all the other control wires are off. In that case, the overall
output should be equal to the output from the addition circuit. The
output wire from the addition circuit is fed through an AND gate along
with Select-add. Since Select-add is on, the output of that AND gate
is equal to the output from the addition circuit. Also, the other six
control wires are off, so the outputs from the other six AND gates in
the circuit are definitely off, no matter what the outputs from the other
computation circuits might be.

So, of the seven wires coming out of AND gates, six of them are known
to be off, and the seventh contains the result from the addition circuit.
These seven wires are combined through OR gates to produce the output
of the ALU. Whenever values are combined with OR gates, the final
result is on if any one of the inputs is on. In this case, six of the inputs
to the OR gates are definitely off, and it follows that the final output
from the OR gates will be off if the seventh input—from the addition
circuit—is off, and will be on if that input is on. That is, the final
output is equal to the result from the addition circuit.

We have shown that when the addition control wire is on and the
other control wires are off, then the output of the ALU is equal to the
output from the addition circuit. The same analysis will work if it is any
other control wire that is on. So, our ALU works as advertised.

We have come a long way from the beginning of the chapter. The
ALU we have built will be a major part of the computer we design in
the next chapter. It will allow our computer to do basic computations
with sixteen-bit numbers. It is still not clear how those computations
can be controlled by machine language instructions stored in memory,
but the outline of a solution can be seen. When an instruction is fetched
into the CPU, we must somehow arrange for the data required by that
instruction to be fed into the inputs of the ALU, and we must arrange
for the correct control input of the ALU to be turned on. Once that is
done, the result of the computation can be read from the outputs of the
ALU. Getting all the details right will not be easy, but we already have
made considerable progress.
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Store-one

Store-zero

Figure 2.14. A circuit with a feedback loop, shown in the two states
that it can be in when both inputs are off. In the first version, both in-
puts to the OR gate are off, and its output is off. In the second, one
of the inputs is on, and its output is on. The circuit is stable in either
state, as long as the inputs stay off.

2.3. Circuits that Remember

Before leaving this chapter, I have to admit that there is a second aspect
of logic circuits that I have been avoiding. (The first was the fact that
logic circuits take time to do their computations.) All the circuits we
have encountered so far share the property that once the values on their
input wires are known, the output values are determined. The method
introduced in Section 1 for designing circuits was based on this assump-
tion, since it starts with a table of all possible inputs and the desired
output for each. There is, however, an important class of circuits for
which this assumption does not hold. These are circuits with feedback
loops.

A feedback loop occurs if the output of some gate is connected, di-
rectly or through a sequence of other gates, back to one of its inputs.
Figure 2.14 shows a circuit with a feedback loop in which the output of
an OR gate is connected through an AND gate back to one of its inputs.
For this circuit, looking at the values of the two inputs is not enough
to tell you what the output will be. As shown in the figure, when both
inputs are off, it is possible for the output to have either of the values on
or off. The behavior of this circuit cannot be described by any expres-
sion of Boolean algebra, since any such expression would assign a single,
definite value to the output for any possible input.
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The correspondence between Boolean algebra and logic circuits with-
out feedback loops provides a beautiful and useful mathematical theory
of such circuits, which we have exploited in designing and understanding
them. Once feedback loops are allowed, there is no such simple theory.
As a result, circuits with feedback must be “hand-crafted.” Their main
use is in computer memory circuits. There are only a few basic types of
feedback circuits that are used to build memories. In this section, I will
describe those that we will need for our model computer.

The lack of a theory for circuits with feedback makes them less inter-
esting from my point of view, since in this text I am more interested in
principles than in practice. I will not give all the details of the circuits
I discuss here. A much fuller treatment can be found in [Shaffer].

2.3.1. A One-bit Memory Circuit. Let’s consider the behavior
of the circuit in Figure 2.14 in more detail. Assuming that both inputs
are off, this circuit has two possible states, as shown in the figure. In
one of these states, the output of the circuit is off, and in the other state
the output is on. We can think of this circuit as “remembering” the value
of a bit—zero if its output is off, or one if its output is on. If we can
find a way to tell this circuit which of these values to remember, we will
have a memory circuit. We will be able to store a one-bit number in the
circuit and then later read the value that was stored there by checking
the value of the output. The value in the circuit will not change until
we explicitly change it by telling the circuit to store a new bit.

As you might have guessed from their names, the two input wires
labeled “Store-zero” and “Store-one” can be used to store a value in the
circuit. The procedure for storing a one in the circuit is to turn Store-one
on briefly and then turn it off again. The Store-zero wire must be kept
off during this process. Turning on Store-one turns on one input to the
OR gate. This causes the output of the OR gate to turn on (if it was
not already on). Then, since Store-zero is off, both inputs to the AND

gate will now be on. The output of the AND gate will then come on, if
it is not already. This causes no further changes, since the OR gate is
already on. Turning Store-one off turns off one input of the OR gate, but
its second input is still on, so its output remains on. The value one has
been successfully stored in the circuit.11

11 Recall from Chapter 1 that all gates have internal power sources. These
internal power sources make it possible for the output of this circuit to be on
even though both inputs are off. There is nothing mysterious about the loop in
the circuit staying on “by itself.”
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Figure 2.15. Our official one-bit memory circuit. The value stored in
this circuit can be read at any time by checking the value output on the
Data-out wire. A value can be stored in the circuit by placing that value
on the Data-in wire and then turning the Load-data wire on and off.

The Store-zero wire works similarly. To store a zero in the circuit, you
just need to turn this wire on briefly and then turn it back off. Store-one
must be kept off while you do this. Turning Store-zero on turns off the
AND gate, which breaks the feedback loop. Both inputs to the OR gate
will be off and therefore so will its output. Turning Store-zero off will
not change this. The value zero has been stored in the circuit. Note that
these procedures for storing a value in the circuit will work no matter
which state the circuit starts out in.

The circuit in Figure 2.14 is not quite what we need, because of the
inconvenience of using separate wires to store zeros and ones. Figure 2.15
shows the modified circuit that we will use instead. This is a standard
circuit, known as a D flip-flop. For this circuit, the procedures for
storing zero and for storing one are the same. The value to be stored—
zero or one—is put on the Data-in wire; then the Load-data wire is turned
on and back off. This will store the value in the feedback loop of the
circuit. The stored value can be read off the output wire, Data-out. This
value will not change until a new value is explicitly loaded into the circuit.

To see how this circuit works, note that the wires Store-one and Store-
zero are connected to the outputs of two AND gates, which in turn get
their inputs from Load-data and Data-in. Store-one will be on only when
both Load-data and Data-in are on simultaneously. Thus, turning Load-
data on and off while the value on Data-in is 1 will turn Store-one on
and off, which will store a 1 in the feedback loop. (While this is going
on, Store-zero stays off because the value of 1 on Data-in passes through
a NOT gate and becomes a 0 on its way to the AND gate connected
to Store-zero.) On the other hand, if the value on Data-in is 0, then
turning Load-data on and off will turn Store-zero on and off while Store-
one remains off; this will store a 0 in the feedback loop. Thus, in both
cases, the circuit works as it should.
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Figure 2.16. On the top is a four-bit register constructed from four
one-bit memories. Below it is a general-purpose k-bit register. This
memory circuit stores a k-bit binary number, which can be read off the
Data-out wires. The four control wires, Load-data, Load-zero, Incre-
ment, and Decrement, are used to change the stored value.

Now that we have a working one-bit memory, it is easy to build a
memory circuit that can store more than one bit. A circuit to store
a k-bit binary number can be built from k one-bit memories. A k-bit
memory has k Data-in wires and k Data-out wires. However, it has only
one Load-data wire, which is connected to the Load-Data inputs of all
k one-bit memories. A k-bit memory therefore stores a k-bit number
all at once, as a unit. Its operation is identical to that of a one-bit
memory: To store a number, put that number on the Data-in inputs and
turn Load-data on and off. This will store each bit of the number in the
corresponding one-bit memory. A four-bit memory constructed in this
way is shown in Figure 2.16.

2.3.2. Registers. Most of a computer’s memory is external to the
CPU. However, the CPU itself does include a small number of memory
circuits. A memory circuit on the CPU is called a register. For exam-



62 Chapter 2. Teaching Silicon to Compute

ple, the program counter, which I mentioned in Chapter 1, is a register
that the CPU uses to store the location in memory of the next machine
language instruction to be executed. There are other registers, such as
the instruction register, which stores a copy of the machine language
instruction that is currently being executed by the CPU.

A register is just a k-bit memory circuit. Some registers, including
the instruction register, can be designed exactly like the four-bit memory
in Figure 2.16. Other registers, such as the program counter, need extra
capabilities. A very common operation on the program counter is to add
one to the value it contains. Adding one to this value corresponds to
moving on to the next instruction in a program, so this operation is part
of every fetch-and-execute cycle. So, in addition to its Load-data control
wire, the program counter has a second control wire called Increment.
Turning Increment on and off will add one to the value in the program
counter. (The term increment just means “add one to.”)

Two more control wires will also be used occasionally. A Decrement
wire can be used to decrement (that is, “subtract one from”) the contents
of the register. A Load-zero wire is used to set the value stored in the
register to zero.

A k-bit register with all four possible control wires is shown in Fig-
ure 2.16. No single register used in the next chapter will have all the
possible inputs shown here.

The implementations of the Increment and Decrement operations are
not easy, and I will not discuss them here. They require a more com-
plicated type of one-bit memory than the one introduced above. In any
case, we could always use an addition circuit to add 1 or −1 to a num-
ber, so you know it is possible in principle; doing it in one step just by
turning a wire on and off is the hard part.

In Chapter 3, we will make use of the circuits designed in this chapter.
Most of the details of the internal operation of these circuits will not be
important. There are some points, however, that you should understand
before going on:

• the fact that a circuit (without feedback loops) can be built with
any specified input/output behavior;

• the method for using the ALU by giving it two sixteen-bit inputs
and turning on a control wire to tell it which operation to perform;

• the purpose of registers and one-bit memories, and the use of their
input, output, and control wires.
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Chapter Summary

The ands, ors, and nots of logic are reflected in the physical structure of
a computer—in its AND, OR, and NOT gates. There is a deep connection
between the logical expressions of Boolean algebra and the computa-
tional circuits in the computer. We can exploit this connection to design
a circuit with any desired input/output behavior. Given a table of in-
put/output values, there is a definite, mechanical procedure for writing
down a logical formula that expresses the same relationship of output
to input; given that formula, there is a definite, mechanical procedure
for building a circuit that performs the computation specified by the
formula.

It turns out that arithmetic too is deeply related to logic. When
dealing with arithmetic, true and false become one and zero, but the
circuits that manipulate the ones and zeros are designed and built in the
same way. Starting from simple circuits that manipulate individual bits,
and combining them step-by-step into more complex circuits, we arrive
eventually at a complete arithmetic-logic unit, a kind of calculator that
can perform any of several different arithmetic and logical operations on
multi-bit inputs.

Computers don’t just do computations. They also have memory.
Data and programs must be stored safely away in memory, where the
CPU can read them as necessary. The CPU itself contains small memory
units called registers to hold data that the CPU is working with directly.
Although memory is very different from computation, it can still be
implemented using only AND, OR, and NOT gates, provided that we allow
circuits with feedback. Although there is no elegant mathematical theory
for circuits with feedback, it is possible to design a one-bit memory circuit
that uses a feedback loop to remember the value of single bit. Such one-
bit memories can then be used as a basis for building all the other types
of memory circuits we will need.

Questions

1. In Section 2.1, we derived a formula for a circuit with two inputs
whose output is on whenever the two inputs are the same. Draw the
circuit. Use similar methods to design and draw a two-input circuit
whose output is on when the two inputs are different. What simple
modification of the first of these circuits would produce a circuit with
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the same behavior as the second? Now suppose you wanted to design a
circuit specified by a table like the one in Figure 2.5, except that most
of the outputs are specified as true, with only a few specified as false.
The method given for building a circuit from this table will produce a
huge, complex circuit, since each line in the table where the output is
true adds several gates to the circuit. How could you produce a much
smaller circuit with the same behavior?

2. Consider DeMorgan’s law, which says that NOT (A AND B) ≡
(NOT A) OR (NOT B). Build a circuit to represent each side of this rule,
and check that they have the same behavior for all possible inputs. Make
up some examples in English to illustrate this rule. Try to explain in
words why it holds.

3. A full adder is a circuit with three inputs (A, B, and carry-in)
and two outputs (sum and carry-out). Make a table showing all possible
combinations of inputs and the resulting outputs. Use this table to build
a full adder directly, using the methods of Section 2.1. Comment on the
differences between your circuit and a full adder built from two half-
adders. Does it make any difference which version of the full adder is
used in building larger circuits, such as a 16-bit adder? (Both “yes” and
“no” are possible answers, depending on your point of view. Explain
why.)

4. In this chapter, we saw how to construct a one-output circuit
from a Boolean algebra expression. The reverse is also possible for cir-
cuits that have no feedback loops. That is, given such a circuit, it is
possible to write the output as a Boolean expression of its inputs. Give
a detailed procedure for finding this expression. Show how it works on
some example circuits. What goes wrong with your procedure when you
try to apply it to a circuit with feedback loops?

5. The simplest feedback loop that can occur in a circuit is produced
by connecting the output of a NOT gate back to its input. How would
such a circuit behave? Remember that when the input to a gate changes,
it takes some time for the gate to change its state. Consider what hap-
pens at the moment when the output of the NOT gate is connected to
the input, and what happens after that.

6. The ALU developed in this chapter contains two sixteen-bit ad-
dition circuits. One of them is inside the subtraction circuit. It would
be nice to eliminate this duplication by using the same circuit for both
addition and subtraction. For the circuit to do addition, the second
sixteen-bit input number must come directly from the second input to
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the ALU; for it to do subtraction, its second input must come from the
circuit that computes the ones-complement of the input to the ALU. Is
there any way that the ALU can switch between these two inputs as
necessary? In fact, it can be done using multiplexers. A multiplexer
is a circuit with three inputs and one output. Call the inputs A, B, and
Select. The output of the multiplexer is defined as follows: If Select is
on, then the output is equal to A; if it is off, then the output is equal
to B. Check that the output can be written in terms of the input as

(Select AND A) OR ((NOT Select) AND B).

The Select wire acts as a switch to determine which of the inputs gets
through to the output. With a bank of sixteen multiplexers, we can
eliminate the extra addition circuit from the ALU. Show how this can
be done. Explain all the modifications necessary to the ALU. Some
modifications will be necessary in the circuitry that controls the ALU’s
output. (One tricky bit you might miss: For the addition circuit to
perform a subtraction correctly, the carry-in to the addition circuit must
be turned on.)
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Chapter 3

Building a Computer

THE WORK DONE in the previous chapter has provided us with the basic
materials for building a computing machine. Now we will see how to
assemble the pieces into a working computer.

The machine we design in this chapter will, in some ways, seem to
be not very impressive. It will understand only a few different machine-
language instructions, and it will have very limited memory in which
to store data and programs. Only an extremely primitive input/output
capability will be provided, so that just getting data and programs into
and out of the computer will be almost ridiculously tedious.

But all of that is really beside the point. First of all, many of the
limitations are design decisions that could be easily revised. For example,
the way we will use sixteen-bit numbers to represent machine-language
instructions will force a limitation on the size of the computer’s memory.
However, using more bits per number would be easy and would allow us
to greatly extend the memory size. Other limitations, such as the lack
of input/output facilities, are beside the point of this chapter, which is
simply to produce a machine that executes programs, without making
that machine easy for people to use. A discussion of the problems of
making real machines for real people is left to Chapter 5.

Remarkably, though, the limitation that seems most damaging is
not a real limitation at all. Real computers can have hundreds or even
thousands of different machine-language instructions. Our computer will
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have a rather anemic set of only thirty-one instructions, and it might
seem that this would mean a real restriction on the computations that
it is able to perform. This is not the case. Aside from limitations of
memory, speed, and difficulty of writing programs for it, our computer
will be precisely as powerful as every other computer in existence. This
essential equivalence of different computer designs is one of the surprising
results of the theoretical study of computation, which will be explained
in Chapter 4.

As for this chapter, while it is generally more technical and detailed
than other sections of the book, the reward for working through it is
substantial: a real understanding of how a purely mechanical device can
automatically execute any list of instructions written in the machine
language it understands. The fact that computers can work at all is
surprising. Even more amazing is the fact that their basic operation can
be fully understood with a relatively modest effort.

3.1. Basic Design

As we saw in Chapter 1 (Figure 1.3), the two main parts of a computer
are its CPU and its main memory. The main memory contains a
numbered sequence of locations, which hold program instructions and
data. The CPU executes programs by fetching instructions one-by-one
from memory and carrying out each of those instructions. We can now fill
in the details in this description. Details of design can vary greatly among
computers, so that the machine we end up with will be different from—
and simpler than—any existing real computer. However, our design is
very much in the spirit of the design of real computers, and it gives a
fair impression of their basic operation.1

Most computers have names, and ours should be no exception. We’ll
refer to it as the “Model X Computer,” or, briefly, as the xComputer.2

The xComputer will be made up of twelve components, connected to-
gether by a mass of wires. The wires connected to each component can
be divided into three classes: input, output, and control. Input and out-
put wires carry data between components, while the control wires are
used to control their operation.

1 That is, it gives a fair impression of the operation of the CPU and main
memory, which are the essential components of a computer. Other components,
which will be covered in Chapter 5, play supporting roles.

2 That’s xComputer, pronounced “Eck’s computer,” in case you didn’t get
the rather weak joke.
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One of these components is a clock. The clock has one output wire,
and as it “ticks,” it turns this wire on and off. It is this ticking that drives
the whole operation of the computer. (See Subsection 2.2.2.) The clock
also has a control wire, which can be used to stop it from running. As
long as this wire is off, the clock will continue to tick; if it is turned on,
the clock will stop, which will in turn stop the operation of the computer.

The eleven remaining components are circuits. One of these is an
ALU to do basic arithmetic and logical operations. Eight of the circuits
are registers—small memory units internal to the CPU, each holding
from one to sixteen bits. Registers and ALU’s were discussed in Chap-
ter 2. That leaves two circuits still to be described. One of these is the
main memory unit, which is assembled from a large number of one-bit
memories. The difficult part of designing a main memory is dividing
it up into locations that can be individually accessed by number. One
possible design is discussed below.

The final component is called the Control circuit or Central Con-
trol Unit. It is this circuit that is responsible for controlling all details
of the execution of machine-language programs. If there is any part of
the computer that “thinks,” this must be it! And yet, when we finally
get around to it, building this circuit will be simplicity itself. Here is the
key: Execution of machine-language programs will be controlled entirely
by turning control wires on and off in the right sequence, as the clock
ticks. The Control circuit has output wires connected to each of these
control wires; we just need to arrange for the Control circuit to turn
its output wires on and off as appropriate. Before you can understand
how this could be done, you need to know more about the design of the
individual components and more about machine-language instructions.
By the time we get around to designing the Control circuit in Section 3,
it will no longer be a mystery how it can be built.

3.1.1. Addressing RAM. The memory unit attached to the CPU
is called the computer’s main memory. It is also sometimes referred
to as the RAM, or random access memory, although this is really a
more general descriptive term for any memory made up of addressable
locations. The main memory consists of a large number of locations, each
holding a binary number. These locations can be “accessed randomly.”
That is, you can get at the contents of any randomly picked location at
any time. The locations are numbered: location 0, location 1, location 2,
and so on. The number of a location is called its address. To store or
read data in a location, you need to know the location’s address.
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Main
Memory

Memory-out

Memory-in

Address

Load-data-

into-Memory

Figure 3.1. The main memory of the xComputer. In this figure, as in
all the figures in this chapter, the thinnest lines represent a single wire,
while thicker lines represent bundles of several wires. Here, there are
sixteen Memory-in wires, sixteen Memory-out wires, ten Address wires,
and a single Load-data-into-memory wire. All these are connected to the
CPU.

In xComputer, the address will be a ten-bit binary number. This
means that there will be 210, or 1024, different locations, numbered
from zero to 1023. Each of these locations will hold a sixteen-bit binary
number. The wires that connect the memory to the outside world are as
follows: It has a sixteen-bit input, which is used to specify a number to
be stored in memory, and a sixteen-bit output, which can be used to read
a stored value. There is also a ten-bit input which is used to specify the
address of the location that is to be accessed. (There are 1024 different
locations for storing numbers, but at any given time only one of these
locations is accessible, namely the one whose ten-bit address is on the
Address wires.) Finally, there is a control wire which is used to tell the
memory unit to load the sixteen-bit number on the data input wires into
the location specified by the Address wires. A diagram of the memory
unit is shown in Figure 3.1.

There are only two different things that you can do with main mem-
ory: You can store a number in a specified location, or you can read
the number that is currently stored in a specified location. If you know
how to do these two things, then you understand the memory completely
from an external, “black box” point of view.

The procedure for reading a number is simply to put the address of
the location that contains it on the memory’s Address wires; the stored
value can then be read on its output wires.

Storing a number involves a few more steps: The value to be stored
must be put on the memory’s input wires, and the address of the location
where it is to be stored must be put on the Address wires. Then, the Load-
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Figure 3.2. The first step in designing addressable memory. This cir-
cuit uses a one-bit address to choose between two one-bit memories at
“location 0” and “location 1.” When the address wire is off, data can
be stored into or read from location 0; when it is on, location 1 is in use
instead.

data-into-memory control wire is turned on briefly and then off again;
this causes the value to be stored.3 Note that this is the only time that
Load-data-into-memory is ever used: Turning it on will load whatever
value is on the Memory-in wires into whatever location is specified by the
Address wires, replacing whatever number was stored there previously.

A black box understanding of main memory is sufficient for under-
standing the role it plays in xComputer, but it is interesting to see how
an addressable memory can be built. To simplify the discussion, we will
imagine that each location stores only a single bit, instead of sixteen.
The real memory will consist essentially of sixteen copies of the circuit
described here.

Each location is really just a one-bit memory of the type introduced
in Section 2.3, with its own Data-in, Data-out, and Load-data wires. The
difficulty is to arrange for the Address wires to pick out one location from
all those available. The simplest case would be when there are only two

3 As always, it takes some time for these procedures to do their work. When
you put an address on the Address wires, the contents of the specified location
are not immediately available on the output wires. You have to wait some
minimum time to allow the effect of changing the address inputs to filter through
the circuit. This minimum time must be less than the time between ticks of
the clock. In a real computer, the time required would be some fraction of a
millionth of a second.
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locations, location 0 and location 1. In this case, only one Address wire is
needed. This single Address wire is turned off to choose location 0 and
on to choose location 1. A two-location memory of this type is shown in
Figure 3.2.

Let’s see how the single Address wire picks out one of the two lo-
cations. Each of the locations constantly outputs the value stored in
it. Only one of these values should get through to the output wire of
the circuit, depending on the value on the Address wire. The idea is that
when this wire is off, certain data pathways in the circuit are open while
others are closed. Turing it on will reverse the state of each pathway. If
the Address wire is off, then the data from location 0 should get through
to the output, while data from location 1 is blocked. If the address wire
is on, the opposite should happen. You can easily verify that the circuit
in Figure 3.2 works in this way. (The outputs from the two locations are
combined through a subcircuit called a multiplexer. Multiplexers were
introduced in Question 6 at the end of Chapter 2; the Address wire plays
the role of the Select wire of the multiplexer.)

Turning now to storing values, the Data-in wire of the two-bit mem-
ory is connected directly to the Data-in wire of each of the two one-bit
memories it contains. A one-bit memory does not actually store the
value on its Data-in wire until its Load-data wire is turned on and off.
The two-bit memory’s Address wire is used to open up a pathway from
its Load-data-into-memory input to the Load-data wire of one or the other
one-bit memory. As shown in Figure 3.2, Load-data-into-memory is con-
nected to the Load-data wire of each one-bit memory through an AND

gate. The second input to that AND gate will control whether or not a
signal on Load-data-from-memory will get through to the one-bit-memory.
As you can see, this second input is controlled by the Address wire in
such a way that if the Address wire is off, the signal gets through to
location 0, while if it is on, it gets through to location 1. If Address is off,
then turning Load-data-into-memory on and off will turn the Load-data
for location 0 on and off, and the value on the Data-in input wire will be
loaded into location 0. If Address is on, it is loaded into location 1.

Thus, the circuit as shown works correctly for both storing and read-
ing data.

Now, the circuit that we really want to build has 1024 locations, not
two. It might seem at first that that circuit would have to be about 512
times harder to build than the one we have just designed. In fact, though,
it can be built by repeatedly applying exactly the same technique used to
build the two-location memory. Each time it is applied, another address
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Figure 3.3. The step from k to k + 1 address wires. This memory
circuit has 2k+1 locations, and is made from two smaller circuits with
2k locations each. One bit of the (k + 1)-bit address is used to distin-
guish between the two smaller memories; the other k bits are used to
pick out locations within those memories. Aside from the extra k ad-
dress wires, the logic of this circuit is the same as the logic of the two-
location memory in the previous figure.

wire is added and the number of locations is doubled. A memory circuit
with k + 1 address wires can be built from two circuits with k address
wires, as shown in Figure 3.3. We go from two locations, to four, then
to eight and so forth, reaching the required 1024 after just nine steps.

This is another example of our general method of building a complex
circuit by combining simpler circuits that we have already built, but there
is an interesting twist. Except for having one fewer address wire, the
smaller component circuits are essentially the same as the bigger circuit
of which they are a part. We could almost say, “To make a memory
circuit, start with two memory circuits and wire them together with a
few extra logic gates.” This statement if taken literally is paradoxical,
since it says that a memory circuit contains two copies of itself. It must
be read, of course, as, “To make a memory circuit [with (k + 1)-bit
addresses], start with two memory circuits [with k-bit addresses].” This
is our first example of a phenomenon called recursion, which occurs
when a problem can be broken down into subproblems that are of the
same type as the original problem. We will encounter recursion again in
Chapter 7, where it is used as a technique in computer programming.

3.1.2. Registers. The main memory is not the only memory used
by our computer. The CPU itself contains registers, which are memory
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circuits capable of holding some small number of bits. Each register has
output wires on which the value that is currently stored in the register
can be read at any time; when we build the CPU, these wires will be
connected to input wires of other components in the CPU that need to
use the value stored in the register.

Registers play an important role in organizing each computation that
takes place in the CPU into a sequence of fairly simple steps. Consider,
for example, the process of using the ALU to perform an addition. The
two numbers to be added must be put on the two sixteen-bit inputs of
the ALU, and the Select-add wire must be turned on. These values on
all the input wires must be maintained while the answer is read from the
ALU’s output wires. In general, at each stage in every computation, we
have to make sure that all the inputs to all the circuits are set to the
correct values. With so many wires to worry about, this could be a very
difficult task.

Suppose, however, that we connect some of the input wires of a circuit
to the output wires from a register. Then, the circuit’s input will always
be equal to whatever value happens to be stored in the register. This
value can only change when a new value is explicitly stored by turning the
register’s Load-data wire on and off. This means we can set up whatever
input the circuit needs by dumping a number into the register; once that
is done, we can stop worrying about that input, as long as we make sure
to leave the Load-data wire of the register alone.

To apply this strategy to the ALU, we attach two sixteen-bit registers
to its two data inputs. We will call these registers X and Y. In addition,
we attach the sixteen-bit output of the ALU to the data input of another
register called the accumulator, or AC. (You might recall from Chapter 1
that the accumulator is a register that holds the results of computations.)
Figure 3.4 shows the ALU with all the registers that are attached to
it. The procedure for adding two numbers then becomes a sequence of
simple, independent steps:

1. Put the first number to be added on the input wires of register X,
and turn that register’s Load-data wire on and off. (Then forget about
register X and its inputs.)

2. Put the second number to be added on the input wires of regis-
ter Y, and turn that register’s Load-data wire on and off. (Then forget
about register Y and its inputs.)

3. Turn on the Select-add wire and, while it is on, turn the Load-data
wire for the accumulator on and off.
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Select-Add
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Select-Shift-Left

Select-Shift-Right
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Select-OR

Select-NOT

X register Y register

Accumulator

Load-X-from-AC
Load-Y-from-Memory

Load-Y-from-IR

Load-AC-from-ALU

Load-AC-from-Memory

Load-AC-from-IR

Increment-AC
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Flag-register

ALU

Load-Flag-
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Figure 3.4. The ALU and the four registers attached to it. X, Y, and
AC are sixteen-bit registers. (AC is an abbreviation for “accumula-
tor.”) FLAG is a one-bit register. X and Y hold the numbers to be
used as input for the ALU’s computation. The result of that compu-
tation can be loaded into AC. The Flag output from the ALU, which
can hold extra information about the result of the computation, can be
loaded into the Flag register.

After step 3, the sum of the two numbers is stored in the accumulator,
and that sum can be read from its output wires at any convenient time,
at least until the accumulator is explicitly loaded with a new value.

This three-step procedure could be used to add numbers with the
ALU by hand, but of course our problem is more difficult than this.
We have to design a Control circuit that will carry out this procedure,
along with all the other procedures necessary to execute a machine-
language program, without any intervention from us. Obviously, before
we attempt to design such a circuit, we need a complete understanding
of what those procedures should be. The three steps listed above are not
complete enough.

In particular, in steps 1 and 2, we still have the problem of making
sure that the right data for the operation gets onto the input wires of
the X and Y registers. Since we will not be around while the program is
running to set up the data inputs, they have to come from the outputs
of other components in the computer. Figuring out exactly where they
should come from requires a detailed knowledge of machine-language
instructions and the steps involved in executing them. The machine lan-
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Figure 3.5. Some of the internal structure of the accumulator, show-
ing how it can load data from three different sources. The Select circuit
is used to determine which of the three inputs to the accumulator gets
through to the register that actually holds the stored number.

guage of xComputer will not be covered in detail until the next section,
but that discussion will make a lot more sense if you already have some
idea of the general operation of the computer. I will explain some aspects
of that operation in this section, but you should understand that some
of the details discussed here are required for the execution of specific
machine-language instructions that you don’t know about yet.

Let’s consider the X register first. As it happens, every machine-
language instruction that uses the ALU requires X to be loaded with the
current contents of the accumulator.4 So, wiring X is easy: Its input
is connected to the output wires from the accumulator. Turning on X’s
Load-data wire will load a copy of the number stored in the accumulator
into X. To keep things straight, I would like to give a different name to
every control wire in xComputer, so we will call the Load-data wire for
the X register Load-X-from-AC.

If we turn to the accumulator, we find a more complicated situation.
First of all, there are machine-language instructions for adding one to

4 For example, one such instruction says to subtract a number in memory
from the value in the accumulator. For this instruction, X is loaded from
the accumulator and Y is loaded with the number from memory. The answer
produced when Y is subtracted from X is loaded back into the accumulator,
replacing the value that was there previously.
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the accumulator and for subtracting one from it. The accumulator needs
Increment and Decrement control wires to implement these instructions.
(Increment and Decrement were discussed in Section 2.3.)

The input source for the accumulator also presents some problems.
When the accumulator is used to store the results of a computation, it
is loaded with the output from the ALU. However, there are machine-
language instructions that require the accumulator to be loaded from
other sources. To handle this, we provide the accumulator with three
separate data inputs—one from the ALU, one from main memory, and
one from another register called the IR. We provide a separate control
wire to load data from each of these sources into the accumulator. Reg-
isters with several different input sources are something new for us. Fig-
ure 3.5 shows how such a register can be constructed from an ordinary,
single-input register. The Select circuit in this figure is essentially the
same as the circuit we built in Subsection 2.2.6 to compute the output
of the ALU.

This should give you the general idea of how registers are designed
and what they are used for. All of the eight registers used in xComputer
are shown in Figures 3.4 and 3.6. Except for ADDR and COUNT, all
of the registers have already been mentioned. A full understanding of
these components will have to wait until the next section, but here is a
summary description (with some new hints about the overall operation
of the CPU):

•ADDR, the address register. A ten-bit register whose outputs are
connected to the Address wires of the main memory. ADDR is used to
control access to the 1024 locations in the memory. Recall that the value
on the memory’s Address wires specifies which location in memory is to
be used when data is stored in memory or when a stored value is read.
Loading a number into ADDR selects a memory location. Any time
main memory is used—for reading or storing data or machine-language
instructions—that use is preceded by dumping the address of the desired
memory location into the ADDR register.
• IR, the instruction register. A program to be executed by the CPU is

stored in memory as a sequence of machine-language instructions. Each
instruction is coded as a sixteen-bit binary number. Recall that the pro-
gram is executed by repeatedly fetching an instruction from memory and
then executing that instruction. Fetching the instruction will just mean
loading it into the IR. Once it has been loaded, any other component in
the CPU that needs to know what the current instruction is can read
that instruction from the output wires of the IR.
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Figure 3.6. The remaining four registers that are used in xComputer,
together with the clock. COUNT is a four-bit register, and IR has six-
teen bits. ADDR and PC each hold ten bits. Note that the output from
IR is divided into two parts: the six leftmost bits, which feed into the
Control circuit, and the remaining ten bits, which connect to the Y reg-
ister, the program counter, and the accumulator. Except for the Con-
trol circuit, all the components of xComputer appear in this figure or in
Figure 3.1 or Figure 3.4.

•PC, the program counter. The PC was discussed in Chapter 1. It
holds the location in memory of the program instruction that is next in
line to be executed. At the beginning of each fetch-and-execute cycle,
the CPU needs to load the next instruction into the IR. The PC holds
the address of that instruction.

•COUNT, the step counter. This is a four-bit register which is unusual
in that it has no data-input wires. It has two control wires, Set-COUNT-
to-zero and Increment-COUNT. The second of these is attached to the
output wire from the clock. As the clock ticks, this wire is turned on
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and off, and the value in COUNT is incremented. In fact, this is the
only direct influence of the clock on the computer.5 Each machine-
language instruction is executed in a sequence of small, simple steps.
COUNT is used to “count off” the steps in the execution of each single
machine-language instruction. (This is not the same as counting off the
machine-language instructions that make up a program; that counting
is done in the program counter register.) At the beginning of the fetch-
and-execute-cycle, COUNT contains the four-bit number 00002. As the
clock ticks, the contents are incremented to 00012, then 00102, and so
on. Each time the value changes, a new step is initiated.

•X, the first operand register. Represents one of the numbers to be
used as input for a calculation by the ALU.

•Y, the second operand register. The second input to the ALU. (For
those operations that require only one input—that is, for the operations
NOT, shift-left, and shift-right—the value stored in Y is ignored.)

•FLAG, the flag-bit. This one-bit register will be loaded with the Flag
output from the most recent calculation done by the ALU. For example,
after an addition operation has been performed, FLAG will hold the
carry-out from the left-most column. For shift operations, it will hold
the bit that was “shifted off the end” of the number in the accumulator.

•AC, the accumulator. Grand Central Station for most of the data that
flows through the CPU. When data values are loaded from memory, this
is where they are stored. When a computation is performed by the ALU,
this is where the result goes. Any number that is to be stored in main
memory must be first loaded into the AC and then moved to memory
from there.

Altogether, these eight registers have a total of eighteen control wires.
There are nine other control wires in the computer: the seven controls
of the ALU, main memory’s Load-data-into-memory wire, and the clock’s
Stop-clock wire. Everything done by the CPU is accomplished by turning
these control wires on and off. The COUNT register’s Increment-COUNT
wire is continually turned on and off by the clock. All the other con-
trol wires are connected to the Control circuit, which is responsible for
turning them on in the correct sequence.

Recall that the CPU works by repeatedly carrying out a fetch-and-
execute cycle. Each cycle has two parts: fetching a machine-language

5 In real computers, the clock output is fed directly to a large number of
components. A great deal of circuitry is devoted to making sure that the signal
from the clock gets to each component at the proper time.
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instruction from memory and then executing that instruction. The first
of these two parts will be the same in every cycle; the second part depends
on what instruction is being executed.

A fetch-and-execute cycle will be carried out in a sequence of steps.
Step 1 is done when the value in the COUNT register is 00012, step 2
when that value is 00102, and so on. As the last step in each cycle,
the value in COUNT will be reset to zero, and the next cycle will begin
when COUNT is automatically incremented to 00012 at the next tick of
the clock. Each step is completely defined by the control wires that are
turned on during that step. Our job, as we try to construct a design for
xComputer, is to specify both the sequence of steps necessary to carry
out each possible machine-language instruction and which control wires
need to be turned on during each step.

We can deal with the fetch part of the fetch-and-execute cycle with-
out knowing anything about how to execute specific instructions, since
the first three steps in each cycle will always be the same. Fetching
an instruction means loading it from memory into the instruction reg-
ister (IR). Now, before anything can be read from memory, its address
must be loaded into the address register (ADDR). So, as the first step
of the fetch-and-execute cycle, the CPU must load the address of the
next instruction to be executed into ADDR. Since the required address
is in the PC, this step can be accomplished simply by turning the Load-
ADDR-from-PC control wire on and off.6

Once the correct address has been loaded into ADDR, the instruction
we want will be available on the main memory’s output wires. In the
second step of the fetch-and-execute cycle, this instruction is loaded into
IR by turning the Load-IR-from-memory control wire on and off. In the
third step, the value in the PC is set up to get ready for the next instruc-
tion. We do this by turning the Increment-PC control wire on and off, in
order to add 1 to the value in the PC. So, no matter what instruction is
to be executed, the first three steps in the fetch-and-execute cycle will
always be:

Step 1: Turn on Load-ADDR-from-PC.

Step 2: Turn on Load-IR-from-memory.

Step 3: Turn on Increment-PC.

6 This is another example of the general process of reducing some “action”
that the computer needs to perform to manipulation of control wires. Once
again, I emphasize that this sort of thing is the key that makes it practical to
build working computers.
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For each step, I have listed the wire that is to be turned on during that
step. In some of the later steps for executing certain instructions, several
wires can be turned on at the same time. As each new step begins, any
wire that was turned on for the previous step is to be turned off unless
it is specifically listed for the new step.

The three steps listed here are done when the value in the COUNT
register is, respectively, 00012, 00102, and 00112. For example, we must
design our Control circuit so that when the value in COUNT is 00012,
the Load-ADDR-from-PC wire, and only that wire, will be on. When
the value in COUNT changes to 00102 at the next tick of the clock, the
Load-ADDR-from-PC wire goes off, and Load-IR-from-memory comes on.

The steps that come after the first three depend on what instruction
is being executed. (Of course, this depends in turn on the program stored
in main memory, since the instruction was loaded from some location in
memory.) We can’t go any further in our analysis until we know exactly
what instructions are available and how they are represented.

3.1.3. Input/Output. But before we do the hard work of getting
xComputer to execute machine-language programs, we should make sure
that we will be able to use the computer we design. Our computer will
be perfectly useless if we have no way of getting a program into memory,
no way of telling the CPU to start executing it, and no way of finding out
the result of that execution. We need some way of getting data into and
out of the computer. The process of moving data from the outside world
into a computer is called input ; data flowing in the opposite direction
is called output. Collectively, input and output are usually referred to
by the abbreviation I/O.

Real computers have sophisticated I/O capabilities, but in this chap-
ter I am interested only in showing that I/O is possible in principle.
How can we add enough I/O capability to make xComputer minimally
usable?

We already know how to load numbers into main memory by hand.
It’s a simple matter of setting the values of the memory’s input and ad-
dress wires and then turning Load-data-into-memory on and off. When
we put the computer together, all these wires will be connected to the
CPU, but there is nothing to stop us from providing additional connec-
tions to a bank of switches that can be used to manually turn the wires
on and off.

In order to load a program into memory, we need switches connected
to its input, address, and control wires. In order to tell the CPU to exe-
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cute that program, we must load the program counter with the address
of the first instruction in the program. To do this, we need switches con-
nected to the program counter’s input wires and to its Load-data wire.
Finally, we will need a switch connected to the Stop-clock wire. This
switch can be on while we load the memory and PC. Once everything is
set up, turning Stop-clock off will start the computer running.

We also need some way to determine the result of executing a pro-
gram. This means that we must be able to inspect the contents of mem-
ory after the program ends. This is also easy. We can use the switches
we have already attached to the address wires to pick out any location in
memory whose value we want to check. Once we have done so, the num-
ber in that location can be read from the memory’s output wires—we
might attach a small light bulb to each of these wires to indicate whether
that wire is off or on.7 This simple I/O capability is enough to let us
load programs, tell the CPU to execute them, and check the results.

3.2. Fetching and Executing

Each machine-language instruction to be executed by xComputer must
be encoded as a sixteen-bit binary number. Most instructions specify
two things: an operation to be performed, and some data that is to
be used in the operation. In most cases, the data is the address of a
location in memory. This address uses up ten bits of the instruction
out of the sixteen available. This leaves the other six bits to use as an
instruction code, which specifies the operation. Let’s say that the six
leftmost bits of an instruction will be used to encode the operation, and
the rightmost ten bits the data. It will be useful to have names for each
of the six bits of the instruction code; we will call them I5, I4, I3, I2,
I1, and I0 (numbered from right to left, corresponding to the powers
of two represented by the bits of a binary number). The format of an
instruction then looks like this:

I5 I4 I3 I2 I1 I0 10 data bits

With six bits for an instruction code, we can encode up to 26, or
sixty-four, different instructions. In fact, we will only have thirty-one,

7 All this is not, by the way, as silly as it might seem. When the very first
“personal computer,” the Altair, was introduced in 1976, its I/O facilities were
essentially the same as those described here. See [Levy, Hackers ].
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Instruction
Code

(binary)

Instruction
Code

(decimal)
Short
Name

Long
Name

0000002 0 ADD Add-to-AC
0000012 1 SUB Subtract-from-AC
0000102 2 AND Logical-AND-with-AC
0000112 3 OR Logical-OR-with-AC
0001002 4 NOT Logical-NOT-of-AC
0001012 5 SHL Shift-AC-left
0001102 6 SHR Shift-AC-right
0001112 7 INC Increment-AC
0010002 8 DEC Decrement-AC
0010012 9 LOD Load-AC-from-memory
0010102 10 STO Store-AC-in-memory
0010112 11 HLT Halt
0011002 12 JMP Jump
0011012 13 JMZ Jump-if-AC-is-zero
0011102 14 JMN Jump-if-AC-is-negative
0011112 15 JMF Jump-if-FLAG-is-set

Figure 3.7. The sixteen basic instructions for xComputer, with in-
struction codes zero through fifteen. Each instruction has a long name,
which says pretty much what it does, and a two- or three-letter ab-
breviation. For the instructions HLT, NOT, SHL, SHR, INC, and
DEC, the data bits of the instruction are ignored. For the other in-
structions in this table, the data bits give the address of a location in
main memory.

and for the moment we will limit ourselves to the sixteen instruction
codes shown in Figure 3.7. The remaining instructions will be modified
versions of some of the instructions in this list.8 The instructions shown
in the figure have instruction code numbers between zero and fifteen.
They also have names, and we will almost always refer to the instructions
by name rather by number. (Remember, though, that the computer can
only deal directly with the binary numbers.)

We are now faced with a double task: to understand the purpose of

8 In fact, the sixteen instructions in Figure 3.7 would be sufficient to build
a general-purpose computer. The other instructions merely make the computer
easier to program.
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each of these instructions, and, more important, to determine a sequence
of steps that will execute the instruction. Once that is done, we will be
ready in the next section to design a Control circuit to carry out those
steps.

3.2.1. Stopping the computer. Let’s start with the simplest
instruction, Halt. The purpose of the Halt, or HLT, instruction is to
stop all further activity in the computer (that is, until it is manually
restarted). We have arranged things so that this can be done simply
by turning on the clock’s Stop-clock control wire. Once that is done,
the COUNT register will stop counting and no further steps will take
place. There is only one step for executing HLT, beyond the three steps
introduced in the previous section that are the same for all instructions.

Step 4 (HLT). Turn on Stop-clock.

A program will generally end with a HLT instruction, unless the pro-
gram is really intended to execute forever (that is, until the computer is
physically turned off or unplugged—which is the way most real comput-
ers actually work).

Note that the ten data bits of a HLT instruction are ignored. That
is, it doesn’t matter what value they have; the effect of the instruction
will be the same. The same is true for the other instructions that do not
require any data: NOT, SHL, SHR, INC, and DEC.

3.2.2. Moving Data. The next two instructions we consider,
Load-AC-from-memory and Store-AC-in-memory, are used to move data
back and forth between the CPU and memory. The ten data bits for these
instructions specify the location in memory that is to be used. When
LOD is executed, a copy of the value in the specified location is loaded
into the accumulator, erasing and replacing whatever was there before.
For example, 0010010000011101, or “LOD 29,” specifies that the num-
ber stored in memory location 29 is to be copied into the accumulator.
STO moves data in the opposite direction, from the accumulator to the
memory location; again, the previous contents of the memory location
are erased and replaced.

These instructions are easy to execute. As always, before loading or
storing anything in memory, we first load ADDR with the address of the
memory location we want to use. When we are executing a LOD or STO
instruction, this address is given by the ten data bits of the instruction
in the instruction register. To get the address into ADDR, it is only
necessary to turn the Load-ADDR-from-IR control wire on and off. Once
that is done, the data can be moved using the appropriate control wire.
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To execute Load-AC-from-memory (LOD):

Step 4 (LOD). Turn on Load-ADDR-from-IR.

Step 5 (LOD). Turn on Load-AC-from-memory.

Step 6 (LOD). Turn on Set-COUNT-to-zero.

To execute Store-AC-in-memory (STO):

Step 4 (STO). Turn on Load-ADDR-from-IR.

Step 5 (STO). Turn on Load-data-into-memory.

Step 6 (STO). Turn on Set-COUNT-to-zero.

Figure 3.8. Steps for executing LOD and STO instructions. For each
step, the control wire to be turned on during that step is specified.

The steps for executing LOD and STO are shown in Figure 3.8. Note
that the last step in each case is to reset the counter to zero. This is done
at the end of each instruction to get ready for the next fetch-and-execute
cycle, which will begin as the counter is next incremented to 1.

3.2.3. Two-operand Computational Instructions. The first
four instructions in Figure 3.7 perform arithmetic or logical computations
that combine two numbers to give a result. Each of the instructions
Add-to-AC, Subtract-from-AC, Logical-AND-with-AC, and Logical-OR-
with-AC uses the value in the accumulator as one input or “operand”
in the computation. The second operand is taken from some location
in memory. The ten data bits of the instruction give the address of the
location in memory that holds this second operand. The result of the
computation is put back into the accumulator.

To execute one of these instructions, we first load ADDR with the
address of the second operand. Then that number is copied into the Y
register while the number in the accumulator is copied into the X register.
At this point, one of the ALU’s control wires is turned on to tell it which
operation to perform. For an ADD instruction, we turn on Select-Add;
for SUB, Select-Subtract; for AND, Select-AND; and for OR, Select-OR.
While this control wire is turned on, we load the answer into the accumu-
lator by turning Load-AC-from-ALU on and off. (In the case of ADD and
SUB, we also load the Flag output of the ALU into the FLAG register.)
The steps for executing an ADD instruction are shown in Figure 3.9.

3.2.4. One-operand Computational Instructions. The re-
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To execute Add-to-AC (ADD):

Step 4 (ADD). Turn on Load-ADDR-from-IR.

Step 5 (ADD). Turn on Load-X-from-AC
and Load-Y-from-memory.

Step 6 (ADD). Turn on Select-Add, Load-AC-from-ALU,
and Load-FLAG-from-ALU.

Step 7 (ADD). Turn on Select-Add.

Step 8 (ADD). Turn on Set-COUNT-to-Zero.

Figure 3.9. The steps for executing an ADD instruction. The steps
for SUB, AND, and OR are similar, except that a different control wire
replaces Select-ADD. Also, for AND and OR, the FLAG register is not
involved. There is one subtle point: The ALU must continue to out-
put the result of the computation while Load-AC-from-ALU is turned on
and off. If Select-ADD were turned off too soon, the output of the ALU
might change before the process of loading the answer into the accumu-
lator were complete. For this reason, Select-ADD remains on through-
out Steps 6 and 7, while Load-AC-from-ALU is turned off at the end of
Step 6.

maining five computational instructions, Logical-NOT-of-AC, Shift-AC-
left, Shift-AC-right, Increment-AC, and Decrement-AC, perform compu-
tations that involve a single operand. The first three of these use the
ALU to perform the computation and are very similar to the instruc-
tions discussed in the previous subsection. As an example, the steps for
executing Shift-AC-right are shown in Figure 3.10.

When we come to INC and DEC, the situation is a bit different.
These instructions change the value stored in AC but do not use the
ALU. Incrementing or decrementing the value in the accumulator can
be accomplished simply by turning a control wire of the accumulator on
and off. This can be done in a single step. Here, for example, are the
steps for executing INC:

Step 4 (INC). Turn on Increment-AC.

Step 5 (INC). Turn on Set-COUNT-to-zero.

3.2.5. Jumps. We come finally to the Jump instruction and
the three conditional jump instructions Jump-if-AC-is-zero, Jump-if-AC-
is-negative, and Jump-if-FLAG-is-set. Instructions of this type were
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To execute Shift-AC-right (SHR):

Step 4 (SHR). Turn on Load-X-from-AC.

Step 5 (SHR). Turn on Select-Shift-Right, Load-AC-from-ALU,
and Load-FLAG-from-ALU.

Step 6 (SHR). Turn on Select-Shift-Right.

Step 7 (SHR). Turn on Set-COUNT-to-zero.

Figure 3.10. The steps for executing a SHR instruction. The steps
for SHL and NOT are essentially the same, except that NOT does not
involve the FLAG register. The steps here are similar to those for the
ADD instruction. However, since SHR has only one operand, there is
no need to load a second operand from memory into the Y register.

To execute a Jump (JMP):

Step 4 (JMP). Turn on Load-PC-from-IR.

Step 5 (JMP). Turn on Set-COUNT-to-zero.

To execute a Jump-if-Zero (JMZ):

Step 4 (JMZ). If AC is zero, turn on Load-PC-from-IR.

Step 5 (JMZ). Turn on Set-COUNT-to-zero.

Figure 3.11. The steps for executing JMP and JMZ instructions. For
JMZ, a control wire is turned on in step 4 only if the value currently
stored in the accumulator is zero; if it is nonzero, no wire is turned on,
the value in the PC is unchanged, and the instruction has no effect.
JMF and JMN are similar to JMZ, except that a different condition is
checked in step 4.

discussed in Section 1.3. They are required to produce loops and to
allow programs to make decisions between alternative courses of action.

When a JMP instruction is executed, it changes the value stored in
the program counter. Since the PC holds the address of the instruction
to be executed during the next fetch-and-execute cycle, this makes the
CPU “jump” to a new location in the program instead of simply going
on to the next instruction in sequence. The new value for the PC—that
is, the address of the location to which the CPU will jump—is taken
from the ten data bits of the JMP instruction. All that is necessary to
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execute a JMP instruction is to copy the data bits of the instruction
from the instruction register to the PC.

In a conditional jump instruction, the value of the PC might or might
not change, depending on whether or not some condition holds. If the
condition holds, the PC is changed and the CPU jumps to the new
location. Otherwise, the CPU will continue on with the next instruction
in sequence just as if the conditional jump instruction had not been
executed at all.

Our machine language includes three conditional jump instructions,
which test three different conditions. JMZ will cause a jump to a new
location in the program if the value in the accumulator is zero; if it is
nonzero, the JMZ instruction will have no effect. JMN tests whether the
value in AC is negative; because of the way we are representing negative
numbers, this just amounts to testing whether the leftmost bit is one.
And JMF tests whether the single bit stored in the FLAG register is
one or zero; it produces a jump when this value is one.9 The steps for
executing jump instructions are shown in Figure 3.11.

3.2.6. Addressing Modes. The machine language-instructions
we have covered so far have six-bit instruction codes that begin with 00.
The machine language for xComputer has fifteen additional instructions
that begin with 10 or with 01. The new instructions are shown in Fig-
ure 3.12. The only difference between these instructions and those we
have already covered is the interpretation of the ten data bits.

Consider, for example, an ADD instruction. Its data bits specify the
address of a location in memory. That location holds the actual number
that will be added to the accumulator when the instruction is executed.
Suppose you wanted to add 37 to the accumulator. You would have to
store the 37 in some memory location. Let’s say you put it in memory
location 1023 (11111111112 in binary). The instruction you would need
to perform the addition would be “ADD 1023,” or in machine language

0000001111111111.

The first six bits here, 000000, say that this is an ADD instruction.
The remaining bits tell where the number 37 is to be found. It would
be more convenient in this case to have an instruction whose data bits
give the actual number to be added, rather than the location of that

9 JMF could be used, for example, to test whether a previous ADD instruc-
tion produced a carry form the leftmost column; this might represent an answer
too big for the computer to handle. The JMF could jump to a section of the
program written to handle such an error.
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Instruction
Code

(binary)

Instruction
Code

(decimal)
Short
Name

Long
Name

0100002 0+16 ADD-C Add-Constant-to-AC
0100012 1+16 SUB-C Subtract-Constant-from-AC
0100102 2+16 AND-C Logical-AND-Constant-with-AC
0100112 3+16 OR-C Logical-OR-Constant-with-AC
0110012 9+16 LOD-C Load-AC-with-Constant
1000002 0+32 ADD-I Add-Indirect-to-AC
1000012 1+32 SUB-I Subtract-Indirect-from-AC
1000102 2+32 AND-I Logical-AND-Indirect-with-AC
1000112 3+32 OR-I Logical-OR-Indirect-with-AC
1010012 9+32 LOD-I Load-AC-Indirect-from-memory
1010102 10+32 STO-I Store-AC-Indirect-in-memory
1011002 12+32 JMP-I Jump-Indirect
1011012 13+32 JMZ-I Jump-Indirect-if-AC-is-zero
1011102 14+32 JMN-I Jump-Indirect-if-AC-is-negative
1011112 15+32 JMF-I Jump-Indirect-if-FLAG-is-set

Figure 3.12. The remaining fifteen instructions in our machine lan-
guage. The instructions in Figure 3.7 use “direct addressing.” Each
instruction listed here is a modified version of an instruction from Fig-
ure 3.7 that uses one of the other addressing modes, constant address-
ing or indirect addressing. The instruction code for a modified instruc-
tion is obtained from the instruction code of the original instruction
by changing one of the two leftmost bits to one. This corresponds to
adding 16 or 32 to the original code number.

number in memory. That’s what the instruction ADD-C is for: The ten
data bits of ADD-C, interpreted as a binary number, are added to the
accumulator. There is no need to store the number elsewhere in memory.
The instruction code for ADD-C is 0100002, and 37 written in binary is
00001001012, so you could add 37 to the accumulator with the machine
language instruction 0100000000100101, or “ADD-C 37.”

When an ADD-C instruction is executed, there is no need to go to
memory to find the data to be added. That data is already in the
instruction register. Because of this, ADD-C takes one fewer step than
ADD. The exact steps needed are left as an exercise.

We consider ADD and ADD-C to be the same instruction, using
different addressing modes. The addressing mode refers to the in-
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To execute Add-Indirect-to-AC (ADD-I):

Step 4 (ADD-I). Turn on Load-ADDR-from-IR.

Step 5 (ADD-I). Turn on Load-Y-from-memory.

Step 6 (ADD-I). Turn on Load ADDR-from-Y.

Step 7 (ADD-I). Turn on Load-X-from-AC
and Load-Y-from-memory.

Step 8 (ADD-I). Turn on Select-Add, Load-AC-from-ALU,
and Load-FLAG-from-ALU.

Step 9 (ADD-I). Turn on Select-Add.

Step 10 (ADD-I). Turn on Set-COUNT-to-zero.

Figure 3.13. The steps for executing ADD-I. This is similar to the
execution of an ADD instruction, but the number loaded into Y in
step 5 is not the number we want to add to the accumulator. Instead,
it is the address of that number. So, we must load this address into
ADDR before we can load the actual number into Y in Step 7.

terpretation of the data bits in an instruction. The regular addressing
mode, used in ADD, is called direct addressing, whereas ADD-C uses
a mode that we will call constant addressing. Our machine language
also includes constant addressing versions of SUB, AND, OR, and LOD.

Real computers can have many different addressing modes. This is
a source of much of the complexity in machine languages. Constant ad-
dressing is particularly useful. I have included one other addressing mode
in the machine language for xComputer, mainly to give you an idea of
what other modes are possible. In indirect addressing, the ten data
bits of the instruction give the address of a location in memory. How-
ever, that location does not contain the data to be used in the instruction.
Instead, it contains the address of another memory location that does
contain the data. Admittedly, this is rather confusing. Looking, for ex-
ample, at the steps for executing ADD-I, the indirect addressing version
of ADD, might help. These steps are given in Figure 3.13.

There are indirect addressing versions of SUB, AND, OR, LOD, STO,
JMP, JMZ, JMN, and JMF. For the jump instructions, the data bits
give the address of a location in memory, and that location contains the
number that is to be loaded into the PC.

The machine language for a real computer can be very complex, in-
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cluding hundreds of different instructions. As you should expect, this
complexity must have some structure if it is to be managed. Addressing
modes can help provide such structure. Instructions that perform the
same operation but use different addressing modes can be conceptually
grouped together. This structure is apparent even in our simple lan-
guage. For example, the three addition instructions ADD, ADD-C, and
ADD-I form such a group.

This structure is reflected in the six-bit codes we use for machine lan-
guage instructions. The first two bits of the code indicate the addressing
mode: 00 for direct, 01 for constant, and 10 for indirect. The remaining
four bits indicate the operation: addition, load, jump, and so forth. If
you inspect the construction of the Control circuit in the next section,
you will see that its design is simplified by this division of the instruction
code into addressing mode plus operation.

3.3. Self-control

We have now seen how the machine-language instructions for xComputer
can be executed in the CPU. As I promised, the execution of a machine-
language program is accomplished by nothing more than turning control
wires on and off in the right sequence.

In order to determine which wires should be turned on, you need to
know only a few things. First, you need to know which step of the fetch-
and-execute cycle is currently being executed; this can be determined by
looking at the four-bit number stored in the COUNT register. Second,
when the step number in COUNT is greater than three, you need the
six-bit instruction code of the instruction that is being executed. This
code is stored in the leftmost six bits of the instruction register. Finally,
for the case of the conditional jump instructions, you will need to know
the numbers stored in the accumulator and in the FLAG register.

With just this information—the outputs of the COUNT, accumula-
tor, and FLAG registers and the leftmost six bits of the output from the
instruction register—you could execute the program by hand, turning
on the necessary wires for each step.

Of course, the problem is that you aren’t around to work the control
wires while the program is being executed. It all has to be done by the
CPU. Somehow, the computer has to control itself. This is what the
Control circuit is supposed to do. Earlier in the chapter, I promised that
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Figure 3.14. A design for the Control circuit. The decoder circuits on
the left convert the inputs to the Control circuit into a more useful set
of signals. The circuit on the right uses these signals to decide which
control wires to turn on.

when the time came to design the Control circuit, it would be simple.
Perhaps you have already seen why that is so.

The Control circuit will have twenty-six output wires, which are con-
nected to each of the computer’s control wires (except for Increment-
COUNT, which is connected to the output of the clock). It has twenty-
seven input wires, which are connected to the four outputs from COUNT,
the leftmost six outputs from IR, the sixteen outputs from the accumu-
lator, and the single output from FLAG. For any combination of input
values, we know which control wires should be turned on; thus, we know
what the outputs should be. We could make a table containing this
information. But wait! An input/output table of this sort is all that
is needed to design a circuit, as we saw in Chapter 2. That chapter
showed how to use Boolean algebra to build a circuit from a table of
input/output values. So, without any work at all, we already know that
the Control circuit can be built in principle.

In practice, the design of the Control circuit can be greatly simplified
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if its outputs are computed in two stages, as shown in Figure 3.14. The
inputs to the Control circuit are fed through several “decoder” circuits.
The decoders translate these inputs into a more useful form for deciding
which control wires should be turned on. The design of the decoder cir-
cuits is easy, since their outputs are given by simple Boolean expressions
of their inputs. These outputs are:

• Step1,. . . , Step10. Exactly one of these wires will be on, depending
on the value of COUNT. These can be used to test which step of
the fetch-and-execute cycle is being currently executed. (None of
the machine language-instructions requires more than ten steps,
which is why we don’t go up to Step15.)

•Constant. This is turned on if the current instruction uses the con-
stant addressing mode. In fact, this is just bit I4 of the instruction
register.

• Indirect. Indicates indirect addressing mode. This is bit I5 of the
instruction register.

•Direct. Indicates direct addressing mode. Its value is given by
NOT Constant AND NOT Indirect.

•ADD, SUB, . . . , JMF. Exactly one of these wires will be on, indi-
cating the current instruction. Which wire is on depends only on
bits I0, I1, I2, and I3 of the instruction register. Note that ADD
is turned on for the instructions ADD-C and ADD-I, as well as
for ADD itself. These three instructions are distinguished by the
addressing mode wires.

•AC=0, AC<0, and FLAG=1. These outputs are used only in the
conditional jump instructions, JMZ, JMN, and JMF. AC=0 is on
whenever the number in the accumulator is zero; AC<0 is on if
that number is negative; and FLAG=1 is on if the bit stored in the
FLAG register is one.

It is straightforward to write a Boolean expression for each control
wire in terms of the outputs from the decoder circuit. Some of them
are very easy. For example, Increment-PC is turned on during Step 2 of
every instruction cycle and at no other time. It follows that

Increment-PC = Step2.

That is, Increment-PC can be connected directly to Step2. Most wires,
however, require nontrivial Boolean expressions that can be constructed
by inspecting the list of steps for executing each of the thirty-one possible
instructions. For example, the Select-ADD control wire of the ALU is
used only in the execution of ADD, ADD-I, and ADD-C. After checking
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the list of steps for those instructions to see when Select-ADD should be
on, we can write

Select-ADD = (ADD AND Direct AND (Step6 OR Step7))
OR (ADD AND Indirect AND (Step8 OR Step9))
OR (ADD AND Constant AND (Step5 OR Step6)).

This expression is true for exactly those steps of exactly those instruc-
tions when Select-ADD must be turned on. All we need to do is build the
circuit specified by the expression and connect its output to Select-ADD.

We don’t need to go through expressions for all twenty-six control
wires here. It is easy, if a bit tedious, to write them down. The point is
that with these expressions in hand, we can use them as a blueprint for
a Control circuit that will turn control wires on and off in exactly the
right sequence to execute any machine-language program. This gives us
the last piece we need to complete a working CPU.

3.3.1. Black Boxes. And that’s it! Our design for a working
computer is now complete. We have what we set out to find: a machine
that stores and executes programs.

It is worth stepping back for a minute and admiring the design, be-
cause it’s an impressive piece of work. We started out with very simple
tools: three types of logic gates and a mathematical theory of how to
put them together to perform simple operations on individual bits. From
there we built an ALU to perform more complex operations on binary
numbers. We also constructed a main memory with a large number
of individually addressable storage locations. This provided us with a
place to store a program and a way of fetching its instructions one by
one. The last step—getting the computer to do all the work of executing
a program on its own—might have looked impossible. But by cleverly
arranging the CPU so that the fetch-and-execute cycle could be done
in a sequence of simple steps, we reduced the problem of building the
Control circuit to an elementary problem in logic-circuit design.

The result is a complex machine, but one that can be understood.
This understanding is possible because of the way we built up the struc-
ture step by step, one level at a time. It is not all that difficult to put
logic gates together into one-bit adders. From there, we can easily put
sixteen one-bit adders together, and suddenly our circuits can work with
binary numbers, not just individual bits. Once we have circuits to do
various operations on binary numbers, we can combine them into an
ALU—a general-purpose calculating circuit that does a major part of
the work in the computer.
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On each level, we assemble a small number of components that we
already understand. These components can be used as black boxes.
That is, we don’t have to think about what’s inside them. All we need
to remember is what they can do and how to get them to do it. This
is called the interface of the black box. The interface specifies its
behavior. What’s inside, the stuff that makes it behave the way it does,
is called the implementation. The idea is that once you have built
the black box—or bought it off the shelf—the implementation is not
important. All you need to know in order to use it is the interface.

The idea of keeping implementation separate from interface is some-
times called the Black Box Principle. One aspect of this principle is
that in order to use something you need to know “how to work it,” but
you don’t need to know “how it works.” This, however, is only one side
of things—the view from outside the box. Viewed from the inside, the
Black Box Principle says that in order to design something, you need to
know what it’s supposed to do, but you don’t need to know the exact use
to which it will be put. For example, when we designed our addition cir-
cuit, our goal was to create a circuit that would add two binary numbers.
At the time, you didn’t know (or care) how it would be incorporated into
a computer.

The Black Box Principle is really just another, more concrete way of
formulating the idea of structured complexity that we first encountered
in Chapter 1. It is a way of limiting the amount of detail you have to
deal with at one time by keeping the various components and the various
levels of a complex system separate. I hope you will agree that our
success in designing a working computer shows the power and usefulness
of this idea.

3.4. Postscript: Assembly Language

This chapter has dealt extensively with individual machine-language in-
structions. But such instructions are only really useful when combined
into a program that does something interesting. It is only fair before
leaving the chapter that I give you some idea what such programs look
like.

Consider a simple program that adds the two numbers in locations
200 and 201 and puts the result back into location 200. In the machine
language of xComputer, such a program would read
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0010010011001000
0000000011001001
0010100011001000

Obviously, programs that look like this are not meant to be read, or
written, by humans. As a first step, instead of writing six-bit instruction
codes, we can write the name of the instruction. And instead of writing
the ten-bit data part of the instruction in binary, we can write it in base
ten. With these changes, the program becomes

LOD 200
ADD 201
STO 200

Written in this way, the program is much more readable, and it is easy
to translate it into machine language—so easy, in fact, that a computer
program can be written to do the translation. A program that is written
using instruction names instead of binary instruction codes is called an
assembly-language program, and a program that translates assembly
language into machine language is called an assembler. It assembles a
“real” machine-language program out of the merely convenient assembly
language form.

Before turning to a more interesting example, it will be useful to make
our assembly language even more flexable. We already allow names to be
used in place of instruction code numbers. Names are easier than num-
bers for humans to deal with. It would be nice if we could use names
for memory locations as well. Names used in this way—as names for
memory locations—are called labels. A label can refer to a memory lo-
cation that contains data, or it can refer to a position within the program
itself. Labels of the first type could be used in ADD, LOD, and STO in-
structions; labels of the second type could be used in jump instructions.
For example, if an assembly-language program uses the label “sum” for
memory location number 200, then that program could say “LOD sum”
instead of “LOD 200.”

The idea of using labels is a powerful one. A programmer can create
and use a label without even knowing what location in memory that label
refers to. The assembler can do all the work of figuring out where the
data is actually stored, or which location a jump instruction is supposed
to jump to. All the programmer needs to know is that the location
exists. The example in Figure 3.15 shows how labels can be assigned
to specific memory locations and used in a program. The labels in this
example, Loop, Done, Num, and Ans, are meaningful names chosen by
some programmer. It is much more natural to use such names instead
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Location Instruction

0 LOD-C 100
1 STO 13
2 LOD-C 0
3 STO 14
4 LOD 14
5 ADD 13
6 STO 14
7 LOD 13
8 DEC
9 JMZ 12
10 STO 13
11 JMP 4
12 HLT

Label Instruction

LOD-C 100
STO Num
LOD-C 0
STO Ans

Loop: LOD Ans
ADD Num
STO Ans
LOD Num
DEC
JMZ Done
STO Num
JMP Loop

Done: HLT
Num: data
Ans: data

Figure 3.15. Two programs for adding up the numbers 100, 99, 98,
. . . , down to 1. The program on the right uses labels, or names, for
memory locations. Note that the program on the left must be stored in
memory starting at location 0; otherwise, the JMP command will not
jump to the correct instruction. The program on the right can be as-
sembled to start at any memory location. The assembler will determine
the correct location number to use in the JMP instruction. The “data”
instruction used on the last two lines of this program does not represent
a machine-language instruction; instead, it is a place-holder that tells
the assembler to reserve a memory location for some data.

of meaningless, arbitrary-looking numbers.
Neither program in Figure 3.15 could be executed as-is by a computer.

An assembler would have to be applied to either program to convert it
into a machine-language program consisting entirely of zeros and ones.
In the machine-language program, any labels in the program will be
replaced by the binary numbers they represent. Fortunately, the tedious
task of “counting off” the instructions in the program to determine what
number each label represents is easy enough to leave to the assembler
program.

The sample program in Figure 3.15 actually performs a nontrivial
computation: It adds up the numbers from 1 to 100. To do this the
program must do 100 additions. The idea is to start with zero and then
add in each of the numbers, one at a time. Although we could do this
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with 100 separate instructions, it makes more sense to use a loop. Each
time through the loop, we add one number. The heart of the loop, then,
consists of adding the next number to the sum we have computed so
far. This part is essentially the same as the three-instruction program
given at the start of this section. That much is easy, but there are a
lot of details to work out. We have to use a memory location to store
the sum we are computing, we need another location to keep track of
which numbers have been added to the sum so far, and we have to exit
from the loop when all the numbers have been added. It is a little easier
to add the numbers in reverse order, starting with 100. That way, we
can use a JMZ instruction to exit from the loop when the number being
added gets down to zero.

The program uses two memory locations for storing data. These
locations are referred to as Ans and Num in the second version of the
program. Ans is used to store the sum computed so far. When the
program ends, this location will contain the sum of all 100 numbers.
Num is used to store the next number that still has to be added to the
sum. The first four instructions set things up so that the sum starts out
at zero and the first number to be added will be 100.

The loop starts with the location labeled Loop. The first three in-
structions in the loop add Num to Ans. The next two instructions sub-
tract one from Num. If the result is zero, then all the numbers have
been added; the JMZ instruction will jump out of the loop to the halt
instruction at the end of the program. Otherwise, the result, which is
the next number that still has to be added, is put back into Num, and
the JMP instruction jumps back to the beginning of the loop.

This example should convince you of two things: First, that machine-
language programs can do nontrivial things, and second, that it is not
necessarily easy to write those programs. In the early history of com-
puting, most programming was done in assembly language. Even after
compilers became available that could translate more sophisticated high-
level languages into machine language, many programmers preferred to
write in assembly language because by working in the “native language”
of the computer, they could write faster, smaller programs. As comput-
ers have become faster, memory cheaper, and compilers better, the use
of assembly language has become rare, but it is used even today when
the speed or size of the program is especially critical. However, high-level
languages are easier to use, and I will postpone serious consideration of
programming until I introduce a high-level language in Chapter 6.
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Chapter Summary

A computer is a machine. Although it does not consist of levers and
gears, it is mechanical in that its operation consists of a sequence of
steps, each of which directly and inevitably causes the next. Ultimately,
this process is driven by a clock, which emits a regular sequence of on/off
pulses as it ticks. At each tick of the clock, one small step in a compu-
tation is performed. What that step will be depends entirely on the
contents of the CPU’s registers. Since some of these registers are con-
nected to the computer’s main memory, the course of the computation
is affected, in a purely mechanical and predictable way, by the contents
of that memory. Of course, looked at from the right point of view—the
human point of view that sees a world of meaning—all this mechani-
cal activity can add up to the execution of a complex, meaningful, and
perhaps infinitely surprising program.

By exhibiting the detailed design of a working model computer, this
chapter has shown how the execution of a computer program can be re-
duced to a sequence of very simple, mechanical steps that can be carried
out by circuits of the type introduced in Chapter 2. Each individual step
is performed by turning on control wires attached to such circuits. The
control wires that need to be turned on are determined entirely by just a
few bits of information, namely (in our model computer) by the contents
of the COUNT register, the accumulator, the flag register, and part of
the instruction register. This information is fed into a logic circuit called
the Control circuit, which turns control wires on and off in a pattern
completely determined by its inputs.

The computation performed by our model computer is made up of
a sequence of fetch-and-execute cycles. During each cycle, one machine-
language instruction is fetched from memory and executed. An individ-
ual machine-language instruction doesn’t accomplish very much. Cer-
tain instructions perform simple computations (such as ADD, SHL, and
INC). Others—LOD and STO—move individual pieces of data between
the CPU and the main memory. Still others—the jump instructions—
control the order of execution of program instructions by changing the
value of the program counter. Beyond this, there is really not very much,
even in computers much more complicated than our model, but some
flexibility is provided by the existence of various addressing modes.

The construction of complex programs from such simple instructions
is aided by the existence of assemblers. These are programs that ma-
nipulate other programs. They can take programs written in assembly
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language and translate them into the zeros and ones of machine lan-
guage. Assembly language uses names instead of binary numbers for
instructions and memory locations. The important role of names carries
over into high-level programming languages, which are covered in later
chapters.

Questions

1. Since the X register is always loaded from the accumulator, why
can’t we just eliminate X and connect the output of the accumulator
directly to the ALU’s input?

2. Make a drawing of xComputer showing how all of its components
are interconnected. (Use a large piece of paper!) Using this diagram,
follow in detail the flow of data within the computer as several different
machine-language instructions are executed. Try to understand how each
connection is used and why it is necessary. That is, what machine-
language instructions require the connection, and what data flow along
it.

3. Our machine-language instructions are coded as six-bit instruc-
tion codes. There are 64 different codes, but we have only 31 different
instructions. More than half of the instruction codes are meaningless.
Suppose one of these meaningless codes is loaded into the instruction
register. How should the CPU react? One possibility is to ignore the
code and do nothing during the execute part of the fetch-and-execute
cycle. Another would be to be to assume that the bad code is an er-
ror and halt the computer. You might be able to come up with other
possibilities. After deciding what you would do, explain how you would
implement it. What specific changes would be required in xComputer’s
Control circuit? Try to figure out what xComputer will do with bad
instruction codes if you build the Control circuit exactly as described in
this chapter.

4. Perhaps the control wires that contribute the most to the “intel-
ligence” of xComputer are Load-PC-from-IR and Load-PC-from-memory.
These wires are used in the jump and conditional jump instructions to
change the value of the program counter. Without them, the CPU would
be doomed to following a sequence of instructions from beginning to end
with no loops or decisions. Only very dull programs could be written.
Design the part of the Control circuit that controls these wires. You will
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need to consider the sequence of steps for executing each of the eight
jump instructions (using both direct and indirect addressing).

5. What changes would be necessary in xComputer to allow it to
use more memory locations? To allow it to work with binary numbers
with more bits? (These two questions are interdependent. Why?)

6. This chapter ignored the fact that much of the data manipulated
by computers represents characters rather than numbers. This question
shows that the machine-language instructions that are available in xCom-
puter can perform some useful operations on character data. Recall that
a character is represented as an eight-bit ASCII code. Each location
in memory holds sixteen bits. If we want to save space, we can store
characters in a “packed” format, two characters per location. But it is
generally more convenient to store characters in an “unpacked” format,
with one character per location. In unpacked format, the eight leftmost
bits are set to zero. Write two small assembly-language programs to
convert between packed and unpacked character representations. One
program should take two characters stored in packed format in a single
location, and it should separate those characters into two locations in
unpacked format. The second program should do the reverse. (Hint:
What happens when you AND a number with 00000000111111112?)

7. Recall from Chapter 1 that a subroutine is a sequence of instruc-
tions that can be jumped to from another part of a program. After the
subroutine ends, the computer should pick up where it was when the
jump to the subroutine occurred. The machine language for xComputer
does not directly support subroutines. Nevertheless, you can use sub-
routines if you handle their implementation “by hand.” The subroutine
must end with a jump back to the correct memory location. Before the
jump to subroutine occurs, the program must stash this location in a
place where the subroutine can find it when it needs it. Work out this
implementation in detail.

8. If you would like a real challenge, you might try to write an
assembly-language program that multiplies two numbers. Assume that
the product of the two numbers is small enough to be represented with
sixteen or fewer bits. (In all honesty, this is much too hard a problem
for me to ask you to do at this time. Remember that the answer is in
the back of the book.)
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Chapter 4

Theoretical Computers

IN THE MID 1930s, it was discovered that there are certain surprising
limitations on what can be accomplished by computers, even given un-
limited time and memory. This was all the more remarkable, given that
no computer even existed at the time.

The mathematicians who made these discoveries were faced, first of
all, with defining exactly what it means to compute something. Several
very different-looking definitions were invented. Using any of these def-
initions, it was found that certain things are “uncomputable.” It might
seem that the best course would have been to look for better definitions.
But another surprise lay in store.

As people began comparing definitions, it was realized that even
though they seemed quite different, in fact, the very same things would
turn out to be computable no matter which was used. All the definitions
that had been put forward were fundamentally equivalent. And since
then, no one has come up with anything better. Any proposed defini-
tion of computability has been proved to be either equivalent to those
invented in the 1930s or strictly more limited than them.

In a sense, any computer that is built can be thought of as a definition
of what it means to compute. We could simply say “computation is what
this computer does.” Now, there are obvious limitations to what any real
computer can do. It might run into problems that it can’t solve only
because it doesn’t have enough memory, or because you aren’t willing to
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give it enough time—say, several million years—to find a solution. But
we can imagine giving the computer as much memory as it needs and
letting it run for as long as necessary, and we can ask what it can do given
such unlimited resources. We then find that the answer doesn’t depend
on the computer at all. Ignoring limitations imposed by lack of memory
and time, all computers are equivalent in what they can compute. And
they are all equivalent to the theoretical computers developed in the
1930s. In particular, they are all subject to fundamental limits that
apply even given unlimited time and memory.

In this chapter, I will explain how we know that all computers are
equivalent. Then, I will discuss Turing machines, a particularly simple
type of theoretical computer introduced by Alan Turing in 1936. The
advantage of using Turing machines to define computability is their sim-
plicity, which makes it easier to analyze them than it is to analyze real
computers. We will take advantage of this simplicity to show that there
are interesting problems that can’t be solved by Turing machines, nor
therefore by any computer.

4.1. Simulation and Universality

Over the course of the last two chapters, we developed a design for a
simple working computer, which we called “xComputer.” But it might
have seemed to you that xComputer could not be capable of very much.
It can execute thirty-one different machine-language instructions, but
each instruction does very little. The things the instructions do are
variations of only a few types of operations: moving data around, per-
forming arithmetic and logical operations, and changing the value of the
program counter. Yet I am claiming that any computation that can be
done by any computer can be done by a program written using only
these thirty-one simple instructions.

Note that I am not claiming that xComputer can necessarily run that
program. We gave our computer an extremely limited memory, which
is simply not big enough to hold any but the most simple programs.
But we could easily redesign it with as large a memory as necessary to
run any given program, without changing the instructions that it can
execute. I am really interested in a theoretical version of xComputer,
with a memory “as large as necessary.” (How large will depend on the
program we want to run, so I cannot fix a size once and for all.) In the
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rest of this chapter, when I talk about xComputer, I will be referring to
this imaginary, theoretical version.

Note also that my claim has nothing to do with input/output. When
you use a real computer, you probably engage in a kind of dialog with
it, in which you give it a command or enter some data and wait for it
to respond. This interaction is not itself computation—merely a way
of telling the computer what to compute. It’s what the computer does
internally, while you are waiting, that I am calling “computation.” Obvi-
ously, xComputer cannot imitate the sophisticated interaction that you
can engage in with real computers; it lacks a mouse, monitor, and key-
board, for one thing. What I am claiming is that xComputer can perform
any computation that any other computer can do, once that computer
has been set up to compute something—with data and programs already
loaded into memory.1

Finally, I am not claiming that xComputer can directly run a program
written for another computer. Each computer is built to execute its own
machine language. Different languages can provide different instructions,
and they probably use very different encodings even for instructions with
the same meaning. If you load a machine-language program written for
another computer into xComputer’s memory and try to run it, xCom-
puter’s circuits will react to the bit patterns in the program in ways that
have nothing to do with their intended meanings. The result will look
completely random.

So what do I mean when I say that xComputer can perform any
computation that can be done by any other computer? First of all, I
mean that if you give me any program written for any computer, I can
write a program for xComputer that will always produce the same result
as your program, given the same data. Here, “giving the program data”
just means loading that data into memory with the program. As the
program runs, it can read the data, make changes to it, and write new

1 Actually, real computers do get extra computational power from their
input/output capabilities, but this is only because they have main memories of
a fixed, limited size. If the computer can do input and output between main
memory and the outside world, it can use more data and program instructions
than can fit into its memory at one time. The outside world here can refer to
so-called “external memory” such as disk drives and magnetic tape drives—or
to a human who can type in data as needed. Note that if the computer’s main
memory is “as large as necessary,” then the ability to do I/O becomes irrelevant,
since we can load a program and all its data into memory and also leave room
for any “scratch work” that the computer might need to do during the course
of the computation.
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data. By the “result” of running the program with that data, I just
mean the contents of memory after the program halts. Note that I am
required to produce a single program that will give the same result as
your program for any possible data. This requirement is important; if
I were permitted use different programs for different data, I could cheat
by producing programs that simply write the desired result to memory
without doing any computation at all!

What I will actually show is that xComputer can simulate any other
computer. Simulation means something stronger than just giving the
same result: xComputer will get the results by following the same steps
as the other computer, on some level. Because xComputer is relatively
simple as computers go, it might take it many steps to accomplish what
can be done by one instruction on other computers. But there will be a
sequence of stages in xComputer’s computation that will correspond to
the steps taken by the other computer. While step-by-step simulation
is not in itself my goal, it provides an effective way of proving that one
machine can do any computation that can be done by another.

4.1.1. Translation. Given a program written in any other lan-
guage, the most natural approach is to try to translate it into a program
in xComputer’s machine language. This will provide the fastest possible
simulation, but it will be easy only if the original language is almost the
same as xComputer’s in the first place.

For example, if the original program contains an instruction that
adds a value from some location to the accumulator, it can be trans-
lated directly into an ADD instruction for xComputer. However, if the
original program contains a multiplication instruction, it will have to be
translated into a sequence of many instructions, since xComputer does
not have a single instruction that does multiplication.

The problems can be much worse than this. The original program
might use subroutines. It might include addressing modes that are not
available for xComputer. It might use “real numbers” (with decimal
points), not just integers. All of these things can in fact be translated
into the machine language of xComputer, but it’s not easy, and I won’t
convince you just by saying so. Simply talking about translation is not
going to convince you of xComputer’s power.2

2 Nevertheless, translation is very important. It can be applied to any
language—even if it’s not the machine language of any existing computer. This
is the case for two types of translators that have already been mentioned, as-
semblers and compilers. These translate, respectively, assembly languages and
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4.1.2. Interpretation. Closely related to translation is another
form of simulation called interpretation . Instead of translating the
program all at once, we let xComputer inspect the instructions in the
program and perform the actions encoded by each instruction, one at a
time.

Of course, when I say that xComputer will do this, I mean that it
will run a program to do it. That program is called an interpreter.
The original program and its data are loaded into part of xComputer’s
memory. The interpreter, which is written in xComputer’s machine lan-
guage, is loaded into another part of xComputer’s memory. When it is
run, it will read the instructions in the original program and carry them
out one by one; we say that it interprets that program.

As the interpreter interprets another program, it is in effect playing
the role of the CPU of the simulated computer, imitating the exact
sequence of fetch-and-execute cycles that that CPU would go through.
Important data that the CPU would keep in its registers are kept instead
in xComputer’s memory. For example, one memory location would be a
“simulated program counter,” which the interpreter uses to keep track
of which instruction is next in line to be executed in the program it is
interpreting. Another memory location might hold the equivalent of the
simulated CPU’s accumulator.

The basic structure of an interpreter program is fairly simple. It con-
sists of a loop that imitates the fetch-and-execute cycle of the simulated
computer. That is, the loop finds the next instruction to be executed
and simulates its execution, and then it repeats this process over and
over until the program halts. The part of the loop that simulates the
execution of one instruction is just a decision among a number of al-
ternatives, one for each possible instruction code used by the simulated
computer. Given an instruction to be simulated, the interpreter com-
pares its instruction code to each possible code and then jumps to a
segment of the interpreter program designed to simulate that particular
instruction.

high-level languages into machine language. Programmers who write in a high-
level language such as Pascal or BASIC tend to think as if there were a computer
that could run their programs directly. Such an imaginary computer is called
a virtual machine. When a high-level language program is translated into
machine language, this virtual machine is being simulated by a real computer.
In theory, it would be possible to build a real computer that executes high-
level language programs directly, but its circuitry would be extremely complex.
Translation allows the programs to be run on much simpler machines.
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When it comes to simulating these individual instructions, however,
we run into the same sort of problem we had with translation: Simple
instructions are easy to simulate, but it is not obvious that we will be able
to handle all the complex types of instructions that we might encounter.3

However, we can make things easier for ourselves by dropping down
one level of complexity. Recall that when the CPU executes an instruc-
tion, it does so in a sequence of steps. A single step might, for example,
move a number from one place to another, increment the value in a reg-
ister, or load a register with the output value from a complex circuit
like the ALU. Instead of trying to simulate an instruction all at once,
suppose we simulate each of the small, simple steps needed to execute
that instruction.

Simulation on this level will allow many of the details to take care of
themselves. For example, simulating a jump-to-subroutine instruction
might seem pretty complex for xComputer, which does not implement
subroutines directly in its machine language. However, the simulated
computer must execute such an instruction in a series of simple steps
such as storing a value in memory and changing the value of the program
counter. By simulating those steps, xComputer will simulate a jump-to-
subroutine without ever “knowing” that it is doing so.

This whole discussion still assumes that the simulated computer is
very similar in design to xComputer. And it still leaves us with the
problem of simulating complex operations such as multiplication. So I
still can’t claim to have convinced you that xComputer can simulate
any other computer. But maybe you can see what the final step is: If
simulation at a lower level makes things easier, maybe we should work
on the lowest possible level.

4.1.3. Low-level Simulation. From a low-level point of view,
computers are constructed from extremely simple components, which are
easy to simulate. I will assume in my discussion that those components
are AND, OR, and NOT gates (and a clock), but the discussion will clearly
apply to any computer that is built of components that take a small

3 Still, interpreters, like translators, are important programs. I can buy a
program for my Macintosh SE/30 computer that will allow it to run machine-
language programs written for the IBM PC. The PC programs cannot be exe-
cuted directly by the Macintosh’s CPU. Instead, they are interpreted in just the
manner described here. In addition, interpretation can be applied to high-level
languages as well as to machine languages. At least one such language, LISP,
is usually interpreted rather than compiled.
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number of one-bit inputs and produce a one-bit output according to
some simple rule.4

Suppose that we want to simulate some computer. To prepare for the
simulation, we load xComputer’s memory with a complete representation
of that computer on the logic-gate level. Each logic gate is represented
by a block of several memory locations. One of these locations holds a
code indicating what sort of gate is being represented; we use a code of
0 for a NOT gate, 1 for an AND gate, and 2 for an OR gate. A second
location holds the value—0 or 1—on the gate’s output wire.

For each of the gate’s input wires, we use two memory locations. One
of these just holds the value of the input. The other is used to encode
information about how wires are connected in the computer. A computer
is not just a bunch of gates; it is a bunch of gates intricately connected
in a very specific pattern. Each input wire of each gate is connected to
the output wire from some other gate. The identity of that output wire
is the second piece of information we must store for each input wire.
We encode that identity simply by storing the address of the memory
location that holds the value on that output wire.

Finally, we need one memory location to store the value on the clock’s
output wire. We use memory location number one for this purpose and
reserve memory location zero for “scratch work” during the course of the
simulation. Figure 4.1 shows how a very simple logic circuit would be
represented in xComputer’s memory.

When the simulated computer is in a steady state—that is, when
the values on wires are not changing as they do during the course of

4 In this text, I am following the common practice of using the term “com-
puter” to refer to what is more properly called a “digital computer.” The
components that make up a digital computer have inputs and outputs that can
take on only the two values zero and one (or possibly some other small set of
values such as the decimal digits from zero to nine). An analog computer,
on the other hand, includes components whose inputs or outputs can vary over
a continuous range of values. For example, instead of just being on or off, the
voltage on an input wire might be any of the infinitely many numbers between 0
and 1. However, since voltages on a wire can never be measured with complete
accuracy, there is an inherent degree of error in analog computations. In fact,
the activity in an analog computer can be simulated in a digital computer—
with even more accuracy than is physically possible in the analog computer
itself. This would seem to imply that digital computers can do anything that
analog computers can do, and analog computers have mostly fallen out of use.
However, there is increasing interest is a certain type of analog computer called
a “neural net.” Neural nets are used in artificial intelligence research, and we
will meet them again in Chapter 12.
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Figure 4.1. Here’s how we could simulate a small (and perfectly use-
less) logic circuit in xComputer’s memory. Each gate in the circuit
on the left is represented by a block of memory locations. Those loca-
tions store information about what type of gate it is, where its inputs
are connected, and what the values are on its input and output wires.
Location 1 stores the value on the clock’s output wire. If this value is
changed, it is easy to simulate the resulting changes in the circuit. Sim-
ulating a whole computer is just a larger version of this example.

a computation—the value on each input wire must be the same as the
value on the output wire to which it is connected. However, whenever
the value on some output wire changes during the course of a simulated
computation, the value on any input wire connected to that output also
changes. Then, of course, it is possible that the output from the gate
to which that input is connected will change. This can cause further
changes down the line. This cascade of changing values is, in fact, the
substance of a computation, and it is such sequences of changes that we
have to simulate.

Recall what the activity inside a computer looks like on this level: The
computer is in a steady state. Then the clock ticks; that is, the value
on the clock’s output wire changes. This sets off a ripple of activity
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in the computer’s circuits that can change the values on many gates.
Eventually, the activity stops with the computer in a new steady state,
which lasts until the clock ticks again. We have everything we need to
simulate the activity of the computer on this level.

Before running the simulation, we must set up the contents of xCom-
puter’s memory to represent the state of the other computer at the mo-
ment before it starts executing a program, including the contents of its
main memory. But recall how bits are stored in memory: Each bit is
stored in a one-bit memory circuit and is represented by the value on
the output wire from one of the gates in that circuit. So, if we store
all the information about the state of each gate in the computer, we
have already represented the contents of its memory along with every-
thing else! (You might object that this does not really represent the
contents of the computer’s memory, but in fact every bit in that mem-
ory is represented by some bit in xComputer’s memory. You can inspect
the values of these bits after a computation has been simulated, to de-
termine the result of that computation. It’s true that those bits are
scattered through xComputer’s memory, and it might take some work
to pick them out, but obviously it is not the point of this discussion to
make things convenient.)

Once all this is set up in memory, we need only a fairly short xCom-
puter program to do the actual simulation. The program uses memory
location 0 to determine when activity in the simulated computer dies
down between ticks of the clock. I leave it to you to convince yourself
that this program can be written in xComputer’s machine language.

Step 1. Change the value in location 1 (from 1 to 0, or from 0 to 1).
This represents a tick of the simulated computer’s clock.

Step 2. Store a 0 in location 0. (This will be changed to a 1 in step 4
unless the cascade of changes set off by the tick of the clock has ended.)

Step 3. Loop through each of the gates of the simulated computer.
For each input wire, check whether the value recorded for that input
matches the value recorded for the output wire to which it is attached.
(Recall that we have carefully put the address of this output value where
xComputer can find it.) If not, change the value recorded for the input
wire.

Step 4. Loop through each of the gates of the simulated computer.
For each gate, check its inputs and compute what the corresponding
output should be. (This involves checking the type of gate, as well as
the input values.) If the output recorded for the gate does not agree
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with the correct output, change the recorded output value and store a 1
in location 0.

Step 5. Check the value in location 0. If it is 1, then jump back to
step 2. (A 1 in location 0 means that some output wire has changed
value, and therefore the activity in the simulated computer has not yet
died down. Steps 2 through 5 will repeat until no further changes occur.)

Step 6. Check the value in whatever memory location represents the
Stop-clock wire. If it is one, then Halt; the simulated computation has
finished. Otherwise, go back to step 1 to begin simulation of the next tick
of the clock. (The simulated computer might have some other method
of indicating that a computation is finished. This step should make the
appropriate test. The computer must have some simple way of indicating
that the computation is finished—turning some wire on or off, loading a
certain value into some register or some memory location, or executing a
jump to some specific location. These are all things that can be tested,
with more or less difficulty.)

Running this program will simulate every detail of the activity inside
the simulated computer as it performs its computation. It follows that
the result of the simulated computation must be the same as the result
when the computation is performed by the real computer. This shows
that xComputer is capable of doing any computation that that computer
can do.

The simulated computation will, of course, take an outlandishly long
time. For each tick of the simulated clock, xComputer will have to loop
through all the simulated gates, perhaps many times. It will execute
literally millions of instructions (from its own machine language) to sim-
ulate a single step of the computation. If you want a practical simulation,
you will have to use translation or interpretation. But remember that
we are trying to determine what computers can do in theory, ignoring
limitations imposed by time and memory restrictions.

The advantage of very low-level simulation is the simplicity and the
generality of the approach. It is simple enough to be implemented on
xComputer, or even on a much simpler machine. And it is general enough
to allow simulation of any computer. Thus, it provides what I hope is
a convincing demonstration that any computation that can be done by
any computer can be done—perhaps much more slowly—by xComputer.

4.1.4. Computational Universality. Everything I have been
saying about xComputer is true about any computer with a reasonable
set of machine-language instructions. It should be clear that I have
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been talking about “xComputer” only so that I could keep straight the
difference between the computer doing the simulation and the computer
being simulated. In fact, apart from limitations imposed by time and
memory, any computer that has some minimal level of computational
capability can simulate any calculation that can be done by any other
computer. If we compare two computers, again ignoring limitations of
time and memory, we will find that each can simulate the other, and
therefore neither is in theory more powerful than the other. In this
sense, all computers—at least, all computers worthy of the name—are
equivalent.

Let’s put it another way: We can divide all possible problems into two
classes: those that can be solved by a computer given enough time and
memory, and those that cannot. When we make this division, it doesn’t
matter what computer we are thinking of. Any computer can solve all
the problems in the first class, but it will be foiled by any problem in
the second class. We say that any given computer is computationally
universal. This just means that it can be universally applied to all
problems that can be solved by computer.

I will show later in this chapter that there are, in fact, problems
that cannot be solved by any computer. Note, however, that this does
not settle the issue of whether there are problems that cannot be solved
by computer but that can be solved by some other method that we
would be willing to call computation. The hypothesis that there are
no such problems is called the Church-Turing Thesis (named after
Alonzo Church and Alan Turing who independently proposed the thesis
in the 1930s). The Church-Turing Thesis asserts that anything that can
reasonably be called computation can be done by a computer. This
thesis is generally believed to be true, but it is not something that can
be proved since its truth depends to some extent on what people are
willing to call computation.

We have seen that a computer does not have to be very complicated
to be computationally universal. In the next section we shall see that
a very simple machine indeed can display this surprising property. How
can it be that the complex computations of sophisticated computers can
be simulated with such meager resources? In fact, the answer was already
implicit in the discussion of structured complexity in Chapter 1.

Considered at a low enough level, computers are made from very sim-
ple parts which interact with each other in very simple ways. Complexity
arises from the large number of parts used and from the way those parts
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are connected together. But the interconnections among the parts can
be treated as passive data—just a list of facts—that can be stored in
another machine’s memory. Once this is done, that machine can run a
simulation using very few computational resources. The complexity is
still there, but it is in the machine’s memory rather than in its circuitry.
And, if we get tired of simulating one computer, we can always load a
description of a different computer into memory and simulate that one
instead. The same simple machine can still do the job.

4.2. Turing Machines

One of the theoretical models of computation developed in the 1930s
was based on abstract machines that we would recognize today as sim-
ple computers with infinite memory. These machines are now called
Turing machines, after their creator, Alan Turing. Turing machines
are abstract in that they cannot really be constructed, because of the
requirement of infinite memory. Indeed, they were never meant to be
constructed. Turing was interested in studying the theory of computa-
tion. He needed a definition that would be easy to analyze rather than
practical. He was able to use his imaginary machines to prove many fun-
damental results, and his definition of computation is still the one most
commonly used in the abstract study of the theory of computation.

A Turing machine has two parts, analogous to the CPU and main
memory of a computer. Its processing unit is much simpler than the
CPU of any computer, which is what makes Turing machines easy to
analyze. On the other hand, it has an infinite memory in which data
structures of any degree of complexity can be stored.

The memory of a Turing machine is called its tape. It can be visual-
ized as a strip of paper, stretched out to infinity in both directions. The
tape is divided into cells, which correspond to the memory locations in
a computer. Each cell either can be blank or can hold a single symbol.
The only symbols I will use in this chapter are the digits 0 and 1 and the
letters x, y, and z.5 A Turing machine tape, then, might look like this:

5 The details of the definition of a Turing machine can be varied in many
ways. For example, its tape might be infinite in only one direction, or it might
be limited to using only the symbols 0 and 1. The variations don’t matter in
the end, for a reason that should not surprise you: Each type of Turing machine
can be simulated by any other type, so that no type has more computational
power than any other.
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· · · 1 1 0 x 0 0 z 1 1 · · ·

Sometimes, I will need to write a blank so that you can see it; in that
case, I will write it as a sharp sign (#).

The Turing machine’s processing unit is a small device that moves
back and forth along the tape, reading, writing, and erasing symbols.
Its activity is very simple. It can work on only one cell on the tape at
a time. It reads the contents of that cell. It might or might not change
those contents. Then, it moves one cell over, either to the left or right.
And it repeats this process continually until it halts.6

Like a CPU, the processing unit of the Turing machine has some
internal memory, but that memory holds only one piece of data, the cur-
rent state of the Turing machine. There is one special state called the
halt state, which we will denote by h. A Turing machine enters the halt
state when it finishes a computation. The other states are represented
by numbers between zero and some maximum value. Different Turing
machines can have different numbers of states, but any particular ma-
chine has a fixed, finite number of possible states. When we say that a
Turing machine is “in state number N ,” we just mean that the number
N is stored in its memory. As a Turing machine computes, moving from
cell to cell on the tape, it can also change from one state to another.

To perform a calculation with a Turing machine, we will write some
data for the calculation into some cells on its tape. Then we set the
machine down on some cell and start it up in state number zero. At
each step in the calculation, it reads the contents of the current cell—x,
y, z, 0, 1, or blank. It then takes some action, based only on the contents
of the cell and on its current state. The action it takes will have three
steps:

1. It writes a symbol or a blank on the cell it is currently occupying,
replacing the previous contents of that cell. (It doesn’t necessarily change
the contents of that cell; the value it writes might be the same as the

6 Note that the tape of a Turing machine differs from the memory of a
computer in one essential aspect. A computer’s memory is random access; that
is, the computer is able to read any location at any time just by specifying its
address. A Turing machine, on the other hand is capable only of sequential
access. At any given time, the Turing machine is positioned at some particular
cell on the tape. To move to a different cell, it must pass sequentially over all
the cells between its old position and its new position. In fact, the cells do not
even have addresses. There is nothing to distinguish one cell from another, and
the Turing machine doesn’t “know” which cell it is currently reading.
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Current
State

Current Cell
Contents

New Cell
Contents

Direction
of Motion

New
State

0 0 1 R 1
0 1 0 L 0
0 # 1 R 1
1 0 0 R 1
1 1 1 R 1
1 # # L h

Figure 4.2. The specification of a simple Turing machine. Each line
in the table specifies the action that will be taken by the machine when
it is in a certain state, and the cell it is scanning contains a certain
character. The action will consist of (possibly) changing the contents
of the cell, moving to the next cell either to the right or to the left on
the tape, and (possibly) changing to a new state. In the last line of the
table, the new state is the halt state, h. If the Turing machine ever en-
ters this state, it will halt. This table is actually incomplete. It does
not specify what the Turing machine will do if it encounters a x, y, or
z. To complete the table, we specify that if it encounters one of these
symbols, it will move right and halt.

old value.) We specify this part of the action by stating what value the
machine writes. This can be x, y, z, 0, 1, or #.

2. It then moves on the tape either one cell to the left or one cell
to the right. We specify this part of the action with one of the letters
L or R.

3. It then changes state. (It is allowed to “change” to the same state
that it is currently in.) The new state is specified by h, for the halt state,
or by the number of the new state. If the new state is the halt state h,
then the computation is finished; otherwise, the machine begins another
step in the calculation.

A Turing machine can be completely specified by a table that gives
the action that it will take for each possible combination of current state
and current cell contents. In practice, we do not require that each pos-
sible combination actually appears in the table; we assume that for any
combination of state and cell contents not listed in the table, the ac-
tion taken by the Turing machine is to move right and halt. (In most
cases, the omitted lines of the table are irrelevant to the intended use of
the machine.) Figure 4.2 shows a specification of this type for a simple
Turing machine.
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You can imagine a Turing machine’s processing unit as containing a
Control circuit which controls the activity of the machine. The inputs to
this circuit are the current state number and the contents of the current
tape cell. The outputs of the circuit determine the action to be taken
by the machine. A table like that in Figure 4.2 can be thought of as
a specification for this Control circuit. Sometimes this type of table
is referred to as a “program” for a Turing machine, but that can be
misleading because, unlike a program, the information in the table is
hard-wired into the machine. When we do finally encounter something
more like programs for Turing machines, those programs will be placed
on the Turing machine’s tape, just as programs for a computer are placed
in its memory. And it will only be very special Turing machines that
can run such programs.

4.2.1. Useful Machines. When you look at the table in Fig-
ure 4.2, it probably seems pretty random, and if you were to start up
the machine it specifies, its activity might seem random as well. Of
course, that activity is completely determined by the table and by the
contents of the tape, and we can trace by hand the exact steps that the
Turing machine will take.

Suppose, for example, that the tape contains 1011 in four consecutive
cells and that the rest of the tape is blank, and suppose we start the
machine running on the rightmost 1. Remember that a Turing machine
always starts in state 0. According to the table, since it is in state 0
and reading a 1, it should write a 0, move left, and remain in state 0.
The tape now reads 1010, and the Turing machine is on the second digit
from the right, in state 0. In the second step of the computation, the
same rule applies, so the machine again writes a 0, moves left, and stays
in state 0. This time, the cell contains a 0. In state 0, reading a 0, the
Turing machine writes a 1, moves right, and changes to state 1. The
tape now reads 1100.

If you continue to trace its activity, you will see that the Turing
machine moves right twice, without changing the tape or changing state.
In the final step of the computation, it encounters a blank, moves left
and changes to the halt state h. This ends the computation. So in the
end, the tape contains 1100 and is otherwise blank. The Turing machine
is positioned on the rightmost zero.

Nothing that Turing machines do is more complicated than this, ex-
cept that the tables that dictate their actions can be longer. Yet we have
seen that complex calculations can be performed as a sequence of very
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simple steps, and the question is, can the simple steps taken by a Turing
machine add up to something interesting? In fact, it can be shown that
Turing machines can perform any calculation that can be done by any
computer.7

In fact, even the simple Turing machine of Figure 4.2 does something
interesting: It adds one to a binary number. If you write the number
n in binary on a tape and start up the machine on the rightmost digit,
then when it halts, the tape will contain the binary number n+ 1. For
example, 10112 + 12 = 11002, and when we traced the calculation of this
Turing machine with input 1011, we saw that it eventually halted with
1100 on the tape. You should trace its calculation on other inputs, such
as 100, 0, and 1111, to convince yourself that it works as advertised in
all cases.

To deal more rigorously with the theory of Turing machines, we need
a standard definition of what it means for a Turing machine to compute
something. The definition formalizes the idea of giving the machine
some input, letting it compute, and seeing what output it produces. Our
definition does not represent the only way of using Turing machines, but
it is a definition that is convenient for mathematical analysis.

The inputs and the output will be nonnegative integers (0, 1, 2, . . . ),
written on the tape as binary numbers.8 We will always write a specified
number of inputs on the tape, with one blank space between consecutive
inputs. The rest of the tape will be blank. The Turing machine will
be started, in state 0, on the rightmost digit of the last input. We will
say that this computation produces the output n if the Turing machine

7 This does not say that any Turing machine you happen to make up is
computationally universal. You might need a different Turing machine for each
different calculation. However, as we will see below, there are certain individual
Turing machines that are computationally universal.

8 Of course, as we saw in Chapter 1, any type of data can be encoded as
binary numbers. Since the meaning of a calculation is always an interpretation,
we can always interpret a Turing machine as working with other types of data
if we like. For example, we could write a list of words in ASCII code on the
tape and try to build a Turing machine whose output will be the same list
of words sorted into alphabetical order. From one point of view, that machine
takes a binary number as input and computes another binary number as output.
From a lower level point of view, all it does is move back and forth on a tape,
reading and writing symbols. But from the point of view of the user, it is
performing the useful task of alphabetizing a list of words. In any of these
cases, the computation in itself has no meaning. The meaning comes from the
interpretation.
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halts with the number n written in binary on an otherwise blank tape.
There are two things that might go wrong: It is possible that the Turing
machine might just keep running forever. Or, even if it does eventually
halt, the tape might not contain a single binary number when it halts.
In either of these case, we will say that the Turing machine produces
no output for that input. We are mostly interested in machines that
produce outputs for all possible inputs.

For example, if I say that a certain Turing machine adds pairs of
binary numbers, I mean that if you take any two binary numbers what-
soever, write them on the tape separated by a blank and start up the
Turing machine on the rightmost digit of the second number, then the
machine will eventually halt with the sum of the two input numbers
written on the tape. Furthermore, the tape will be blank except for this
sum.

Suppose, more generally, that k is some fixed number, and that T is a
Turing machine that produces an output for any set of k binary inputs.
(That is, we are assuming that for any such inputs, T will halt with
some single binary output number written on its tape.) We then say
that T computes a function from Nk to N. Here, following standard
mathematical notation, N represents the set of all nonnegative integers,
and Nk represents all possible sequences of k nonnegative integers. A
function from Nk to N associates some single output integer to each
possible set of k inputs. If f is the name of a function from Nk to N,
and n1, n2, . . . , nk are any k integers, then the notation f(n1, n2, . . . , nk)
is a short-hand way of saying “the output of the function f when it is
given the numbers n1, n2, . . . , nk as input.” For example, addition can
be considered as a function with two inputs; in this case, f(n1, n2) is
given by n1 + n2.

Turing machines provide one way of defining functions, but it is not
the case that every function from Nk to N can be computed by a Turing
machine. Those special functions that can be are called Turing com-
putable.9 To reiterate the definition: A function f from Nk to N is

9 I mentioned at the beginning of the chapter that several definitions of com-
putability were developed in the 1930s. Turing computability is one of those.
You might be curious about what other sorts of definitions are possible that
would be “very different” form this one. Well, Alonzo Church’s definition by-
passes the whole process of computation entirely! What Church did, more or
less, was say, “Here are some very simple functions that are obviously com-
putable, and here are some simple things we can do with functions to generate
new functions. Let’s say that all the functions that we can generate in this way
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called Turing computable if there is some Turing machine T that com-
putes f . And T is said to compute f if whenever T is started on a
tape with k integers n1, n2, . . . , nk as input, it will eventually halt with
output f(n1, n2, . . . , nk).

4.2.2. Building Blocks. So far, we have seen only one example of
a Turing machine, as given in Figure 4.2. This Turing machine computes
the function f(n) = n+ 1, which is not a completely trivial accomplish-
ment but is still very far from the level of complexity of computations
that can be done by computers. In order to be able to deal with such
complexity effectively, we need some way of combining simpler Turing
machines into more complex machines. The basic ideas for constructing
new machines from old are simple: (1) When a machine halts, we might
want to restart it in state number 0 to continue its calculation; (2) We
might want one machine to take up where another leaves off; (3) When
the first machine halts, we might want to start up one of several different
possible machines, based on the status of the first machine when it halts.

These three constructions ought to look familiar. They are essen-
tially the same as the three ways we can build complex programs: loops,
sequences of instructions, and decisions among alternatives. Building
complex Turing machines turns out to look very much like program-
ming. I will not give the complete details of how each construction is
done, since they are rather technical. However, I will give some examples.

Actually, we don’t work with the machines themselves but with the
tables that specify their behavior. As an example, let’s consider the
Turing machine of Figure 4.2. Suppose we modify the last line of the
table in this figure by replacing the h in that line with a 0. The resulting
table will define a new machine. When this machine encounters a #
while in state 1, it will enter state 0, instead of state h. Where the first
machine would have halted, the new machine will loop back to state 0
and continue computing. After adding 1 to its input, this machine will
then go on to add 1 to the result, and it will continue adding 1 to the
number on the tape forever. It is effectively counting in binary.

In general, a loop can be introduced into any Turing machine’s cal-
culation by changing the halt state h to some other state in one or more
lines of the specification of that machine.

starting with the trivially computable functions are recursively computable,
and see what we can prove about them.” In the end, as I mentioned, it turns out
that the recursively computable functions and the Turing computable functions
are the same.
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Current
State

Current Cell
Contents

New Cell
Contents

Direction
of Motion

New
State

0 0 1 R 1
0 1 0 L 0
0 # 1 R 1
1 0 0 R 1
1 1 1 R 1
1 # # L 2
2 0 1 R 3
2 1 0 L 2
2 # 1 R 3
3 0 0 R 3
3 1 1 R 3
3 # # L h

Figure 4.3. A specification for a Turing machine that adds 2 to its
input. This table is made of two copies of the table from Figure 4.2.
In order to avoid conflicts between state numbers, the second copy has
been modified by adding two to each state number. The first copy has
been modified so that instead of halting, it will enter the first state of
the second machine. In states 0 and 1, this machine adds one to its
input. Then in states 2 and 3, it adds one to the result. After doing
the second addition, it halts.

Next, suppose we want a machine that will add 2 to its input. We
already have a machine that adds 1. I would like to take two copies of
that machine and have the second one start when the first one halts.
That is, in the case where the first machine would halt, I would like it
instead to enter the starting state of the second machine. The table for
the combined machine will consist of modified copies of the tables for
each machine, as shown in Figure 4.3.

A similar construction can be used to sequence the calculations done
by any two machines. It is a simple extension from this to allowing one
machine to “decide” which of several possible machines to start up after
it halts, provided there are several lines in the first machine’s table in
which that machine enters the halt state. We can modify each of those
lines so that, instead of halting, it will enter the starting state of one of
the other machines.

We can use a combination of methods to construct complex Turing
machines. Consider for example the problem of adding two binary num-



122 Chapter 4. Theoretical Computers

Current
State

Current Cell
Contents

New Cell
Contents

Direction
of Motion

New
State

0 0 0 L 1
0 1 1 L 2
1 # # R h
1 0 0 R h
1 1 1 R h
2 # # R h
2 0 0 R h
2 1 1 R h

Figure 4.4. A Turing machine that checks whether a number is zero.
This machine must be started on the rightmost digit of the number, and
the number must be preceded by a blank on the tape. The calculation
performed by this machine consists of just two steps. It moves left on
the first step and right on the second. It does not change its tape, and
it halts in the same position in which it was started. However, it halts
with “knowledge” of whether or not the number on the tape is zero. If
that number is zero, the machine will see a zero on its first step and a
blank on its second step. The second step it takes is the one indicated
by the third line in the table. If we change the h in the third line of the
table to the start state of a second machine, then that machine will be
run provided the number on the tape is zero. If there is another ma-
chine that we want to run when the number on the tape is nonzero, we
just have to change the h in each of the other lines of the table to the
start state of that machine.

bers placed as input on a tape. One way of doing this is to subtract one
from the second number and add one to the first number, and repeat this
until the second number is zero. If that zero is then erased, the number
remaining on the tape is the sum of the two input numbers.

A Turing machine to do this can be constructed from separate ma-
chines that add one to a number, subtract one from a number, check
if a number is zero, erase a number, and move left or right from the
rightmost digit of one number to the rightmost digit of the number next
to it on the tape. Each of these machines is easy to construct. The one
obscure point is what it might mean for a machine to “check if a number
is zero.” This is explained in Figure 4.4.

From these small machines, we first construct a single machine that
subtracts 1 from a number, then moves left to the neighboring number
on the tape, adds 1 to that number, then moves back to the number on
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the right, and halts. Let’s call this Turing machine T1. Next, we build a
machine that checks if its input is zero. If so, it starts up a machine that
erases the zero; otherwise, it starts up the machine T1. Let’s call this
Turing machine T2. Finally, we introduce a loop into T2 by modifying
it so that after its submachine T1 finishes its calculation, T2 will loop
back to its start state instead of halting. This modified machine, T3, is
a Turing machine for adding binary numbers.

4.2.3. Universal Turing Machines. It is possible to build
very complex Turing machines, but can Turing machines really do any
computation that can be done by computer? One way to prove that they
can is to build a Turing machine that can simulate the computations done
by computers. Such a machine would be computationally universal.

In fact, it is possible to build a Turing machine that can perform
low-level simulations of computers similar to the type of simulation dis-
cussed in Subsection 4.1.3. When a suitably encoded description of the
computer is written on its tape, this Turing machine will simulate the
computation of that computer using the six-step procedure outlined in
Subsection 4.1.3. I will not try to give the details of the construction of
such a machine, but I hope that the hints I give will convince you that
it can in fact be built.

When we used xComputer to simulate another computer, we used
xComputer’s memory to store information about each logic gate in the
machine being simulated. We could instead write all this information
onto a Turing machine’s tape, with the numbers from consecutive mem-
ory locations separated on the tape by a blank cell. In steps 3 and 4
of the simulation, where xComputer “loops through each of the gates of
the simulated computer,” the Turing machine will move along its tape
and perform the equivalent actions.

Consider step 4 first. It is easy enough to design a Turing machine
that will look at the inputs to each simulated gate, decide what the
output should be, and check whether the output recorded for that gate
is correct. If it is not correct, though, the Turing machine is supposed to
store a 1 in location 0. In order to do this, the Turing machine will have
to move all the way back to beginning of the data on the tape, where
the number in location 0 is written.

There is no problem with doing this, but then the Turing machine
will have to return to the location on the tape where it discovered the
incorrect output value, so that it can continue on to process the next
gate. The solution is for the machine to write a y at the spot where it is
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Current
State

Current Cell
Contents

New Cell
Contents

Direction
of Motion

New
State

0 # y L 1
1 0 0 L 1
1 1 1 L 1
1 # # L 2
2 0 0 L 1
2 1 1 L 1
2 # # R 3
3 # # R 4
4 0 1 R 5
4 1 1 R 5
5 0 0 R 5
5 1 1 R 5
5 # # R 5
5 y # R h

Figure 4.5. The specification of one of the submachines used in con-
structing a Turing machine that simulates computers on the logic-gate
level. If this machine is started on a blank cell, it will change that blank
to a y [in state 0] and then move left [in states 1 and 2] until it en-
counters two consecutive blanks. (This is how it recognizes the begin-
ning of the data on the tape.) It then moves right two cells [in states
2 and 3] to a cell that must contain a 0 or a 1. If it contains a 0, the
machine writes a 1 into the cell [in state 4]. It then moves right [in
state 5] until it encounters the y it left to mark its place, changes the y
back to a blank, and halts.

working before it moves. Then, it will be able to return to that spot by
searching for the y.10 Figure 4.5 gives a specification for a submachine
that carries out the task equivalent to storing a 1 in location 0.

Step 3 of the simulation is somewhat harder, since it involves looking
up values at specified addresses in memory, but Turing machines have
no built-in way of addressing memory. Here is one way we can make a
Turing machine simulate addressing. Suppose that the Turing machine
is currently located at the beginning of a number written on its tape and
that the number specifies some address in the memory of xComputer.
We want the machine to move to the position on the tape corresponding

10 I’ll bet you were wondering what I was going to do with the symbols x, y,
and z.
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to that address. After reading the value stored at that address, the
machine must return to its original position.

The Turing machine should start by marking its current location with
a y. Then, it should copy the address to the beginning of the data on the
tape and mark the beginning of the data with an x. It is also convenient
to mark the end of the address with a z. At this point, the tape might
look like this:

· · · 1 0 0 z x 1 0 1 1 0 1 0 · · ·

Here, the address is the number, 1002, to the left of the z. The cell to
the right of the x corresponds to memory location 0. Next, the machine
enters a loop in which it repeatedly subtracts 1 from the address and
then moves the x from its current location to the next blank cell to
the right of that location. Since the contents of xComputer’s memory
locations are stored sequentially on the tape, this corresponds to moving
the x from one location to the next. When the address is reduced to
zero, the x will be marking the cell on the tape corresponding to the
original value of the address. The Turing machine can read the value
stored at that address, erase the x, and return to the y that marks its
starting position. In the example, where the address is 4, the x will be
moved right 4 times and will therefore mark the data on the tape that
represent the contents of memory location 4.

This is complicated by the fact that there will be a y somewhere on
the tape that must be counted like a blank but must not be lost or moved.
Copying an address from somewhere on the tape to the beginning of the
data is also nontrivial. I leave you to work out these and other details
if you like. See Question 4 at the end of the chapter. In any case, I
hope you have seen enough to believe that it is possible to complete
the construction of a computationally universal Turing machine. The
existence of such a machine shows that what we call computation can
be done by a very simple machine indeed, although we might have to
give that machine very complex data to work with, and we might have
to wait a very, very long time for it to get anything interesting done.

When we are interested in the mathematical analysis of Turing ma-
chines, the type of universal machine we need is one that can simulate
other Turing machines, rather than computers. A universal Turing
machine is a Turing machine that can simulate the computation of any
other Turing machine on any input data. Since Turing machines can do
anything computers can, a universal Turing machine is computationally
universal in the usual sense.
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To use a universal Turing machine, we will write on its tape an en-
coding of the Turing machine to be simulated, along with its input data.
We need to agree on some method of encoding. Everything there is to
know about a Turing machine is contained in the table that specifies its
behavior, so we can simply encode that table as a long binary number.
This is just an exercise in constructing a complex data representation:
The encoding for a complete table is obtained by stringing together en-
codings for each line in the table. An individual line, which has five
entries, is obtained by stringing together representations for each of the
five entries. Since we have not put a limit on the number of states a ma-
chine might have, we cannot simply use a fixed number of bits to encode
the possible individual table entries, so we have to be careful here. We
will encode the value of an entry in the table as a string of ones followed
by a single zero.

Specifically we encode L and R as 10 and 110. We encode the symbols
#, 0, 1, x, y, and z as 10, 110, 1110, 11110, 111110, and 11111110. And
as for states, we encode h as 10, state number zero as 110, state number
one as 1110, and so forth. The details are not important, as long as we
pick a representation and stick to it.

For example, consider a simple Turing machine described by the two-
line table:

0 0 1 L 1
1 0 y R h

Since the code for 0 (state or symbol) is 110, for 1 is 1110, and for L is
10, the binary code for the first line of this table is 1101101110101110.
When we string this together with the code for the second line, we find
that the binary number that encodes this Turing machine is

1101101110101110110101111011010.

Note that if a binary number contains two consecutive zeros or if the
number of zeros is not a multiple of five, then that binary number cannot
be the code of any Turing machine. But it is easy to check whether a
given number is the code for some machine. In fact, we could even have
the universal Turing machine do the checking for us.11

11 I should point out that once each Turing machine has a code number,
it becomes easy to show that there are functions f :N → N which cannot be
computed by any Turing machine. The trick is to write down a function that
behaves differently from every possible Turing machine on at least one input.
To define such a function, f , we define f(n) for each input number n as follows:
If n is not a code number for some Turing machine, let f(n) = 0. (In fact, it
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Let’s consider a universal Turing machine, U , in more detail. With
an encoding scheme in place, we can be more specific about what U
must do. Given two binary numbers n and m as input, it will first check
whether n is a legal code number for some Turing machine. If not, U will
just halt immediately. (I really don’t care what it does in this case.) If
n is the code number for the Turing machine T , then U should simulate
the calculation that T would perform when given input m. The details
of the simulation don’t matter as long as the end result is the same: If
T never halts after being started with input m, then U must fail to halt
when started with n and m as inputs; if T does halt on input m, then
U must halt when given n and m as input, and the resulting tape must
be identical to the tape produced by T on input m.

Since we already know that a computationally universal Turing ma-
chine exists, I will ask you to take the existence of U on faith. (To stretch
a point—possibly beyond breaking—you could always have U simulate
a computer running a simulation of a Turing machine!) The rest of this
chapter does not use the universal Turing machine, but it does depend
essentially on the existence of a coding scheme for Turing machines. Such
a scheme makes it possible for one machine to use a representation of
another machine as data on its tape.

4.3. Unsolvable Problems

Suppose that we start up a Turing machine T after writing some input
on its tape. We wait eagerly for it to halt to see what output it produces.
After some time—a few years perhaps—it dawns on us that perhaps it

makes no difference how we define f in this case.) If n is the code number
of a Turing machine T , then we consider what happens when T is run with
input n. Note that we are giving T its own binary code number as input. If
T does not produce an output when given input n, because it fails to halt or
halts with illegal stuff on its tape, then we define f(n) = 0. Note that such a
T certainly doesn’t compute f because f gives output 0 on input n, while T
fails to give any output at all. Finally, if T produces output m, then we define
f(n) = m+ 1. Again in this case, T does not compute f because f and T give
different outputs on input n. Since every Turing machine has a code number
and since we have set up f so that no machine with a code number computes f ,
it follows that no machine at all computes f . At the beginning of the chapter,
I promised that we would find some interesting uncomputable functions. f is
uncomputable but not really interesting. In the next section, I will show you
some more interesting examples.
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is never going to halt at all. Should we stop it, or should we let it go
for another few years to see what will happen? Perhaps if we wait just a
little longer, it will halt. But if, in fact, it is destined to run forever, we
will never find that out by just standing around watching it compute.
How can we tell, without waiting around literally forever, that the Turing
machine is never going to halt?

Now, there are certainly cases where, just by looking at the machine’s
specification, we can tell that a machine is never going to halt. Suppose
that in state 0, reading any input at all, the machine will write a 1 on
the tape, move right, and stay in state 0. No matter what input this
machine is given, it will just travel forever to the right, writing an infinite
string of ones. This is a trivial example, but whenever we can tell just
by looking at the specification table of a machine that it will enter an
infinite loop with no way of breaking out of it, then we can tell that the
machine will run forever—and we can do this without actually running
it. Perhaps if we are clever enough we can always decide in advance
whether or not a given Turing machine will ever halt when run with a
given input.

Now as for myself, I have often written computer programs that
turned out to contain infinite loops that I would have sworn were not
there. So I am not satisfied to rely on my “cleverness” to determine
whether or not a Turing machine will run forever. What I would like is a
foolproof computer program that would answer the question for me. Or,
since Turing machines can do anything computers can, I would like a Tur-
ing machine which could look at the specification for any Turing machine
and the input I intend to give to that machine and tell me whether or not
that machine will ever halt after being started with that input. A Turing
machine that could do this would be said to solve the Halting Problem.

Alas, it’s not going to happen. The Halting Problem is unsolvable.
That is to say, there is no Turing machine that solves it. It is surprisingly
easy to give a proof of this fact.

4.3.1. The Halting Problem. To be more definite, let H be a
Turing machine. We say that H solves the Halting Problem if when run
with binary numbers n and m as input, it will halt and give an output
of either 0 or 1; it will produce output 1 if n is a valid code number for
some Turing machine and if that machine will halt when run on input m;
in any other case, H will produce output 0.

Let H be any Turing machine whatsoever. I will show you that this
H does not solve the Halting Problem. Since my proof works for any
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Turing machine H, it will follow that there is no Turing machine that
solves the halting problem.

All I have to do is produce one case of a Turing machine and an input
number for which H does not work.12 Let’s call the Turing machine I
am going to build K. K will use H itself as an essential submachine, and
in a sense what I will show is that no Turing machine can be powerful
enough to analyze itself.

K is made by stringing three machines together. When K is started
with an input number m, the first of these machines will make a copy
of m. There will then be two identical numbers on the tape. The second
submachine of K is H, which will therefore run with two copies of m
as input. If and when H halts, the third machine is started up. This
machine will check whether the tape contains an output value of 0. If so,
it will halt immediately; if not it will go into an infinite loop in which it
moves forever to the right.

To make this clearer: Suppose that m is the binary code number of
a Turing machine, T . When we run K with input m, K will start by
running H with input m,m. If H were a solution to the halting problem,
running it with input m,m would test whether or not T will ever halt
when given its own code number, m, as input. Now there are three
possible outcomes. First of all, H might not produce any output at all
when run with input m,m. In that case, we already know that H does
not solve the halting problem, since if it did, it would give an output of
0 or 1 in all cases. If H does produce an output of 0 or 1, thereby making
a prediction about whether T will halt on input m, then K looks at this
prediction and behaves in the opposite way. Thus, K halts on input m
if and only if H predicts that T will not halt on input m, where m is the
binary code number for T .

It doesn’t seem as though this proves anything, but the payoff comes
when we give K its own binary code number as input. Let k be this
code number. When K is run with input k, it will first run H with input
k,k. Since the Turing machine encoded by the number k is K itself, H
is being asked to make a prediction about whether K will ever halt on
input k. But H is actually being run as part of the computation that K
performs on input k! H is being asked to predict whether this ongoing

12 Of course, there will be many machines on which H will fail, but finding
just one is enough to show that H doesn’t solve the halting problem. You might
object that you could always fix H so that it works for the particular case I
find, but this won’t get you very far—the new machine you produce will fail for
some other case.
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Step 3:
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of what H predicts

T will do.

    Given any machine H which is supposed to solve the

halting problem, we build a machine K that fools it.

    Let n be the code number for any Turing machine T.

On input n, the computation done by K has three steps:

But if T is K itself, then K does the
opposite of what H predicts K will do.

So, H was wrong!

nn

Figure 4.6. Given any Turing machine H that is supposed to solve the
halting problem, it is possible to find a case where it fails, either because
it gives no answer or because it gives the wrong answer. The machine
for which H fails includes H itself as a submachine. (In this picture,
where “n” is shown on a tape, it is actually the binary expansion of the
number n that should be shown, probably filling many cells.)

computation will ever end. Can H possibly get this right? If H makes no
prediction, it has already failed. But if it ventures a prediction that the
computation halts, as soon as K sees this prediction it sends the compu-
tation into an infinite loop, thereby retroactively making the prediction
incorrect. On the other hand, if H predicts that the computation will go
on forever, then K will react by halting, so that H’s prediction is wrong
in this case as well. So, no matter what H does, it cannot possibly give
the correct answer.

You can imagine H’s predicament. If it could think, it might say
to itself, “Let’s see. . . . If I say that this computation will halt, then it
won’t halt, and if I say it won’t, then it will. I’m in trouble.” Of course,
H doesn’t think. It merely follows rules. The point is that whatever
rules it uses to make predictions, they do not work in all cases. H does
not solve the halting problem.
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It is important to understand what has been proved here and what
has not been proved. When we say that the halting problem is unsolv-
able, we mean that no Turing machine correctly predicts the halting
behavior of all Turing machines for all inputs. But you might find a
machine that makes correct predictions in a great many cases, perhaps
even for all the cases that you are really interested in. In fact, if you
are designing Turing machines, or writing programs, there is nothing
to stop you from consciously trying to produce machines or programs
whose behavior can be analyzed. The lesson that a programmer should
learn from the unsolvability of the halting problem is not that it is im-
possible to write good programs, but rather that good programs don’t
happen automatically. I will have more to say in Chapters 6 and 7 about
techniques for writing good programs.

Furthermore, our proof says nothing, one way or the other, about
whether people can solve the halting problem. It is still conceivable
that, given any Turing machine and input, you might eventually be able
to decide whether or not that machine will halt on that input. However,
you will not be able to write down a fixed set of rules that can be used
to make the decision in all cases, since once you had done so, you could
build a Turing machine that solves the halting problem by following those
rules. (Though how you could ever be sure that you would get the right
answer in all cases without writing down a set of rules, I have no idea!)

4.3.2. Other Problems. The halting problem is only the first
of many unsolvable problems. There are many natural questions that
can be asked about computers and Turing machines that cannot be
answered—not, at least, by a Turing machine or a computer program.
Here is a sampling of such problems. In each case, saying that the
problem is unsolvable means that there is no Turing machine that can
correctly answer the problem in all cases:

•Given any Turing machine T , determine whether T will ever halt
after being started on an empty tape.

•Given a Turing machine T , determine whether there is any number
n such that T will halt when started on input n.

•Given a Turing machine T , determine whether it computes a func-
tion from N to N. That is, given any binary number n as input, will T
always halt with a binary number as output on its tape?

•Given two Turing machines, T1 and T2, decide whether T1 and T2

compute the same functions. That is, will they always give the same
output when started on the same input?
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•Given any computer running any program, determine whether or
not the computer will run out of memory before the program halts.

•Given any computer running any program, determine how long to
wait before concluding that the program is never going to halt.

Each of these problems can be shown to be unsolvable by showing
that if there were a Turing machine that solved that problem, it could be
used as a basis for building a machine that solves the halting problem.

Consider, for example, the first problem in the above list. Suppose
that you have a Turing machine E that solves this problem. That is,
when given the code number for a Turing machine T as input on its tape,
E performs some calculation that determines whether or not T will ever
halt when started on an empty tape. If E actually worked as advertised,
then it could be used as a basis for building a machine H that would
solve the halting problem. (Then, since no such H exists, we know that
no such E can really exist either.)

How can we build H from E? Here is an informal description of how
H would work: Suppose that H is given the numbers n and m as input,
where n is the code number of a Turing machine T . H is supposed to
determine whether T will ever halt when given input m. The trick is to
have H make up a new machine M that does the following: When M
is started on a blank tape, first it will write out the number m on that
tape and then it will run the machine T on that input. Thus, running M
on a blank tape is equivalent to running T with input m. In particular,
M will halt when started on a blank tape if and only if T will halt when
given input m. Now, our machine H just has to use the given machine E
to check whether or not M will in fact halt on an empty tape. By doing
this, it is also solving the equivalent problem of whether T will halt on
input m. That is, it is solving the halting problem (which we know is
impossible)!

It is not easy to fill in the details in this informal description. What,
for example, does it mean for the Turing machine H to “make up” a
machine M? It can only mean writing out the code number for M on its
tape. We have to check that it is possible to design a machine H that
can do this. I will have to ask you to take this on faith, keeping in mind
that M is defined in a straightforward way from the inputs n and m that
H has to work with.

If you want to learn more about Turing machines and unsolvable
problems, they are usually covered extensively in textbooks on “au-
tomata theory” or “formal language theory,” such as [Lewis and Pa-
padimitriou].
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Chapter Summary

All computers are equivalent, at least if we ignore limitations on memory
and time. In this sense, every computer is computationally universal,
since all computers can solve the same set of problems, at least if they
are given as much time and memory as they need. We know this because
it is possible for one machine—even one with very limited computational
capabilities—to simulate another. Translation and interpretation are
two efficient methods of simulation, but it is low-level simulation that
offers the strongest evidence for the equivalence of all computers.

This equivalence of many different types of machines is part of the
evidence for the Church-Turing Thesis, which is the claim that anything
that can reasonably be called computation can in fact be done by a
computer.

In reality, only a machine with infinite memory can truly be com-
putationaly universal. A finite memory is a real limitation, since given
a fixed, finite memory, there will be complex computations that require
more memory than is available. A Turing machine is an abstract com-
puter with an infinite amount of memory. Its memory consists of an
infinitely long tape. The Turing machine moves back and forth along its
tape, reading and writing symbols. The machine has an internal state,
and the action it takes at any given time is completely determined by
its state and by the symbol written at its current position on the tape.
Although Turing machines are very simple, there are universal Turing
machines that can solve any problem that can be solved by any com-
puter.

However, not every problem can be solved by computer. In particu-
lar, the Halting Problem is unsolvable. There is no Turing machine (or
computer program) that can tell, in advance and in all cases, whether
or not a given Turing machine will ever halt when it is run with a given
input.

This chapter seems to have two contradictory messages. The first
is that computation is simple. Any computation that can be done by
even the most sophisticated computer can also be done by much sim-
pler machines—even by something with the very limited computational
resources of a Turing machine. On the other hand, computation is com-
plex. We can’t give any definite rules for answering even the most natural
question: Will a given computation ever end?

Perhaps the real message is that even though computations are made
up of very simple individual steps, computation can surprise you. If you
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have a computer program sitting in front of you, and you want to know
what it does, the only general way of finding out for sure is to run it.
Using the method of simulation, you can run it on any machine you
like—you might get your answer faster by running it on a fast, complex
machine, but even a very simple machine will do. But no method of
analysis will allow you to predict in advance what all programs will do
when they are run.

Questions

1. Figure 4.1 shows a logic circuit represented in xComputer’s mem-
ory in a way that will allow it to be simulated using the six-step procedure
outlined in Subsection 4.1.3. Follow this procedure by hand to trace the
effect of several ticks of the clock on the circuit in this figure. Do you
believe that this procedure can be used to simulate any circuit, including
a complete computer?

2. After each step in its calculation, a Turing machine must move
either one cell to the left or one cell to the right on its tape. Why don’t
we also allow the possibility that it can stay in the same cell? Would it
make any difference if this were allowed? Explain.

3. Give a complete specification for a Turing machine that subtracts
one from a binary number, provided that number is greater than zero.
You should probably start by figuring out how to do such subtractions
by hand. Trace the calculation performed by your machine for several
different inputs. What does your machine do if you ask it to subtract
one from zero? Once you have a machine to subtract one, you might
want to try to build a Turing machine to add any two binary numbers,
as described in Section 4.2.2.

4. Fill in as many details in the construction of the computer-
simulating Turing machine described in Section 4.2.3 as necessary to
convince yourself that it exists. You might want to work on the method
of dealing with addresses that was discussed in that section. You might
also try designing a machine that copies a binary number from one place
to another on a tape. Assume that the number to be copied is marked
by a y at the right end of the number. Also assume that beyond the left
end of the data on the tape, there is a z that marks the place where the
number is to be copied. All the cells between the z and the y contain 0,
1 or #. For example, you would want to transform the tape:
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· · · z 1 0 1 0 1 y · · ·
to

· · · 1 0 1 z 1 0 y 1 0 1 · · ·

Your machine will have to copy one digit at a time. To remember which
digit it is “carrying,” it will have to use different states when it is carrying
a 1 and when it is carrying a 0. I suggest that your machine move the y
to the left as it copies the number, leaving it on the square to the left of
the number as shown. During the calculation, the y marks the original
position of the digit that is currently being copied.

5. At the end of this chapter, after showing that no Turing machine
can solve the halting problem, I made the leap to the assertion that,
“We can’t give any definite rules for answering the question: Will a
given computation ever end?” Is this leap justified? What does this
have to do with the Church-Turing Thesis? (See Subsection 4.1.3.)

6. Imagine a scene from Star Trek in which Dr. McCoy and Mr.
Spock are walking beside a lake arguing about the usefulness of logic.
Dr. McCoy picks up a rock and says, “All right, Mr. Spock give me a
demonstration of your famous logical ability. Make me a prediction: Will
I throw this rock into the lake or not?” What can Spock do? Compare
his predicament to that of H in our proof of the unsolvability of the
halting problem. What does this question show about the limitations of
logic?
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Chapter 5

Real Computers

CYBERSPACE IS HERE, though perhaps not everyone has gotten the news.
The termCyberspace, apparently invented byWilliam Gibson in his sci-
ence fiction novel Neuromancer, refers to the developing global network
of interconnected, intercommunicating computers. In the minds of many
who visit it whenever they use one of those computers, Cyberspace is a
real place, a sort of alternative reality, where you can make friends, do
your shopping, play games, discuss the things you care about, and per-
haps earn a living. All this is here now, even while Cyberspace is still in
the process of being born.

Computer science had its beginnings in mathematics, and many of
the early workers in the field were mathematicians. But there are no Tur-
ing machines in Cyberspace (although I might argue that they provide its
fundamental mathematical substance). The real computers that make
up Cyberspace are incredibly fast, with large memories and sophisticated
input/output capabilities. They communicate over high-speed data links
that make it possible for someone like me, sitting in front of my com-
puter in my home, to use computers all over the world in real time.
They exist because of the efforts and dedication of many thousands of
people in many different professions—programmers, engineers, computer
scientists, and others. And their influence extends beyond this technical
community to all the people who use computers directly, or whose lives
are affected by them.

137
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We are told that we are living at the beginning of the Information
Age, a post-industrial society in which information will be the most im-
portant commodity, and the material needs of the population will be met
by a small part of the workforce overseeing sophisticated, perhaps intel-
ligent, machines. The defining technology, and most important symbol,
of this new age will be the computer. Many social theorists who speak
of the Information Age imagine a utopia in which people, freed from the
drudgery that many workers face in today’s jobs, will develop their full
human potential in creative employment and increased leisure. Others
see at least as many dangers as opportunities. They warn of a world in
which the commodification of information makes personal privacy obso-
lete, and in which computers are an instrument of social control rather
than individual empowerment. It is worth noting that Gibson’s Neu-
romancer presents a gloomy view of a post-industrial society in which
many of these fears have been realized.

My own opinion is that the transformation of society will not be
as far-reaching or as quick as some writers have predicted, but that the
new information technology does present us with both great opportunity
and great danger. What is certain is that we, as a society, need to be
informed about the technology and about its potential impact if we are
to decide wisely about how it will be used. This entire book is, of course,
meant to provide a basic overview of computers and computer science,
but in this chapter on “real computers,” in addition to explaining how
real computers differ from the model computers introduced previously,
I will be more explicit about dealing with the technology in a historical
and social context.

Computers have come a long way in the half-century since the first
of their kind were invented. They have penetrated into all aspects of
daily life, in many cases to the extent that they have become effectively
invisible. It is unlikely that any reader of this book needs a description
from me of what a standard computer looks like, or what a keyboard
or mouse is for. However, for most people a computer is a “black box.”
That is, they know something about how a computer is used and what it
can be used for, but they have very little idea about what goes on inside.

The first few chapters of this book have opened that box up to some
extent. What you learned there does apply to real machines, but it is
only a part of their story. The rest of this book carries on the process of
opening the black box by looking at real computers and real computer
programs. We start in this chapter with a historical look at how real
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computers came to be invented, followed by a survey of some funda-
mental aspects of the design of real computers. The final section of the
chapter deals with their actual and potential impact on society. Then,
the next three chapters will cover the basic concepts of computer pro-
gramming and programming languages. The four final chapters of the
text deal with computer applications; Chapter 9 surveys several basic
applications, and Chapters 10, 11, and 12 deal with three of the most
exciting and active areas in computer science today: networks and par-
allel processing, computer graphics, and artificial intelligence.

5.1. A Brief History

The use of calculating devices is probably at least as old as the abstract
idea of number.1 The prehistoric herder who kept track of the number
of sheep in a herd by making notches in a piece of wood was engaging
in an activity not so much different from the modern accountant who
enters sales figures in a computer. The abacus, which has been in use
for thousands of years, allows calculation at a speed that rivals that of
anything else available before the introduction of computers.

The first machine that we would recognize as a calculator in the
modern sense was invented by a German professor, Wilhelm Schickard,
in 1623, but his work was forgotten after his death in 1635 and remained
unknown until 1935. More influential were the devices created by the
philosophers Blaise Pascal and Gottfried Leibnitz later in the seventeenth
century. Pascal’s calculator could add and subtract using a system of
geared wheels similar to the mechanism in a car’s odometer. Each wheel
had ten positions, representing the digits from 0 to 9, and the wheels
were connected so that as one wheel advanced from 9 to 0, the wheel to
the left would be advanced one position. This is the same basic mecha-
nism used in more modern mechanical calculators. Leibnitz, building on
Pascal’s work, designed a more complex machine that could do multipli-
cation and division. The method used for these computations involved
repeated additions, subtractions, and shift operations. Essentially the
same procedure is used in computers today.

1 It is impossible in this short section to give more than a sketch of the
complex history of computing devices and computers. Most of the material
in this section can be found in more detail in any history of computers. My
discussion here is based on material from [Augarten], [Goldstine], [Hodges], and
[Kurzweil].
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But being able to do individual arithmetic operations does not make
a machine a computer. One thing that makes a computer different from
a mere calculator is its programmability. Now, the idea of a mechanism
that can perform complex, programmed actions without human inter-
vention is also not new. Devices called automata, or “self-movers,”
which could imitate complex movements of living animals or people,
have been constructed at least since the time of ancient Greece. And
mechanical clocks, which have existed since the fourteenth century, were
among the most complex and accurate machines of their time. They
provided the Newtonian revolution of the seventeenth century with its
image of a “clockwork universe” whose complexity could be explained
in terms of mechanism—that is, in terms of fundamentally simple parts
moving in complex patterns but completely controlled by a small number
of physical laws.

But these early automata and clocks were not computers. What
makes computers unique among machines is their universality, as dis-
cussed in the preceding chapter. It’s not just that computers can carry
out complex computations autonomously. It’s that the same computer
can be programed to carry out any computation. To be a true com-
puter, a device must operate under the direction of a program that can
be changed, and the range of programs that it can execute must include
all possible computations.2 The first devices that met these criteria were
constructed in the 1940s, during and just after World War II, but there
was an interesting near-miss a century earlier, when Charles Babbage
conceived and designed a computer he called the Analytical Engine.
The inspiration for this programmable machine came not from lifelike
automata or clocks, but from the mechanical loom.

5.1.1. Weaving Algebra. Ada Lovelace, a supporter and col-
league of Babbage who is often called the world’s first computer program-
mer because of her work developing programs to run on the Analytical
Engine, wrote that, “We may say most aptly that the Analytical Engine
weaves algebraic patterns just as the Jacquard loom weaves flowers and
leaves.”

2 Of course, this is literally impossible since any finite machine will in some
cases run out of resources such as memory. The point is that the individual
operations that it can perform, and the methods provided for combining them
into complex computations, must be sufficient to express any possible computa-
tion, although the computer might lack sufficient time, memory or some similar
resource to actually complete the calculation.
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The Jacquard loom, invented by Joseph-Marie Jacquard in 1801, is a
programmable device that can weave cloths with very complex patterns.
Cloth can be woven from two sets of threads running perpendicularly to
each other. These two sets of threads are referred to as the warp and
the weft. Think of one set running east/west and the other north/south.
When cloth is woven on a loom, the warp threads are strung on the loom
and then the weft threads are added one at a time. Some of the warp
threads are lifted to lie above a given weft thread while the others lie
below, holding it in place. The set of threads that lie above is changed
after each weft thread is added. The pattern in which the warp threads
on the loom are raised and lowered as the cloth is woven determines
the pattern in the cloth. A complex pattern requires threads of sev-
eral different colors to be raised and lowered in just the right sequence.
Controlling the threads by hand is time-consuming and error-prone.

In a Jacquard loom, the warp threads are controlled by programs
consisting of holes punched in cards.3 Each card corresponds to one
weft thread; each hole in the card allows some particular warp thread
to be raised as that weft thread is added to the cloth. The pattern of
holes on all the cards determines the pattern woven into the cloth. The
cards are physically connected into something like a ribbon, and after a
given card is used, the ribbon is advanced so that the next card takes its
place. The two ends of the ribbon can be connected to form a loop. In
that case, the pattern will be automatically repeated over and over.

This should sound familiar. The loom’s cards correspond to machine-
language instructions in a computer that are executed automatically
one after the other, and the loom shares with the computer the ability
to repeat a loop of instructions. However, the Jacquard loom does not
perform computations as such, and in particular, it has no way of testing
conditions and making decisions between alternatives. But the basic idea
is there of how a single machine can be made to perform a wide variety
of tasks, simply by giving it different programs to execute. Clearly, Ada
Lovelace’s comparison of the Analytical Engine with the loom was more
than just poetic imagery.

Today, in a time when trigonometric and logarithmic functions can be
computed on demand by a ten-dollar calculator, it is difficult to imagine

3 Note that a program here means a physical deck of cards. The idea of a
program as information that can be stored in a computer’s memory came much
later, as we will see below, and was an essential step in the development of the
modern computer.
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that in the not-too-distant past people depended on printed tables of
the values of such functions. The production of these tables demanded a
vast amount of time and effort from people known as “computers,” aided
at most by mechanical calculators to do the basic arithmetic operations.
Charles Babbage was inspired to begin work on his calculating engines
by a vision that such tables might be computed and printed by machine,
automatically and without error.

Babbage’s first design was for a machine called the Difference En-
gine, which was to compute such tables using a mathematical process
called the “method of constant differences.” The Difference Engine was
designed as a special-purpose device, implementing just this one pro-
cedure, but it would have been a mechanical calculator on a grander
scale than anything that had been seen before. A small demonstration
device was built in 1822, and Babbage obtained government support to
continue the project. A decade later, a section of the complete machine
was constructed, containing 2000 out of a projected 25,000 parts. But
the project never advanced beyond this stage, partly because of disputes
between Babbage and the government and his chief engineer, and partly
because Babbage realized in 1834 that the methods employed in the Dif-
ference Engine could be used to produce an altogether superior machine:
the Analytical Engine.

The great originality of the Analytical Engine lay in the fact that
it was to be a general-purpose, programmable calculating machine. Its
programs were to be coded as punched cards strung together into rib-
bons, similar to those used in the Jacquard loom. The instructions on
the cards were not loaded into the Engine’s memory; instead, the cards
themselves directly controlled its operation.

Aside from the fact that it was controlled by punched cards rather
than by a program stored in its memory, the Analytical Engine was
strikingly similar to a modern computer. It had a processing unit, which
Babbage called the mill, and a memory unit for data, which was known
as the store. It was not limited, like the Jacquard loom, to follow-
ing a sequence of instructions from beginning to end. Like a modern
computer, it was designed to perform loops, conditional jumps and sub-
routines. These were executed by physically moving the ribbon of cards
back and forth through the card reading mechanism, under the control of
the program instructions. Because of these abilities, Babbage’s Engine
was the first computationally universal machine ever conceived.

The Analytical Engine was never built, and it has sometimes been
claimed that the complexity and precision of engineering it would have
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required were simply not available at the time. But in 1991, a team of
engineers at the London Science Museum completed a working model
of Babbage’s Difference Engine No. 2, a more advanced version of his
first Difference Engine. Its 4,000 parts were made using some modern
methods, but were machined only to the same precision that Babbage
achieved on the parts he did construct. The builders of Difference Engine
No. 2 believe that the Analytical Engine could have been built in the
nineteenth century [Swade].4

5.1.2. Beginnings. Although it was not until the late 1940s that
devices as versatile as the Analytical Engine were actually produced, me-
chanical calculating devices of increasing sophistication and practicality
continued to appear. A watershed in their development occurred in 1890,
when the results of the U.S. census were tabulated by machine for the
first time. The machines used for that census were invented by Herman
Hollerith, whose company later, after a merger, became the heart of the
International Business Machines Corporation (IBM). The keyboard cal-
culator, a mechanical desktop calculator in which numbers are entered by
pressing keys, was introduced at about the same time. Soon, mechanical
computing devices were in common use in business and science.

In the meantime, technologies not obviously related to computing had
produced the switching elements that were to be crucial in the design of
early computers. Three types of switches have been used in computers:
relays, vacuum tubes, and transistors. In all of these, the connection be-
tween an input wire and an output wire is switched on and off by current
on a control wire. Transistors were not invented until 1947, but by the
30s, relays were in common use in telephone networks, and vacuum tubes
were used in radio. The relay, a mechanical device thousands of times
slower than the vacuum tube, was used in some early computers. Most
computers, however, have been electronic, based at first on vacuum
tubes and later on transistors.

By the late 1930s, then, the time for general-purpose computers seems
to have arrived. By that time, several independent projects were under-
way in three countries: Germany, Great Britain, and the United States.
The development of the computer can be traced through the entire
decade of the 1940s. It is a twisted history, involving many individuals

4 It is interesting to imagine a world in which the Industrial Revolution
brought with it the introduction of steam-powered, mechanical computers. This
possibility provides the background for at least one science-fiction novel [Gibson
and Sterling].
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working on a number of mostly independent projects. The history is
complicated by the fact that much important work was done during
World War II, on classified projects. It was not until 1948 and 1949 that
several machines appeared with all the characteristics of a modern com-
puter. These were the first general-purpose, electronic, stored-program
computers. The first of these machines, a fairly small prototype, was
the Mark I which ran its first program at Manchester University in Eng-
land on June 21, 1948. A year later, the first such full-scale computer,
the EDSAC, became operational at Cambridge University. It had taken
about twelve years for all these ideas to come together in one machine.

The first programmable computing machine was the Z3, built in 1941
by a German engineer, Konrad Zuse, who was inspired to work on the
problem of automatic computation by the drudgery of computing solu-
tions to differential equations by hand. The Z3 was the third in a series
of machines built by Zuse, starting in 1938. It was made from 2600
relays and used the binary number system. The Z3 was programmable
in the sense that it could automatically execute a program encoded as
holes punched in a paper tape. However, it could only carry out those in-
structions from beginning to end. It had no way of making decisions, so
although it was “general-purpose” in that it could carry out any sequence
of operations automatically, it was not computationally universal. Many
of the early machines that are called computers share this limitation and
therefore are not quite computers in the modern sense of the term. The
Z3 saw some use in the German missile program during World War II,
but for the most part, Zuse received little support for his machines from
the German government.

The German military effort did, however, depend on another machine
known as the Enigma. This was a device for encoding and decoding
messages which was used by the German military throughout the war.
The breaking of the Enigma code was the target of the major wartime
computing effort in Britain. This 10,000-person secret project, code-
named Ultra, was able to successfully decode German communications
throughout the war and is considered to be one of the major factors in
the Allied victory. One of the significant players in this project was Alan
Turing, who had already made a major contribution to computer science
with his invention of Turing machines.

The Ultra project produced two series of code-breaking computers,
Robinson and Colossus, of increasing sophistication. The Colossus com-
puters were electronic, with thousands of vacuum tubes. They were
special-purpose machines, but they were programmable to a limited ex-
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tent. In particular, they could make decisions about what to do next
based on the result of a previous computation. Perhaps more impor-
tant for the history of computers than the machines themselves was the
pool of expertise produced by the project, which made possible the great
post-war achievements in British computing.

In the United States, several projects produced computing machines
during the war years. The Mark I, begun in 1937 by Howard Aiken at
Harvard University and completed in 1943 with the support of IBM, was
the first computer to become widely known to the public. It was based
on decimal numbers and used rotating wheels as well as relays. It could
execute sequences of instructions punched on paper tape. In some sort
of unintentional tribute to Babbage’s vision of the Difference Engine, it
was to spend most of the next sixteen years calculating mathematical
tables. However, with regard to the future development of computers, it
was a dead end.

More important was the ENIAC, which was the first electronic, pro-
grammable computer. Conceived in 1943 by John W. Mauchly and
J. Presper Eckert, it was built in secrecy with military support at the
University of Pennsylvania. It was completed in 1945, three months af-
ter the end of World War II.5 Although it was designed for a specific
task—computing tables to be used in artillery targeting—the ENIAC
was universal in the sense that it could be used to perform any compu-
tation. Programming the ENIAC, however, involved a physical modifi-
cation of the machine: Connections between different components had
to be rewired by plugging and unplugging connecting cords, and a bank
of 6000 switches had to be set. As a result, it took several days to set up
a program. If the definition of a universal machine is that an unmodi-
fied machine must be able to perform different computations when given
different programs, then the ENIAC does not meet this standard.

But even before the the construction of the ENIAC was begun, Eckert
and Mauchly had the crucial insight that would make possible the first
truly universal machines6: that a program could be treated as a type of

5 Neither Colossus nor ENIAC was the first electronic calculating device.
That honor belongs to the ABC computer, built in 1940 by John V. Atanasoff at
Iowa State University. However, the ABC was a fairly small, nonprogrammable
device. Mauchly was aware of Atanasoff’s work and had visited his lab.

6 Although in hindsight we might look on the creation of a universal com-
puter as the culmination of all the work that came before, there was no research
program whose goal was to produce a universal machine as such. I am not sure
when it became clear to the researchers involved that such a thing was possible
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data and stored in a computer’s memory. The result of this insight was a
proposal to build the EDVAC, which was the first truly modern computer
to be conceived. A draft report on the design of the EDVAC was written
by one of Eckert and Mauchly’s colleagues, the well-known mathemati-
cian John von Neumann, who contributed many of his own ideas. This
report outlined the design of the modern computer in all its essential
details: a central processing unit based on Boolean algebra and using bi-
nary arithmetic, with a random-access memory containing both data and
programs. Because of his association with this report, computers of this
general design have come to be known as von Neumann machines.

The first von Neumann machines to be completed were the two
British computers, the Manchester Mark I and the EDSAC, mentioned
above. Their builders learned about the idea of a stored-program com-
puter from von Neumann’s report on the EDVAC and from a series of
lectures given by Eckert and Mauchly at the University of Pennsylva-
nia in the summer of 1946. The EDVAC itself was not completed until
1952. By that time, Eckert and Mauchly had left the University of
Pennsylvania and started a computer company, where they completed a
stored-program computer known as the BINAC in late 1949.7

5.1.3. Generations. With the development of the von Neumann
machine, the history of computers entered a new stage. From a theo-
retical point of view, computers already had all the computational abil-
ity that they would ever attain, and future development would merely
make them smaller, faster, cheaper, and easier to use. But the extent of
these “merely” practical improvements has been truly astonishing and
has made possible a world not only in which computers themselves are
household appliances, but in which an appliance as mundane as a mi-
crowave oven might be controlled by a microchip with more circuitry
than was to be found in the ENIAC.

Computers have decreased in size and increased in speed and com-
plexity more or less continuously since their invention. But there have

or even desirable, but the credit should most likely go to John von Neumann,
who was familiar with Turing’s work.

7 One unusual feature of several early computers, including the EDVAC and
the EDSAC, was the type of memory they used. Their memory units consisted
of tubes of mercury, which stored data in the form of sound waves! The sound
waves traveled from one end of the tube to the other, where they were detected,
amplified, and fed back into the first end. Numbers could be read from memory
only as they completed their trip through the tube. New numbers could be
stored by changing the value fed back into the tube [Goldstine, p. 188–191].
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been several changes in computer technology whose impact was so great
that each can be considered to mark the beginning of a new genera-
tion of computers. The first generation, including most of the machines
mentioned above, used vacuum tubes as switching elements. Although
transistors were invented in 1947, techniques for manufacturing them in
quantity and at reasonable cost did not exist until the mid-1950s, and it
was 1957 before the first computer of the second generation—using tran-
sistors as switching elements—was introduced. Besides being smaller,
cheaper, and faster than vacuum tubes, transistors were much more re-
liable. (Many engineers believed that the ENIAC, with 17,000 tubes,
would be so plagued with burned-out tubes as to be almost useless.) By
the early 60s, most new computers were transistorized.

The invention that led to the third generation of computers was the
integrated circuit. An integrated circuit replaces a number of sep-
arate transistors, along with interconnecting wires and other electrical
components, with a single “chip.” A chip is a small, thin piece of sili-
con, or other semiconducting material, which contains the equivalent of
a complete electronic circuit.8 The result was a new level of miniatur-
ization, together with another increase in reliability resulting from the
smaller number of individual parts and interconnections. The transition
to computers based entirely on integrated circuits took place from the
mid 1960s to the early 70s.

The first integrated circuits contained only a few transistors. For
example, a complete AND gate could be fabricated on a chip. The first
integrated circuits containing a large number of components were mem-
ory units, which are relatively easy to design and manufacture because
of the orderly, repetitive structure of computer memory. In 1968, a
random-access-memory chip holding 256 bits of storage was introduced,
and it took only a few months to raise that to 1,024—that is, 210—bits.
This rate of progress has continued. As I write this in March 1993, the
current issue of Byte magazine includes a short news item on the intro-
duction of the first memory chips with a capacity of 226 bits, more than
64 million! This represents a doubling of capacity each year over the
course of fifteen years.

As the number of components in an integrated circuit increased, it
was inevitable that someone would have the idea of putting an entire

8 The manufacture of integrated circuit chips is an impressive technology
which involves diffusing other elements into the silicon, layering materials onto
it, and etching parts of those layers away—all on a microscopic scale of detail.
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central processing unit on a single chip. The first such CPU-on-a-chip,
or microprocessor, was invented in 1971. This can be seen as the
beginning of the fourth generation of computers, based on very large
scale integration, or VLSI. By the end of the decade, microcomput-
ers, built around microprocessors, could be purchased for home use, and
general-purpose microprocessors with special-purpose programs perma-
nently burned into their memories were being developed for use in print-
ers, compact disc players, cars—and microwave ovens.

Microprocessors can contain millions of transistors on a fingernail-
sized chip. Circuitry equivalent to the entire, room-sized ENIAC com-
puter would be a barely visible dot on that chip. Its cost, as a propor-
tional part of the cost of the entire chip, would be on the order of a few
dollars.

What is the fifth generation of computer hardware? The term is gen-
erally used to refer tomultiprocessing computers, which use a number
of processing units working together to solve a problem. I will discuss
multiprocessing in Chapter 10. There might even be a sixth generation of
computers on the horizon, consisting of devices that use light rather than
electricity to store programs and to process information. Such devices
are still in the early stages of research, but as integrated circuits near
the limits imposed by basic physical law, light-based computers hold the
possibility of continuing the progress of computers to new levels of speed
and miniaturization.

5.2. Usable Computers

The first commercial computers were used by universities, government,
and large corporations, and they required highly trained staffs of pro-
grammers and technicians to keep them operating. Computers have be-
come smaller and more affordable, but this in itself would not have put
computers in homes, small businesses, and elementary school classrooms
if computers had not also become more and more easy to use. Today’s
computers can be used with no special training at all. And although pro-
gramming a computer might never be truly easy, the payoff for a given
amount of programming effort has certainly increased with time. The
increased usability of computers is not due simply to faster CPUs and
larger main memories. To be usable at all, a CPU and memory must be
part of a computer system, which also includes other hardware, such as a
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keyboard, monitor, and disk drive, as well as software for the computer
to run.9

5.2.1. From Input/Output to Dialog. The way people interact
with computers has been fundamentally transformed since the introduc-
tion of the first commercial computers. In the beginning, computers were
machines for processing input into output. Programs and data were la-
boriously prepared on punched cards, or in some other machine-readable
form. The cards were loaded into a mechanical card reader which would
translate the pattern of holes on each card into the electrical signals that
would load the input into the computer’s memory. Then, as the program
ran, any output it produced could be printed, punched onto cards, or
rendered in some other form that could be used, however inconveniently,
by humans.

Most computer users never even got close enough to the machine
to observe this interaction, such as it was, first-hand. The user would
prepare a deck of punched cards on a typewriter-like machine and then
submit that deck to a technician. The technician would bundle the deck
together with decks submitted by other users into a batch to be loaded
into the card reader. Eventually—and that might mean hours—the input
deck would be returned to the user, along with any output produced.
Pity the poor programmer who might get back as output only the single
line, “Error found on line 357 of program”!

This mode of using a computer, in which a program is submitted to
be processed by the computer without further interaction, is still called
batch processing, even though the programs are no longer processed as
batches of punched cards. Most computer systems still allow some type
of batch processing, since it is appropriate for programs that take a long
time to run and that require no interaction with a user while they are
running.

9 The term hardware refers to any physical part of a computer system,
while software refers to programs that are executed by the hardware. While
software has to be carried around on a piece of hardware, such as a computer
disk, the software itself is information, which has an abstract rather than a
physical sort of existence. It’s like “the short stories of Edgar Allen Poe.” If
you want to read the stories, you need a book in which they are printed. But
the stories are not the book or the paper or the ink, but rather the information
that is conveyed by the arrangement of dots of ink to anyone who knows how
to read English. This analogy highlights another aspect of software: It is only
useful to a computer that “understands” it, so that programs written for one
type of computer system will not necessarily work on another.
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It was clear that computers could be used more productively if users
could get faster and more immediate feedback. But computers were large
and very expensive machines, and it was very unusual for a computer
to be devoted to a single user. By the early 1960s, a solution to this
dilemma had been developed by researchers at MIT [Augarten, p. 255].
The solution, known as timesharing, allowed a large number of users
to interact with the same machine at the same time. Each user could
engage in a kind of dialog with the computer, typing in a line of input
and receiving an almost immediate response. The great speed of the
computer enabled it to rapidly shift its attention from user to user, giving
each user the illusion of having the machine’s undivided attention.

Timesharing made it possible for large numbers of users to experience
the direct interaction with a computer that had previously been available
only to a few researchers.10 It became possible for programmers to find
and correct errors in a program in a few minutes rather than hours,
for businesses to make their records instantly accessible on a computer
screen, and for everyone to play interactive computer games.

The style of human/machine interaction used on early timesharing
systems—in which the user types some input and the computer types
back a response—is called a command-line interface. Although it is
a big improvement over batch processing, a command-line interface still
requires the user to learn a cryptic and unnatural command language.
When personal computers were introduced, they used a similar interface.
People with the time and inclination to become expert with the system
could achieve a sense of having an easy and natural dialog with the
machine. For most people, however, the interface was a barrier.

This situation changed with the introduction of the graphical user
interface, or GUI. In a GUI, cryptic commands are replaced by manipu-
lation of graphical representations of objects and by choosing commands
from menus. Instead of typing “rm mydoc.txt,” the user can drag a pic-
ture, or icon, representing mydoc.txt to a picture of a trash can. Instead
of remembering the command “mkdir,” the user can select “New Folder”
from a menu.

The graphical user interface brought the experience of communicat-
ing with a machine to many people who would never be comfortable
memorizing long lists of commands. Although at the heart of the com-
puter there is still a CPU mechanically processing input into output, the

10 And to a few computer “hackers” at MIT. These hackers were among the
first people to understand the full potential of computers. See [Levy, Hackers ].
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computer as experienced by the user has become something else entirely:
an independent, responsive entity that can be an active participant in a
dialog. We will return to the implications of this view of computers at
the end of this chapter. But first, we should try to understand some of
the technology that lies behind these modern, interactive computers.

5.2.2. Multiple Devices. It is easy to imagine how a punched-
card reader might be used to load a program into a computer’s memory:
Small metal probes pass through the holes, closing electrical circuits
that directly load the number encoded on the card into memory. It is
not much harder to imagine output values from the computer’s memory
being used to directly control some sort of output device. But in mod-
ern computer systems, the CPU and main memory are only two devices
among many, and the relationships among all these devices are not al-
ways so simple. We will take a look at some of these devices and how
they can communicate with the CPU.

Fundamentally, there is only one way for components to communi-
cate: One component turns one or more wires on or off, and another
component connected to those wires reads the values they carry. This
can be modified by using a memory location or a register accessible to
both devices as an intermediary in the communication. One component
can load a value into the shared memory, and the other can read that
value at its convenience. In general, whichever method is used, the two
devices will need some way to control the flow of information between
them. For example, one device might need to signal the other that it has
data ready to send, or that it is ready to receive data. It is easy enough
to reserve some of the connecting wires or memory bits for such control
messages, while the remaining wires or bits are used to transmit data.

Let’s consider the two most basic input/output devices first: the
monitor and the keyboard. We will look at some of the ways that these
might work before discussing how a complex system with many devices
can be constructed.11

The most common method of managing communication between the
CPU and a video display monitor was already mentioned in Chapter 1.
The image displayed on the monitor is simply a reflection of data stored
in video memory, a region of the computer’s memory reserved for this

11 My discussion is written to apply to a personal computer system, since
that is what most people are familiar with, but large multiuser computers are
not essentially different.
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purpose. On a black and white screen, each pixel on the screen corre-
sponds to one bit in memory. The pixel is off if that bit is zero and is on
if the bit is one. Color and grayscale monitors use several bits to specify
the color of each pixel. This color information is read approximately
sixty times per second by a special-purpose video controller chip, which
repeatedly draws and redraws the image on the screen based on the in-
formation it finds. The CPU changes the image on the screen simply
by changing the data stored in video memory. This method of commu-
nication, using locations in main memory accessible to both devices, is
known as memory-mapped I/O.

Now, this explanation of the way a monitor works is incomplete in at
least two ways. First, it is easy enough to say that the video controller
chip and the CPU both have access to the video memory. But memory
is constructed in such a way that only one location can be accessed at
a time—the location indicated by the value on its Address wires. If two
devices actually tried to set up different addresses at the same time, the
result would be chaos. There has to be some method of controlling access
to memory by the CPU, the video controller chip, and any other devices
that need it.

The second remark has to do with a difference between the picture
I have given you of memory and the actual memory in a computer. It
is convenient to picture memory as a tall stack of numbered locations,
each holding a certain number of bits. This is a “logical” picture of the
structure of memory—the picture you should have of it in your mind,
that tells you how it works. But there is no reason for the physical
structure of memory to be anything like this. For example, two bits
that are logically part of the same location might be physically on two
altogether separate memory chips. More to the point, there is no need
for the video memory to be physically anywhere near the rest of memory.
All that matters is that when the Address wires are set to a certain value,
the corresponding location in memory, wherever it is physically, becomes
accessible for reading or storing data. The video memory, for example,
can be physically a part of the circuitry that controls the display. We
will see that a computer system might contain many devices, each with
its own chunk of memory.

We find an even more complicated situation when we look at the
keyboard, which is used to input characters into the computer. The
quantity of data from a keyboard is really very small, but that data can
come at any time, at the whim of the user.
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Although it is not likely to be literally true in a real system, let’s
imagine first that there are several wires connecting the keyboard directly
to the CPU. The binary number carried by these wires encodes the key
currently being pressed (along with any modifiers such as the shift or
control key). If no key is pressed, the value on the wires is zero. In the
simplest case, the CPU could simply execute a loop in which it reads
the value on the keyboard wires over and over. When the value changes,
indicating that the user has pressed a key, the CPU can process the
character that was typed and then return to the loop to wait for the
next input. The CPU, or rather the program it is running, will have to
be smart enough not to process the same input twice, unless the user
holds down a key long enough so that it should “auto-repeat.”

This method of sitting in a loop, watching for some input to occur, is
called polling. Polling has several disadvantages. First of all, the CPU
wastes much of its time just waiting for input to occur. Even worse is the
possibility that the CPU might take so long processing one input that it
misses other inputs that come along while it is not watching for them.

As an alternative to polling, we can imagine a two-way flow of com-
munication between the keyboard and the CPU. In addition to the actual
data flowing from the keyboard to the CPU, there will be control sig-
nals sent by each device to the other to regulate the flow of data between
them. Of course, this requires that the keyboard be more than a “dumb”
mechanical device. Some of the processing that we have imagined being
done by the CPU must be done instead by a “keyboard controller cir-
cuit,” which acts as an intermediary between the mechanical keyboard
itself and the CPU. This circuit will detect the input coming from the
keyboard and do some preliminary processing of that input. It will en-
gage in a sort of two-way conversation with the CPU to transmit the
input data to it in an orderly way.

In general, the devices in a computer system are “smart” in this sense.
They include their own processing circuitry, which might be very sophis-
ticated, even to the extent of including a full-powered microprocessor.
These devices should be thought of as participants in two-way commu-
nication with the CPU, rather than as passive sources or recipients of
data.

There are several ways of controlling the flow of data between two
devices. One simple type of control called handshaking can be used to
make sure that no data is sent until the recipient is ready to receive it.
The recipient sends a signal when it is willing to receive data; it might
do this, for example, by turning on a wire dedicated to the purpose.
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Another style of communication uses interrupts, an idea with far-
reaching implications. The idea here is that a device can interrupt the
CPU, which will put aside whatever it is doing to process the com-
munication from that device. Although this is one aspect of the CPU
that I have not mentioned previously, the fact is that every real CPU
is designed with the ability to handle interrupts. A device “signals” an
interrupt by turning on a wire connected to the CPU; the CPU “ac-
knowledges” the interrupt by turning on another wire leading back to
the device. Generally, a CPU can handle several different types of inter-
rupts, corresponding to different kinds of events that it must be able to
handle.

An interrupt is similar to a subroutine. When an interrupt occurs, the
CPU executes an interrupt handler, a sequence of machine-language
instructions designed to respond to whatever condition caused the in-
terrupt. After the interrupt handler finishes, the CPU must return to
whatever it was doing when the interrupt occurred. Before jumping to
the start of the interrupt handler code, it must stash away enough in-
formation to enable it to pick up where it left off. This information
will certainly include the current value of the program counter and may
include the contents of other registers.

Some CPUs are hard-wired to jump to a specific location in memory
when an interrupt occurs; the interrupt handler must be loaded at that
location. In other CPUs, the location of the interrupt handler can be
specified by a program. But in any case, the processing that is done
in response to an interrupt will depend only on the machine-language
instructions that the CPU finds at the location of the interrupt handler.
Thus, although an interrupt is a hardware event, the computer can be
programmed to respond in any desired way to the interrupt.

As an example of how interrupts can be used to control communi-
cation, a keyboard might be designed to signal an interrupt each time
the user presses a key. The interrupt handler can process the keystroke
immediately or, more likely, store the character where it can be found
when the program that is running is ready to process it.12 You can see

12 Typed characters are stored in a “queue” or “buffer” which can hold a
number of characters. You probably have had the experience of typing char-
acters that do not immediately appear on the screen because the computer is
busy with something else. Those characters have in fact been dumped into the
queue by an interrupt handler, where they will stay until some program removes
them for processing at its convenience. It is that program that will later write
them onto the screen, if appropriate.
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that interrupts provide a convenient way for the CPU to handle com-
munication with a large number of devices without having to monitor
all of them continually. In practice, communication in a large computer
system might involve a complex combination of memory-mapped I/O,
polling, handshaking, and interrupts.

5.2.3. On the Bus. We seem to have created a new chaos of
devices, interconnections, and methods of communication. Somehow all
this has to be coordinated into a working computer system. Fortunately,
there is a clever and effective way of bringing order to this chaos: the
bus.

A bus is simply a set of wires that can be used for communication
among devices. What is special about a bus is the fact that many devices
can connect to it. Any of these devices can send signals along the bus
and read signals sent by other devices. Since only one device at a time
can send a signal over the bus, its design must include some way of
regulating when the devices are permitted to send signals.

A typical system might have three busses, a data bus, an address
bus, and a control bus, each devoted to carrying a different type of
signal. (A real system might well have more than three busses and might
include devices that communicate directly rather than over a bus. But for
the sake of simplicity, I will ignore such possibilities in this discussion.)
The control bus includes a number of wires used for sending control
signals, such as those used in handshaking and interrupts. These signals
are used to initiate or regulate the exchange of data between two devices.
The data itself is always transmitted over the data bus. When data is
being read from memory or loaded into memory, the address bus is used
to specify the memory location involved in the data transfer.

Data transfer using the data and address busses is actually more gen-
eral that it first sounds, since it can be used for arbitrary communication
between devices via memory-mapped I/O operations. Furthermore, as I
noted above when discussing video memory, the computer’s memory does
not have to be physically all in one place—it can be scattered in pieces
among various devices, with each device being assigned some subset of all
the available memory locations. A video memory that is physically part
of the video controller is one example of this. As another, the keyboard
controller might include a memory location that contains a code for the
key currently begin pressed; the CPU can simply read that location, as
it would read data from any memory location, to find out what key has
been pressed.
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Figure 5.1. A computer system with three busses: one for transmit-
ting data, one for specifying a memory address, and one for control
signals such as handshaking and interrupts. Busses provide a uniform
and conceptually simple way for all the devices in a complex system to
communicate. Furthermore, it is easy to add new devices by attaching
them to the bus. Most computers have “expansion slots” that are used
to plug devices into the bus. Here, the CPU is shown interfacing to the
bus via an input/output controller, which might actually be a physical
part of a CPU chip.

And as a final example, a sound device might include a memory
location whose contents determine what note it is playing. The CPU
could play a song simply by writing the appropriate sequence of numbers
to that location. As far as the CPU is concerned, it would simply be
using Store instructions to load numbers into memory. The fact that
doing so causes a song to be played is due to the way the computer
system as a whole, hardware and software, is constructed.

Computer systems are designed so that it is easy to connect new
devices into the system. These connections are made through ports and
expansion slots. An expansion slot provides a direct connection to the
bus; a card, known as an expansion card, containing all the circuitry
necessary to support a device, is simply plugged into the slot. In many
cases, the expansion card provides only an interface between the device
itself and the system. For example, to add a monitor to a system you
need a video expansion card, in addition to the monitor itself. The card
contains the video memory, the video controller circuitry, and a socket—
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Disk drives. These so-called “secondary memory devices” can
store large amounts of data and programs, which must be
loaded into main memory before they can be used by the
CPU. There are many different types of disk drives, using
various methods of data storage.

Modems. A modem can convert a stream of bits coming out
of a computer into a signal that can be sent over an ordi-
nary telephone line. It can also perform the reverse conver-
sion. Two computers can communicate over a phone line if
each is equipped with a modem.

Digital Signal Processing (DSP) chips. A DSP chip can
quickly perform complex operations used in processing au-
dio and video signals. The CPU itself could do such oper-
ations, but much more slowly. DSP chips are just one ex-
ample of special-purpose processors that can be added to a
system to speed up a particular type of calculation.

Optical scanners. An optical scanner digitizes an image so
that it can be displayed on a computer screen. It works
much like a photocopier, except that instead of duplicat-
ing the image, it converts it into a stream of bits that are
transmitted to the computer.

Voice recognition. A voice recognition device analyzes the
signal produced when the user speaks into a microphone,
and tries to determine what words the user is speaking.

Network connectivity. Networks provide a way of connect-
ing a number of computers so that they can communicate
with each other and share resources such as printers. A net-
work interface device in each computer handles communica-
tion between that computer and the network.

Figure 5.2. A brief beastiary of devices. This short list gives some
indication of the range of devices that might be found in a computer
system.

which sticks out the back of the computer—where the monitor is to be
connected.

A port also allows an external device to be plugged into the system.
It is similar to a socket on an expansion card—and in many cases may
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be exactly that. That is, a port consists of a socket and circuitry to
interface it to the bus (or perhaps directly to the CPU). The port pro-
vides a specific type of physical connection and style of communication.
Any device that physically fits the socket and uses that style of com-
munication can be plugged into the port. Most computers have both a
serial port, through which data is transmitted as a series of single bits,
and a parallel port, which allows eight or more bits to be transmitted
simultaneously over a set of “parallel” wires. A SCSI, or Small Com-
puter System Interface, port allows not just a single device but a chain
of different types of devices to be attached to the computer, with each
device plugging into the preceding device on the chain.

Expansion slots and ports allow a great number and variety of devices
to be added to a computer system, limited only by the imagination of
the people who design such devices. How can the CPU cope with such
a large and potentially expanding variety? All that the CPU ever does
is execute machine-language instructions. When a new type of device is
added to the system, software must also be added to enable the CPU
to communicate with and control that device. More generally, we say
that the system must be configured to use the new device. Besides
the loading of appropriate software, configuration can include making
physical changes, such as setting switches, when the device is installed.
And in the case of devices that include memory to be used for memory-
mapped I/O, it can include assigning the range of memory addresses to
be used by the device. Some parts of the configuration, such as loading
software, must be done every time the computer is started up. Before
discussing this in more detail, we need to consider the general question
of system software.

5.2.4. The Operating System. Every computer system includes
some software that is considered part of the system itself, rather than
merely a program to be loaded by the user when it is needed and thrown
away when it is not. This system software is called the operating sys-
tem. It is the operating system that gives the computer its “personality.”
Systems with identical hardware but running different operating systems
can appear completely different to the user. Programs which are not part
of the operating system are called application programs. Such pro-
grams are loaded at the user’s request to perform specific tasks such as
painting and drawing, word processing, and database management.

The computer’s CPU can perform only simple operations such as
adding or multiplying two numbers, or copying a number from one place
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to another. A usable computer system must perform more complex tasks,
such as displaying a character on a monitor, detecting when a button is
clicked on a mouse, sending output to a printer, or reading a program
from a disk and setting up the CPU to execute it. Such things are made
possible by the operating system. Fundamentally, the operating system
is a collection of subroutines and interrupt handlers for performing such
complex tasks.

System software also includes a program that runs when no applica-
tion program is running, accepting commands from the user and carrying
them out by calling operating system subroutines. This program goes
by different names in different systems, but I will refer to it generically
as the command shell. Note that while the command shell is usually
considered to be part of the operating system, it is possible to change
the command shell without changing the operating system in a funda-
mental way. The only thing that will be changed is the way that the
user interacts with the system.

Operating system subroutines can also be called directly by applica-
tion programs. Of course, this greatly simplifies life for the programmers
who write such programs, since they can simply use the operating system
subroutines as black boxes, without recreating them every time they are
needed and without understanding the details of how they work. The
rules for calling operating system subroutines from application programs
form what is called an application programming interface, or API.

At the moment when a computer is turned on it is, relatively speak-
ing, brain-dead—or more precisely, suffering from amnesia. The main
memory of most computers consists largely of dynamic random ac-
cess memory, or dRAM, which requires continuous power to retain the
data stored in it. This type of memory is erased whenever the computer
is turned off, so that any data and programs it contained are forgotten.
Among the things forgotten are all the programs that the CPU needs
to make it possible to communicate with other devices in the system!
So even though all the information it needs is still somewhere in the
system—stored in disk drives, for example—the CPU on its own doesn’t
know how to access that information.

The solution is to allow the CPU to keep some part of its memory
even when the power is off. This is done by building a portion of main
memory from ROM, or Read-Only Memory, instead of from dRAM.
ROM is a type of memory that retains its data permanently, even when
the power is off. The computer can read the contents of ROM but cannot
change the information that is stored there. The ROM might contain
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Figure 5.3. The operating system provides subroutines to perform
many common tasks, especially those that involve all the different hard-
ware components that can be part of a computer system. When a new
device is added to the system, the software necessary to control it and
communicate with it is added to the operating system. These software
components are called device drivers. Operating system routines are
made available to programs through an API (application programming
interface). They can also be used through a command shell that accepts
commands from the user and carries them out.

some basic parts of the operating system, but more important for the
present discussion, it contains a start-up program that is automatically
executed by the CPU when the computer is turned on. The CPU is
constructed in such a way that when the power is turned on, the address
of the start-up program in ROM is automatically loaded into the program
counter. The CPU starts executing instructions at that address, and it
never stops executing instructions until the power is turned off.

Executing the start-up program transforms the computer from a heap
of components into a complex, coordinated system. It does that by load-
ing essential parts of the operating system into main memory, doing any
necessary configuration of the system, and starting up the command shell
so that the user will have a way of interacting with and controlling the
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DOS. The single most common operating system, used on the
IBM PC and similar computers. The basic line-oriented
command shell is a program called COMMAND.COM, al-
though newer, menu-based shells are also used. System con-
figuration at startup time is controlled by a file called CON-
FIG.SYS, which must be maintained by the user to handle
all the devices included in the system.

Windows. Not quite an operating system itself, Windows
adds many system routines, a new API, and a graphically
oriented command shell to DOS. Windows-NT, a new op-
erating system, uses a similar command shell and API but
is not based on DOS and is much more sophisticated than
Windows.

The Macintosh OS. The Macintosh GUI is built right into
the operating system, which provides a very large API,
called the Toolbox, to support the GUI. The Toolbox allows
all programs to have a similar look and feel. The command
shell, a program called the Finder, uses the same interface.
One nice feature of the Mac OS is that system configuration
is done automatically, without burdening the user.

UNIX. UNIX is a multi-user, timesharing operating system
originally designed to run on large computers. It was de-
signed so that it could be implemented on many different
computer systems, and it is now available on personal com-
puters. The idea is to provide a single API for high-level
languages that will work on any machine running UNIX,
but the goal of compatibility has usually been met only
approximately. There are several command-line oriented
command shells for UNIX. The most basic one is called the
C shell.

Figure 5.4. A brief beastiary of operating systems, listing just a few of
the commonly used systems.

whole thing. Configuring the system means making any modifications or
additions to the operating system that are necessary to adapt it to the
particular hardware in the system and to the preferences of the user. For
example, many hardware devices require special software, called device
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drivers. A device driver is a set of routines that the CPU executes in
order to communicate with and control the device; without it, the device
is useless. The start-up program must make sure that all the software
needed to drive all the devices is available.

5.2.5. Multiple Processes. One aspect of the operating system
that might seem mysterious is its ability to allow several programs to
run “at the same time.” This is most apparent in time-sharing systems,
where there might be hundreds of people using the computer simulta-
neously. But even on personal computers, it is possible for the user to
be interacting with one program while at the same time other programs
are running in the background. For example, the user might be typing
a document using a word-processing program while at the same time,
another document is being printed, a spreadsheet program is perform-
ing a long calculation, and a clock program is displaying a continually
changing time. Somehow, the CPU manages to divide its time among
several users or several programs. How can it do this?13

The answer is easier to understand after the idea of a process has
been introduced. As the computer executes a program, it passes through
a sequence of states. A state consists of all the information relevant to
the program being executed, such as the contents of the CPU’s registers.
A process is defined to be the sequence of states that the computer goes
through as it executes a program. A process is dynamic, like a movie;
it takes place over a period of time. The program itself is static; it just
sits there like the script for the movie. The point is that the process
can be interrupted at any time and restarted later, provided that the
computer is restored to the exact state that the process was in before it
was interrupted. If this is done, the process will continue on exactly as
it would have if it had never been interrupted.

In a timesharing system, each user has a separate process. Only one
of these processes is running at a given time. Every so often, many
times per second, the current process is stopped, its state is saved, and

13 I should mention that there are computers that have more than one CPU.
On such a computer, each CPU can work on a different task. Such multipro-
cessing computers are discussed in Chapter 10. On a standard computer,
the single CPU can only work on a single task at a time, but even a standard
computer usually includes a few devices that can do some processing on their
own. The obvious example is a video controller that can redraw the display
screen without help from the CPU. Another example is a network interface
chip that handles all the interaction with a network, communicating with the
CPU only when there is incoming or outgoing data.
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one of the waiting processes is restarted. This process-switching is ac-
tually done by an interrupt handler responding to interrupts that are
generated by a system clock. Timesharing is an example of preemptive
multitasking, in which the processes that are sharing the CPU have
no control over when they will be interrupted or how long they will be
allowed to run. Another type of multitasking, called cooperative mul-
titasking, is used on some personal computers, such as the Macintosh.
A process running under cooperative multitasking must explicitly give
up the CPU before another process can take over. The disadvantage of
this is that an “uncooperative” process might hog the CPU and prevent
any other process from running.

This section has shown how a complex computer system can operate.
But no matter how complex the system, the CPU just keeps doing what
it always does, fetching simple instructions from memory and execut-
ing them one-by-one, occasionally responding to interrupts by execut-
ing some instructions out of their usual sequence. It is the programs—
operating system, device drivers, application programs—that together
produce the great complexity and variety of behavior that the computer
displays. It seems that we have reached the point where we should turn
from hardware considerations to an attempt to understand how these
complex programs can be designed and written. Our serious study of
programs will begin in the next chapter. But first, having gotten some
idea of how real computers were invented and how they work, we consider
the impact they have on the real world.

5.3. Computers and Society

It would seem irresponsible on my part not to include a section such as
this one, on the impact of computers on society, in a book that claims
to be a survey of computers and computing. However, I should warn
you that I am dealing in a few pages with a topic that really requires a
book of its own, or several books. Everyone agrees that computers have
significantly changed the world,14 and that their influence will increase,

14 Inevitably, when discussing the impact of computer technology on soci-
ety, we think first of the industrialized countries where such technology is
widespread, and my discussion will be limited to this aspect of the issue. A
truly global discussion would have to consider how computer and information
technology can be applied in the developing world and how it might affect
North-South relations.
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but there is little agreement on the extent of their impact, on whether
it will be positive or negative, or on whether it will be driven mainly by
the technology itself or mainly by human choice.

It should be clear to any reader of this book that I consider the the-
ory of computers and the machines themselves to be among the great
creations of the human mind. It is tempting for me to believe, along with
some social theorists, that computers will be a liberating and democra-
tizing force. However, I am faced with the fact that computers were born
as machines of war and much computer research continues to be directed
towards their war-making capabilities; that computers can threaten jobs
and in some cases make existing jobs less interesting and less fulfilling;
and that their ability to manage large amounts of information can be
used to invade people’s privacy.

On the whole, I tend to believe that the technology itself is neutral
and that human choices will determine whether its effects will be positive
or negative. If this is true, it puts a burden on those who develop the
technology and on those who will be affected by it—and in the case of
the computer, that means essentially everyone—to become familiar with
the issues involved and to be activist in the decision-making that will
determine the technology’s effects.

In this section, I try to give a brief survey of some of the issues that
need to be considered. Inevitably, my own opinion plays a larger role in
this section than it does in the rest of the book. Interested readers will
find more subjects covered and greater depth of coverage in the survey
by Richard S. Rosenberg and in the collections of articles edited by Tom
Forester, all of which are listed in the bibliography.

5.3.1. Computers Everywhere. One way to begin a discussion
of the impact of computers on society would be with a list of all the
different ways in which computers are used. But those uses are so many
and so varied that such a list would surely fill a book. The obvious uses—
with a person sitting in front of a terminal or microcomputer—are only
the beginning of the story. Computers are so pervasive that they affect
virtually every aspect of life.

People drive cars in which microprocessors increase performance and
safety, acting on information from sensors that monitor things like en-
gine temperature and fuel consumption. Some people fly jet fighters
that would crash and burn if their computer systems failed, because an
unaided human is simply not capable of reacting fast enough or with
enough precision to keep such a plane in the air.
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Most people trust their money to a banking system in which that
money will become a piece of data in some computer’s memory—or they
pay it to the government in taxes that will be recorded in one of the
largest computer systems in existence. If they happen to be criminals,
they might be inspired to find novel ways of extracting other people’s
money from its electronic storage places.

Their telephone calls are routed to their destinations by computer.
The stories they read in newspapers were written on computers, and are
laid out with the aid of computer programs. The pictures in those papers
are processed and enhanced by computer, and they might just as easily
be falsified.

They can spend their leisure time playing games on computers. When
they go on vacation, they book their airline flights and lodgings on na-
tionwide computer reservation systems. If they stay home and watch
an old movie on TV, it might well have been “colorized” by a computer
process that can add color to black and white video.

But I will discuss many specific applications (at least the ones that
have something interesting to teach us about computers) in the last
four chapters of the book. Rather than try to give an exhaustive (and
exhausting) list of computer applications, I will concentrate here on the
potential of some aspects of computer technology to bring about real
social change.

5.3.2. Computers and the Workplace. Some social theorists
claim that we are seeing the emergence of a post-industrial society or
information society, in which information will be the primary source
of wealth and the majority of the workforce will be employed in produc-
ing, processing, and communicating information. Before the industrial
revolution, a majority of people worked in agriculture. Today in the
United States, the agricultural needs of the country are met by about
three percent of the workforce. It is not that less food is produced but
that the productivity of agricultural labor has greatly increased. Pro-
ductivity refers to the output produced by a given quantity of human
labor. If a worker driving a tractor can accomplish the same work as
several manual laborers, productivity is increased severalfold. Comput-
ers have the potential to increase productivity in traditional goods and
services industries, perhaps to the extent where they consume the labor
of as small a proportion of the population as agriculture currently does.

When general levels of productivity in a society increase, the same
goods and services can be produced with a smaller amount of labor. In
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the first analysis, it might seem that the necessary consequence of this
decreased demand for human labor will be an increase in unemployment.
But while unemployment in specific industries will tend to increase, the
effect on society as a whole is not so clear and can be influenced by social
policy.

When productivity in one industry increases because of the intro-
duction of new technology, jobs that are eliminated in that industry
are balanced to some extent by new jobs that support that technology.
Tractor manufacturing might contribute to agricultural unemployment,
but it also creates manufacturing jobs that were not there before. In
the same way, robots working on assembly lines displace workers, but at
the same time, new jobs are created for the people who design, build,
program, and maintain those robots. In general though, new technology
will not be introduced unless the net effect is a lowering of costs, and
that will presumably translate to a net loss of jobs, even counting any
new jobs created in supporting industries.

Looking at this loss of jobs in a positive way, as human labor and
creativity now freed to be devoted to new purposes, we can ask how
society will use this resource. In the worst case, it could be wasted,
with high levels of unemployment driving down overall wage levels and
impoverishing not just the unemployed but society as a whole. On the
other hand, it could be used to raise the standard of living of the entire
society and could support the creation of completely new industries based
on the new technology. It could allow people to devote more of their time
to creative work and to leisure. This is the vision of the Information
Society. But the extent to which computer technology will change the
workplace, and who will benefit from those changes, will be determined
to some extent by social policy, even if that policy is to do nothing and
allow the changes to be driven purely by economic forces.

Turning from theoretical considerations to actual applications, we
can ask what changes computer technology brings to the workplace. In
some cases, these changes mean complete automation of tasks previously
performed by humans. Perhaps the most dramatic example here is the
replacement of human workers on an assembly line by robots. The robots
in this case, currently at least, are neither intelligent nor human-like.
They are machines of size and shape appropriate to the task that simply
repeat the same programmed sequence of actions over and over. Tasks
that require a significant degree of flexibility are difficult or impossible
to automate, but the design of more “intelligent” robots is an active area
of research.
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More commonly, though, computers are introduced as tools to be
used by people. Examples in this category include the computers used
in offices for word-processing, accounting, and storing and retrieving all
the data necessary to run a business. Other computers running CAD
(Computer-Aided Design) programs replace pencil and paper as design
tools for engineers and draftsmen. Managers can use programs called
spreadsheets to help forecast the results of various decisions by numericly
modeling the effects they might have.

There are many success stories about the introduction of computer
technology, but the results do not always live up to expectation. In
particular, it seems to be generally agreed that massive investment in
computer technology in the office has not had the promised impact on
productivity. There are many reasons for this, but a principle reason
seems to be that merely introducing technology, without analyzing and
modifying procedures and personnel structures to take advantage of it,
will not automatically lead to improved productivity.

When we consider computers in the workplace from the point of view
of the affected worker, we must ask questions about how they will affect
the quality of jobs, not just the quantity. One concern is the possibility
of de-skilling. This refers to the replacement of well-paying, interesting,
high-skill jobs with jobs that require fewer skills and offer fewer rewards.
It has been proposed that computers, by allowing skill to be embedded
in the tools used for a task, would decrease the level of skill needed by the
worker. De-skilling is not unique to the computer age: Its primary sym-
bol is the assembly line, where a sequence of workers each performing one
small, repetitive, almost mindless task assemble a complex product that
might otherwise have required the efforts of a team of skilled craftsmen.
It seems possible that computers might allow the de-skilling of a whole
new range of occupations. So far, though, computers have not brought
about massive de-skilling. In fact, there is some evidence that computers
lend themselves more easily and more effectively to “human-centered”
systems which seek to take full advantage of human skill and flexibility
[Forester, 1989, p. 13].

5.3.3. Computers and the Individual. One of the most dis-
turbing aspects of computer technology is the threat it holds for indi-
vidual rights, especially the right to privacy. The ability of computers
to maintain large databases of easily accessible information means that
an unprecedented amount of information about people is being collected
and stored.
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Any person living an ordinary life in an industrialized country con-
stantly generates data that flows into computer databases, some of them
public and some with access restricted to use for specific purposes. This
data flow consists not just of major events such as birth, death, mar-
riage, and property transfers. Transactions using checks or credit cards,
subscriptions to magazines and newspapers, telephone calls (the num-
ber dialed and the length of the call), mail-order purchases—all are
recorded electronically, along with educational records, tax and employ-
ment records, medical history, criminal record, credit reports, and so on.
Much of this data has always been available, on paper in filing cabinets
and storage boxes. But once it has been entered into a computer, it
becomes almost instantaneously accessible. Furthermore, the speed and
power of the computer makes it possible to gather and correlate large
amounts of data from many sources. And once data about an individ-
ual has been collected, it can be bought and sold, usually without the
permission or knowledge of that person.

Although a number of laws have been passed dealing with privacy
issues and computer databases [Rosenberg, p. 203–209], questions about
who should have access to the data and what it can legitimately be used
for are far from being settled. In a few cases, such as the databases
used to generate credit reports, people have the legal right to know what
data about them is contained in a database and to demand correction
of erroneous data. The privacy of some records is protected by law,
but there is a tension between the individual’s right to privacy and the
public’s right to know. For example, court proceedings are a matter of
public record, but they can and have been used by employers to deny jobs
to workers who have filed a worker’s compensation claim against another
employer and by doctors to deny treatment to patients who have in the
past sued a doctor for malpractice [Rosenberg, p. 213].

Even more troubling, though, are potential abuses of government
power that are made possible by the government’s ability to gather huge
amounts of data about people and their activities. The question here is
whether information technology, which has the potential to be a democ-
ratizing and empowering force, will be used instead as an instrument of
social control and oppression.

5.3.4. Electronic Mirror. One other aspect of the impact of
computer technology deserves to be mentioned. Computers are a new
sort of thing in the world. They behave differently from other artifacts
(which for the most part do not have any “behavior” at all). We can
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ask what impact this new type of machine has on people’s views of
themselves, of their human nature, and of their place in the order of
things.

In her book, The Second Self: Computers and the Human Spirit,
Sherry Turkle reports on her sociological studies of several components of
the computer culture: children encountering computer toys, adolescents
learning about computer programming in school, hackers who “love the
machine for itself,” personal computer users, and artificial intelligence
researchers. She found a wide range of responses of people to computers
and a wide variety of styles of using them (and she urges a “healthy
skepticism toward any who propose simple scenarios about the impact
of computers on society”).

Turkle found that for many people the computer is an object that lies
uncomfortably on the boundary—between living and nonliving, between
psychological and mechanical, between mind and non-mind. It is easy
to experience computers as responsive entities rather than as mechani-
cal devices. They can display what looks like rationality and purpose.
As objects on the boundary, computers raise questions. They invite a
consideration of what it means to be human or to be a machine. A user
who experiences a computer as a partner in a dialog and who sees it
performing what seem to be difficult intellectual tasks might be led to
ask, “If a machine can do so much, am I then (merely) a machine?” Or,
alternatively, “Is it possible for a machine to be human?”

Of course, I don’t plan to answer these questions, although we will
return to them again at the very end of the book, as part of a discussion
of artificial intelligence. I raise them now to point out how thoroughly
the computer has infiltrated our consciousness, our metaphors, and our
very self-conception.

Chapter Summary

This chapter has presented a kind of whirlwind tour of mechanical calcu-
lation, from its beginnings in the seventeenth century through the inven-
tion of the first computationally universal devices in the 1940s and on
to the development of today’s fast, powerful, and “user-friendly” desk-
top computers. These real computers are quite a bit different from the
small model computer designed in Chapter 3 and from the Turing ma-
chines from Chapter 4. But the differences are more quantitative than
qualitative. Ultimately, computation consists of a large number of very
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simple individual steps, and computing machines are built from a large
number of simple parts. This chapter makes clear the extreme degree of
complexity that can be achieved when such simple parts are assembled
into complex systems.

Today’s computers are von Neumann machines that store their pro-
grams as information in memory and do their calculations in a central
processing unit. But a complete computer system includes many other
types of devices. The interaction of the CPU with these devices and
with the user is controlled by the operating system, which includes de-
vice drivers that the CPU executes to communicate with and control the
other devices in the system. Communication among these devices often
takes place over a bus which allows for the exchange of data as well as
the transmission of control signals such as interrupts.

Mechanical calculating devices have brought the possibility of a fun-
damental transformation of society, perhaps as fundamental as the In-
dustrial Revolution. We are in the process of moving from an industrial
age into an information age. This transformation brings both oppor-
tunities and dangers, as we as a society decide whether to control the
technology or to be controlled by it—or let the decision be made for us
through inaction.

Questions

1. I say that the ENIAC was not really a computationally universal
device because changing its program involved rewiring. Is this fair? Do
you think the ENIAC deserves to be considered a computationally uni-
versal computer? How is unplugging and plugging a few wires any differ-
ent from loading a new program into a computer’s memory, or changing
the deck of program cards in the Analytical Engine?

2. At one point in this chapter, I say that appliances like microwave
ovens might contain general-purpose microprocessors with special pur-
pose programs permanently burned into their memory. What does this
mean? Why is the program permanently stored in memory? Why would
anyone use a general purpose CPU for such a specific application, when
its program will never be changed?

3. A mouse is a device that can be used to “point” at things on a
display screen. As the user moves the mouse around on a desk, signals
are sent from the mouse to the computer that cause a cursor or pointer to
move on the screen. The mouse has one or more buttons that the user
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can press; these send other types of signals to the computer. Discuss
how a mouse might work. What happens when a signal is sent to the
computer? How does the cursor get moved? What happens to the part
of the displayed image that is beneath the cursor? The object of this
question is for you to figure out various ways a mouse might work, not
to find out how a real mouse works.

4. Suppose I have two identical computers sitting side by side, run-
ning two different operating systems (say, UNIX and DOS). I would like
to take a machine-language program from one of those machines and run
it on the other, but I find that it doesn’t work. Why not? If the CPUs
in the machines are identical, shouldn’t they be able to execute exactly
the same machine-language programs? Are there any machine-language
programs that would run on both machines?

5. In Mary Shelly’s novel, Frankenstein, Dr. Frankenstein creates
and gives life to a “monster.” He recoils in horror from his creation and
abandons it. In the end, of course, the monster has its revenge. It is
generally thought that Dr. Frankenstein paid for trying to take on God-
like powers by creating life. But perhaps his real crime lay in refusing
to take responsibility for his creation. Comment on this (in the context
of Section 5.3).

6. Make a list of all the computerized databases that might contain
information about you. Use a large sheet of paper.
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Chapter 6

Programming

THE NICE THING about computers is that they will do exactly what you
tell them to do. Unfortunately, they will do it exactly, so you need to
get your instructions exactly right.

Computers work by following programs which determine in excru-
ciating detail every little step that they take. The process of creating
those programs is called programming. For most people, programming
is an unnatural activity, in the literal sense that it is not something that
they do naturally. In some sense, programming is similar to giving an-
other person a set of instructions, or a recipe, for performing some task.
But when you give instructions to people, you rely on their intelligence
and their huge pool of background knowledge to fill in the details and to
work out any ambiguities. A computer has no intelligence or background
knowledge and absolutely no tolerance for ambiguity. To be correct, a
program must specify the exact procedure to be followed, in full detail,
taking all possible contingencies into account. And the programmer has
only a small number of resources to work with—some basic instructions
and a limited number of ways of combining them into more complex
structures.

Writing programs for something as literal-minded and as simple-
minded as a computer can be difficult and frustrating. But it can also
be rewarding and fun. Writing such programs is a skill that seems to
come more naturally to some people than to others, but it is a skill that
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can be learned by anyone. Not that everyone needs to learn program-
ming, any more than everyone needs to be an automobile mechanic—but
anyone who wants to claim a basic understanding of computers needs to
encounter at least the basics of how they can be made to carry out com-
plex tasks. Such an understanding can be gained without becoming an
expert programmer, and you should not expect to become an expert
programmer just by reading this book. However, what you do learn here
will, I hope, deepen your understanding and appreciation of computers.
Furthermore, the techniques and skills that are used in programming
have more widespread application to dealing with complex systems and
to problem solving in general, so learning about them is useful for their
own sake.

Curiously, the techniques and skills that the typical programmer uses
to write very short programs are quite different from those needed to de-
sign the massive, complex programs on which professional programmers
spend most of their time. Short programs can be composed more or less
on the fly, from a design that exists nowhere but in the individual pro-
grammer’s head. This seat-of-the-pants style of programming is called
hacking (one of several different meanings for this common term). Al-
though hacking can be both exciting and satisfying, it is not necessarily
the best way to write even short programs. Sooner or later—usually
sooner than they would like to admit—all programmers run up against
problems too complex to solve without a more organized approach. The
alternative to hacking is known as software engineering. Like all en-
gineering, software engineering deals in the systematic analysis of prob-
lems and in the careful design of correct solutions. You will find the
engineering theme of good design running throughout my discussion of
programming.

In this chapter and the next, I will discuss programming in my own
made-up high-level language, which I call xTurtle. The design of this
language puts it in the mainstream of programming languages, along
with such commonly used “real” languages as Pascal, C, and Ada. Pro-
grams written in these mainstream languages imitate machine-language
programs fairly closely, even though a single instruction in a high-level
language can correspond to many machine-language instructions. There
are other, very different types of programming languages, and I will dis-
cuss some of these in Chapter 8.

xTurtle includes a set of so-called turtle graphics routines. These
routines can be used for drawing pictures on the computer’s screen.
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Turtle graphics were introduced in the language Logo, developed by Sey-
mour Papert at MIT. Logo was designed to be used in teaching children
how to program. The original “turtle” was a small, motorized robot
on wheels that would move around on a large piece of paper under the
control of a Logo program. It carried a pen that traced out its path as
it moved. Turtle graphics routines represent commands that would be
appropriate for such a robot, such as telling it to move forward five units.
Of course, in xTurtle, these commands draw on the computer screen in-
stead of on a sheet of paper. Except for the basic graphics routines,
though, xTurtle and Logo are not closely related languages.

I have chosen to include turtle graphics in my language in order to
make the programs less abstract and easier to follow than programs that
simply move numbers around inside the computer’s memory. But keep
in mind that the pictures are not the main point. The main point is
the programming process: the analysis of a complex problem and the
construction of a set of instructions that the computer can follow to
solve that problem.

6.1. The Power of Names

In folk magic, names are believed to be a source of power. The name
is an essential part in magical incantations and spells, so that know-
ing a person’s true name can give you magical power over that person.
Whatever the validity of this idea in the realm of magic, names really
do play an important and powerful role in the “incantations and spells”
that control computers.

Understanding the way names are used in computer programs is the
essential first step in understanding how to program. Many different
types of things in programs are referred to by name. To program effec-
tively, you need to know the rules for assigning names to things and for
using those names.

Now, when you are trying to learn a language, there are two different
types of rule that you have to pay attention to: rules that tell you
what something looks like, and rules that tell you what it means. More
formally, the rules that specify appearance or structure are referred to as
the syntax of the language, while those that determine meaning make
up the semantics of the language. Every language, including English,
has a syntax and a semantics, but for programming languages the syntax
and semantics must be specified completely and unambiguously.
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It is easy enough to deal with the syntax of names in our programming
language, xTurtle, although even in this simple case a full specification
can become rather painful. A name in xTurtle is a sequence of char-
acters where each character is a letter, a digit (‘0’ through ‘9’), or an
underscore (‘ ’); the first character must be a letter or an underscore;
the name can contain no more than thirty-one characters; upper- and
lowercase letters are considered to be the same, so that Quack, quack,
and qUaCK are just different ways of writing the same name; a few
words (which I won’t bother to list) are reserved for special purposes in
the language and so cannot be used as names.

Now, this sort of detail certainly alienates many people, and with
some justice. Do you really need to remember all this? Well, yes and
no. For the most part, in fact, you can get by with a general feel for
what names are like. If I told you that names are things like Rate, Num,
x1, x2, and length of side, you would already know enough about names
to follow all the examples in this book and to use names correctly in
programs of your own. In fact, because of your intelligence and huge pool
of background knowledge, you would understand all sorts of things that
are not at all apparent from reading the complete formal description. You
would know that names are more or less like English words, except that
underscores can be used to write multiword names such as length of side,
while digits are clearly meant to be used in similar names for related
things, such as x1 and x2. And I think you would be pretty sure that
3xW1 7 is not really meant to be used as a name, even though it is
perfectly legal according to the rules. However, computers deal only in
formal rules, and sometimes it is necessary to be familiar with exactly
what those rules say. This is especially true when you are trying to figure
out what is wrong with a program that contains a violation of the rules.
The point is to avoid being scared off by the details. Concentrate on the
examples, but remember that the details are there to look up if you need
them.

When we turn from syntax of names to their semantics, we find that
there is even more to understand. But here again, the basic idea is
straightforward. A name refers to something. The meaning of a name
is the thing it refers to. In xTurtle, there are really only three things
that a name can refer to: a chunk of program code, an item of data, or
a location in memory.

Names that refer to chunks of program code are called subroutines.
We already encountered the basic idea of subroutines in Chapter 1: The
instructions necessary to perform a certain task are chunked together
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into a unit that can then be used as a black box whenever that task
needs to be performed. With subroutines, the analogy to a magic spell
is not so farfetched. The name of a subroutine is a single word which
can have a complex and far-reaching effect.

A name which refers to a location in memory—or to the data stored
at that location—is called a variable. (This is a poor choice of terms,
since it suggests a mathematical analogy which is not really correct and
not very helpful, but unfortunately the term is too traditional to be
avoided.) In general, the same variable name can be used with either
meaning, depending on the context in which it is used. This duality
of meaning can be a source of much confusion to novice programmers,
but usually only because the distinction is not pointed out to them or
because they do not pay attention to it.

6.1.1. Built-in Subroutines. Our goal is to understand how
complex programs can be constructed. The idea, of course, is that cer-
tain basic operations are available, along with methods for combining
operations into more complex structures. The most basic operations are
simple things like moving data from one place to another or performing
simple arithmetic calculations. In xTurtle, as in most programming lan-
guages, the combination methods are loops, decisions, and subroutines.
Loops and decisions will be covered in the next section; the methods for
writing new subroutines are deferred until the next chapter.

It’s a long way from data-shuffling and simple arithmetic to a com-
plete, working program. Every high-level programming language pro-
vides some large, prefabricated pieces to help simplify the work. These
pieces are the built-in subroutines of the language. A built-in sub-
routine is a true black box. The programmer who uses one knows what
task it is supposed to perform but might well have no idea how it accom-
plishes that task. Every language includes some built-in subroutines for
performing input and output. As we saw in the previous chapter, I/O
operations involve complex coordination between the CPU and hardware
I/O devices. All this complexity can be hidden inside subroutines, leav-
ing the programmer free to imagine that input and output are simple,
basic operations.

The built-in subroutines in xTurtle include the turtle graphics rou-
tines for drawing on the computer screen. These routines control a sim-
ulated “turtle” that moves around on the screen. The direction in which
this turtle is facing is called its heading. Its position is given by two num-
bers, an x-coordinate for the horizontal position and a y-coordinate for
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Figure 6.1. In the examples in this text, the turtle moves around in
a 20-by-20 square, in which its horizontal position is given by a num-
ber between −10 and 10, and similarly for its vertical position. Grid
lines are shown here for reference, but are not part of the picture that
would be seen on the screen. The turtle always starts in the center of
the square at the position (0,0), facing toward the right. Shown here
is the path it would draw as it follows the sequence of commands: for-
ward(4) turn(45) forward(4) turn(135) forward(10). The turtle itself is
shown as a small triangle at the position and heading it would have at
the end of this sequence of commands.

the vertical. (See Figure 6.1.) The two most basic routines are forward,
which causes the turtle to move, and turn, which causes it to change its
heading. The imaginary turtle carries an imaginary pen which it can
use to sketch its path on the screen as it moves. This pen can be either
up or down; it only draws when it is down. Two routines, PenUp and
PenDown, cause the turtle to raise and lower its pen; these routines are
used to control whether or not the turtle draws as it moves.

An instruction in a program that tells the computer to execute a
subroutine is called a subroutine call statement, and using such an
instruction is known as “calling” the subroutine. A subroutine call state-
ment for the routine PenUp, for example, consists simply of the name of
the subroutine.

For the subroutines forward or turn, a call statement must include
some extra information besides the name of the routine. An instruction
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to move forward must include the distance to move; an instruction to
turn must specify how many degrees to turn. This extra information is
listed in parentheses after the name of the subroutine. For example, the
command

forward(5)

will cause the turtle to move five units forward in whatever direction it
is currently facing, and

turn(90)

will cause the turtle to make a 90-degree left turn. (Angles are measured
in degrees, with positive numbers specifying a counterclockwise rotation
while negative numbers specify a clockwise rotation.)

The “5” and the “90” are called parameters.1 Recall that a sub-
routine works like a black box. A parameter is like a “slot” in that box
through which information is passed into or, as we see later, out of the
box. It is possible for a subroutine to have zero, one, two, or more param-
eters. PenUp and PenDown are simple commands with no parameters.
The command moveTo, which tells the turtle to move to a point with
specified coordinates, has two parameters. For example, moveTo(3,−7)
causes the turtle to move to the point with horizontal coordinate 3 and
vertical coordinate −7. Notice that when there is more than one param-
eter, the parameters are listed in parentheses and separated by commas.

At this point, we already know enough to write simple programs.
In fact, of course, a single command such as “forward(5)” is itself a
program; executing this program draws a single line on the screen. We
can create more complicated programs by stringing commands together.
Here, for example, is a program for drawing a 7-by-4 rectangle:

forward(7) turn(90)
forward(4) turn(90)
forward(7) turn(90)
forward(4)

Note that xTurtle has no official rules about how you have to arrange
your program. For example, it doesn’t require each command to be on a

1 This odd use of the term parameter is based on the use of the term in
mathematics. It refers to an input that can be set to different values to pro-
duce different behaviors. A subroutine with a parameter corresponds to an in-
finite number of different commands—for example, forward(3), forward(2.775),
forward(−7), . . .—that differ only in the value of the parameter. (More magic!)
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separate line. Of course, as a rule of good programming style, programs
should always be laid out so that they are as easy as possible to read.2

In addition to forward, turn, PenUp, PenDown, and moveTo, there
are only a few other turtle graphics routines that will be used in the
examples in this book.

The command back(x), where x is any parameter value, causes the
turtle to back up x units, that is, to move x units in the direction op-
posite to its current heading. (In fact, negative numbers are allowed as
parameters for both forward and back, and back(x) is provided only as
a convenient shorthand for forward(−x).)

The command face(x) makes the turtle turn to a heading of x degrees
from heading zero. (With a heading of zero, the turtle is facing toward
the right edge of the screen.) For example, face(90) points the turtle
straight up, face(−90) points it straight down, and face(180) points it
to the left. Note the distinction between turn and face: turn specifies a
change in direction from the current heading, while face specifies a new
heading without any reference to whatever the old direction might have
been.

Finally, the command move is related to moveTo in the same way
that turn is related to face. That is, while moveTo(x,y) says “move from
the current location, whatever it is, to the point with coordinates (x,y),”
move(x,y) says “move x units horizontally and y units vertically from
the current location.” Note that these commands do not depend upon
or change the heading of the turtle. Either command will draw a line if
the pen is down.

There are a few other, non-graphics subroutines that you need to
know about. These are mentioned below.

6.1.2. Variables and Assignment Statements. In almost all
high-level languages, access to the basic data storage and manipulation
abilities of the computer is provided through variables. Fundamentally,
a variable is a named memory location. The name allows the program-
mer to refer to that memory location, or, indirectly, to the data stored
at that location, without having to keep track of where in memory that
location happens to be. The computer—or more exactly, the compiler

2 By the way, I haven’t said anything about the mechanics of creating and
running programs. You should just assume that you have some way of typing
in a program and then telling the computer to execute it. The details of how
this is done are irrelevant.
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or interpreter that translates the high-level-language program into ma-
chine language—sets aside the memory needed for any variables in the
program and translates any use of a variable name into a reference to
the corresponding memory location.

In an xTurtle program, before you can make any use of a variable,
you must explicitly declare that you want to use it and give it a name.
For example, the statement

declare x

tells the computer to set aside memory for a variable named x, while

declare InterestRate, Amount

declares two variables with a single statement.3 When you declare a
variable, the computer sets aside memory space for it, and remembers
the name and the location it corresponds to. If you try to use a name
that has not been declared, the computer will tell you that your program
contains an error. Declaring variables might seem like an inconvenience,
but in fact it makes writing correct programs easier in the long run. For
example, you might think that your program uses the single variable
length, whereas because of your poor typing it really contains two dif-
ferent names length and lenght. If the computer were not able to detect
“lenght” as an error, the program would run but would probably give in-
correct results—leaving you with the problem of figuring out what went
wrong, or worse, not knowing that the answer is incorrect. (In general,
the more errors the computer can detect automatically, the better. This
principle is a major influence on the design of programming languages.)

Recall that a program is just a list of instructions—which for no good
reason whatsoever are usually called “statements”—to be mechanically
executed by the computer. So far we have seen subroutine statements
and declaration statements. Obviously, a programming language must
also include statements for getting data into the variables and for doing
calculations with that data.

3 Note that all variables in xTurtle are designed to hold real numbers, that
is, numbers that can contain an optional decimal point and a fractional part,
such as 7.3 and−127.006. xTurtle is extraordinarily limited in this respect. Real
numbers are just one possible type of data. Computers must deal with many
types, including integers, strings of characters, dates, digitized pictures, and so
forth. Most programming languages provide different “types” of variables to
hold different types of data. In those languages, when you declare a variable,
you must say what type of variable it is. This aspect of programming will be
discussed in Chapter 8.
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An assignment statement is used to store a value in a variable.
The value to be stored can be a constant number, the value of another
variable, or the result of a potentially very complicated calculation. Sup-
pose that Amount, Deposit, and InterestRate are variable names in an
xTurtle program.4 Then that program could contain the following sam-
ple assignment statements:

InterestRate := 0.06
Amount := Deposit
Amount := Deposit∗(1 + InterestRate)

The funny symbol “:=” is called the assignment operator. It would
probably be best to read it as “gets the value,” since its meaning is that
the value on the right side of the operator is to be computed and stored
in the variable on the left. Thus, the first statement tells the computer
to store the number 0.06 in the memory location assigned to the variable
named “InterestRate.” The second tells it to store a copy of the value of
the variable Deposit into the variable Amount. And the third tells it to
perform a certain calculation and then to store the answer in Amount.

Note that a variable that appears on the left side of an assignment
statement is being used in a very different way from one that appears on
the right side. The name on the left refers to the memory location of the
variable. The value in that location before the statement is executed is
of no interest at all—it will be erased and replaced when the new value
is stored there. For a name on the right, on the other hand, it is the
value of the variable that is being used, not the location in which it is
stored.

When an assignment statement is executed, the value on the right is
computed. Then, in a separate operation, that value is stored into the
variable on the left. This allows us to do something like this statement,
in which the same variable is used on both sides:

x := x+ 1

When the computer executes this statement, it first computes the value
on the right. It does this by fetching the value currently stored in the
variable x and adding 1 to that value. The result of this computation is
then stored in the variable on the left of the assignment operator, which

4 Since you can choose any name you like for variable names, it is a good
idea to choose meaningful names that indicate how the names will be used in
the program. This is not for the benefit of the computer (which, of course,
couldn’t care less), but for any human reader who might have to look at the
program—including the person who wrote it!
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just happens to be x. The effect of all this is to increase the value stored
in x by one.

Finally, we should discuss in more detail exactly what is allowed on
the right side of an assignment statement. Look at the formula

Deposit∗(1 + InterestRate)

in the third example above. This formula represents the result of adding
1 to the value from the variable InterestRate and then multiplying the
result by the value of Deposit. With a few exceptions, such as the use of
an asterisk (∗) to represent multiplication, the rules for writing formulas
in xTurtle are the same as in ordinary mathematics, and I won’t belabor
them here. I will note that formulas can include certain mathematical
functions, such as the trigonometric functions sin and cos. For example,
if x, radius, and angle are variables, then

x := radius ∗ sin(angle)

would be a legal assignment statement. Certain common functions have
uncommon names in xTurtle. For example, since there is no way to
type something like

√
x , the square root function is named sqrt, as in

“sqrt(x).” Note that a mathematical function is really a special kind of
built-in subroutine. It is a black box that performs a complex compu-
tation, but it differs from an ordinary subroutine because its purpose is
to compute a value, rather than to perform an action. Whereas “for-
ward(5)” makes perfect sense standing on its own as an instruction in a
program, “sqrt(5)” by itself is incomplete, because there is no indication
what should be done with the value that is computed. It can only be
used as part of a complete instruction such as “x := sqrt(5).”

While we are on the subject, take another look at the instruction
forward(5). The value “5” tells the computer how far the turtle is to
be moved. There is no reason why this distance should not be given as
the value of a variable or as a formula, and in fact, xTurtle will accept
instructions such as forward(dist) and forward(5∗sqrt(dist)), where dist
is a variable.

Note that the effect of the instruction forward(dist) depends on the
value that happens to be stored in the variable dist when this instruction
is executed. This makes it extremely powerful in two ways. First of all,
when you write the program, you don’t even need to know what the
value of dist will be; for example, it might be obtained by input from
the user when the program is run. In that case, the same program can
do something different each time it is run, depending on the value input
by the user. Second, suppose that this instruction occurs in the middle
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declare length
length := 0
loop

length := length + 1
forward(length)
turn(90)
exit if length = 17

end loop

Figure 6.2. A program that uses a variable, assignment statements
and a loop to draw the “square spiral” shown on the left. Although
loops will not be introduced until the next section, you can probably
follow how the loop in this program works. The instructions between
loop and end loop are executed repeatedly. Each execution of the
loop draws one line in the spiral. The assignment statement “length :=
length + 1” causes each line to be one unit longer than the previous
line. The computer exits from the loop after drawing 17 lines.

of a loop, so that it can be executed many different times while the
program is running. It is possible for the value of dist to change from
one execution to the next, so that the exact same statement in the same
program might have a different effect each time it is executed. In fact,
this is what makes a loop so powerful: It doesn’t really “repeat the same
thing over and over” in a simple sense. The situation in which the loop
executes can change with each execution, so that each execution can
have a different effect.

6.1.3. Input/Output Subroutines. Assignment statements are
all you need to manipulate data inside the computer, but many programs
require an exchange of data between the computer and the user while
the program is running. For example, you might want your program to
ask the user to enter a number, perform a calculation with that number,
and then display the result of the calculation to the user. Two built-in
subroutines called AskUser and TellUser are provided in xTurtle to make
it possible to write such programs. The I/O facilities of xTurtle are rather
limited—and a little bizarre—compared to those of most languages, but
they are sufficient for all the examples we will look at.

If you just want your program to say “Hello” to the user, you can
use the instruction

TellUser("Hello")

TellUser differs from all the other subroutines you have seen, since its pa-
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rameter is a string (that is, a sequence of characters enclosed in quotes),
rather than a number. When the computer executes this instruction, the
string Hello, without the quotes, will appear on the screen.

TellUser allows you to output the value of a variable as follows: If
the string contains the character #, the word after the # must be a
variable name. When the string is displayed to the user, the value of the
variable will be substituted for its name. Suppose for example that Ans
is a variable. Then you could use the instruction

TellUser("The answer is #Ans")

in your program. If the value of Ans happens to be 17 at the time this
instruction is executed, then the displayed string will be: The answer

is 17.
Another subroutine, AskUser, is used to get a number from the user.

It is a little more complicated than TellUser since you have to tell the
computer where to put the number that the user types in. Of course,
the only place where you can put a value is in a variable, and this means
you must specify a variable where the subroutine is to dump the input.
AskUser has two parameters: a string that will be displayed to the user
and a variable in which the user’s response is to be stored. For example,
if Amount is a variable then the instruction

AskUser("How much money did you deposit?", Amount)

will display the question on the screen, wait for the user to type in
a number, and store the number entered by the user in the variable
Amount. That value can then be used by the remainder of the program.5

Finally, then, here is a short but complete program that uses input and
output:

declare Deposit , Amount
AskUser("Enter initial deposit.", Deposit)
Amount := Deposit ∗ 1.06
TellUser("After a year, you will have $#Amount.")

It should be clear what this short program does, but sometimes it can
be a little difficult to think about and to write programs that use I/O.
There are, after all, three different viewpoints that you have to keep in

5 Note that the variable in AskUser is used in a very different way from
the parameters in other subroutines we have seen. In the other subroutines, it
was the value of the parameter that was being used. Here, it is the memory
location of the parameter that is being referred to, since it is the location that
the subroutine AskUser needs to know. The parameter in AskUser is used in
the same way as a variable on the left-hand side of an assignment statement.
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mind: yours (that is, the programmer’s), the computer’s, and the user’s
(that is, the person who interacts with the computer while the program
is running). When you write a program like this one, you are often
instructing the computer to give instructions to the user, and it is no
wonder if it takes a while to get used to this.

6.2. Taking Control

In order to write programs that are more complex than just a sequence of
simple instructions, we need to be able to group commands into loop and
decision structures. In xTurtle, this is done with loop statements and
if statements. These statements make it possible to control the order
in which instructions are executed, by repeating a group of instructions
several times or by choosing between alternative courses of action. The
order in which instructions are executed in a program is known as the
flow of control in the program, and loop statements and if statements
are known collectively as control structures.

6.2.1. Loops. An example of a loop in an xTurtle program is shown
in Figure 6.2. Loops in xTurtle are simple enough: To indicate that a
group of instructions is to be repeated, you just type “loop” at the
beginning of the group and “end loop” at the end. When the program
is executed, the effect of the end loop instruction is to transfer the flow
of control back to the beginning of the loop.

The computer will repeat a loop forever unless some way is provided
for exiting the loop. This is done with an exit statement. An exit
statement can occur only inside a loop. It tells the computer to check
whether some condition is true or false. If the condition is true, the
computer exits the loop by transferring the flow of control to whatever
statement follows the end loop; if it is false, the computer just continues
executing the loop. The syntax for an exit statement can be specified as

exit if 〈condition〉
Here, “〈condition〉” does not appear literally in any program; in a real
exit statement, 〈condition〉 must be replaced by a real condition that the
computer can test. The most common conditions are simple comparisons
between two quantities, such as “length = 17” or “x > sqrt(y + 3)”.
However, more complicated conditions can be constructed from simple
conditions using the logical operators and, or, and not, as in

exit if x > 0 and (y = 1 or y = 2)
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declare count
count := 0
loop

count := count + 1
〈statements〉
exit if count = 〈max〉

end loop

declare count
count := 0
loop

count := count + 1
forward(5)
back(5)
turn(10)
exit if count = 36

end loop

Figure 6.3. Above on the left is a template for a counting loop, and on
the right is an actual program modeled on this template. The template
has two “slots” called 〈statements〉 and 〈max〉 which can be filled in to
give an actual loop. The purpose of a counting loop is to repeat a group
of one or more instructions some specific number of times. In the tem-
plate, 〈statements〉 stands for the list of instructions to be repeated, and
〈max〉 stands for the number of times that those instructions are to be
repeated. In the program on the right, the statements in the loop are
repeated 36 times. The picture produced by the program is shown as it
would appear on a computer screen. It consists of 36 lines radiating
from the center of the picture, one line for each pass through the loop.

Among the many ways that loops can be used, the most common is
when it is possible to determine in advance the number of times that
the loop is to be repeated. In that case, it is only necessary to count off
the repetitions of the loop and to exit from the loop when the required
number has been reached. Figure 6.3 explains how a counting loop can
be written and gives an example. Note that the counting variable count
in this example starts out with value zero. The first time through the
loop, its value is increased to one; the second time, to two; and so forth.
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So, as the loop is executed, the value of count always represents the
number of times the loop has been repeated so far.

6.2.2. BNF. Figure 6.3 includes what I call a “template” for a
counting loop. A template provides an easy way of specifying syntax.
Earlier, I used the template “exit if 〈condition〉” to specify the syntax
of an exit statement.

You might already be getting tired of syntax rules; if so, you could
hardly be blamed. The rules are so strict and the computer allows so
little leeway in applying them that it is difficult to get everything straight
when describing them in English. As the rules get more complicated,
they only get harder to specify and harder to remember. Templates make
things somewhat easier by replacing a long-winded and possibly vague
English description with a kind of “picture” of what is being described.

Templates are used almost universally to describe programming lan-
guage syntax. In general, the templates used are some variation of
Backus-Naur Form (BNF). The original BNF was introduced by John
Backus to describe the syntax of the early programming language ALGOL.
Peter Naur later added some features to Backus’ version.

Figure 6.4 contains a partial specification of the xTurtle programming
language using BNF templates. Each BNF template defines a so-called
syntactic category, such as a 〈program〉 or an 〈if statement〉. Syntactic
categories are indicated by a word or phrase enclosed in angle brackets.6

A template is written using the operator ::=, which can be read “is
defined as.” For example, the template

〈exit statement〉 ::= exit if 〈condition〉
says that an exit statement is defined to consist of the word “exit”
followed by the word “if” followed by a 〈condition〉. What is meant by a
〈condition〉 must be defined in another BNF template or in an informal
English description.

Several other features of BNF are used in Figure 6.4. It is possible
to specify that part of a template is optional by enclosing it in brackets
(“[” and “]”). For example, in the template for 〈subroutine call〉, which
describes statements such as forward(5) and PenUp, the parameter list is
optional. (“Optional” here means that it occurs in some subroutine call
statements and not in others. As we know, forward requires a parameter

6 BNF can be used to describe ordinary languages like English. In English,
the syntactic categories would be things like 〈sentence〉, 〈prepositional phrase〉,
and 〈noun〉.
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〈program〉 ::= 〈statement〉 [ 〈statement〉 ]. . .
〈statement〉 ::= 〈exit statement〉 | 〈declaration〉 |

〈assignment〉 | 〈subroutine call〉 |
〈loop statement〉 | 〈if statement〉

〈declaration〉 ::= declare 〈variable name〉 [ , 〈variable name〉 ]. . .
〈exit statement〉 ::= exit if 〈condition〉

〈assignment〉 ::= 〈variable name〉 := 〈expression〉
〈expression〉 ::= 〈number〉 | 〈variable name〉 | 〈mathematical formula〉

〈subroutine call〉 ::= 〈subroutine name〉 [ ( 〈parameter〉 [ , 〈parameter〉 ]. . . ) ]

〈loop statement〉 ::= loop

[ 〈statement〉 ]. . .
end loop

〈if statement〉 ::= if 〈condition〉 then
[ 〈statement〉 ]. . .

[ or if 〈condition〉 then
[ 〈statement〉 ]. . . ]. . .

[ else

[ 〈statement〉 ]. . . ]

end if

Figure 6.4. A partial specification of the syntax of the xTurtle pro-
gramming language using BNF. Certain categories, such as 〈condition〉
and 〈variable name〉 are left undefined here. Also, this specification does
not include some syntax rules such as the fact that exit statements can-
not occur outside of loops.

list, and PenUp is not allowed to have one; these facts are not expressed
by the BNF template.)

If the closing bracket is followed by three dots, then the optional stuff
can be repeated any number of times. For example, the template

〈declaration〉 ::= declare 〈variable name〉 [ , 〈variable name〉 ]. . .
says that a declaration consists of the word “declare” followed by a vari-
able name, optionally followed by a comma and another variable name,
optionally followed by a comma and another variable name, and so on.

The last BNF feature used in Figure 6.4 is the vertical bar (“|”),
which is used to indicate a choice between alternatives. The rule for



190 Chapter 6. Programming

〈expression〉, for example, says that an expression can be either a number
or a variable name or a mathematical formula; whenever the category
〈expression〉 occurs in a template, it can be replaced by any of these
things.

BNF is not quite powerful enough to describe all aspects of syntax.
For example, it is impossible in BNF to express the fact that a variable
must be declared before it is used. Still, it would be much more difficult
to express complicated syntax rules without it.

6.2.3. Decisions. If you are wondering why I decided to introduce
BNF at this point, take a look at the template in Figure 6.4 for an
〈if statement〉. This template includes several different pieces which are
optional or which can be repeated. It is by far the most complicated
syntax rule we have seen. Most actual if statements do not exhibit the
full complexity.

The simplest type of if statement represents a choice between doing
something and not doing it. Such a statement has the form:

if 〈condition〉 then
[ 〈statement〉 ]. . .

end if

which is obtained by omitting the two optional parts of the template
starting with “or if” and with “else.” This is an instruction to the
computer to test whether the condition is true or false. If it is true, then
the computer will execute the statements between then and end if; if
it is false, the computer will skip over these statements and proceed to
whatever follows the end if. For example, when the computer executes
the statement

if YourGuess = MyNumber then
TellUser("Congratulations, you guessed it!")

end if

it will test whether the value of the variable YourGuess is equal to the
value of the variable MyNumber. If so, the computer will display the
message, “Congratulations, you guessed it!” on the screen.

Only slightly more complicated is an if statement that decides be-
tween two alternative courses of action. In this case, the part of the
template starting with “or if” is omitted, but the “else” part is in-
cluded. The statements after the word else represent the action to be
taken if the condition turns out to be false. Figure 6.5 gives an example
of this type of statement.
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if 〈condition〉 then
[ 〈statement〉 ]. . .

else
[ 〈statement〉 ]. . .

end if

if TestTurn = 1 then
turn(90)

else
turn(−90)

end if

Figure 6.5. A simplified template for a two-way-decision if statement,
and an example of such a statement. The computer tests the condition.
If it is true, then the computer executes the first group of statements
and skips the second. If the condition is false, the first group is skipped
and the second is executed. In either case, the computer then proceeds
to whatever follows the end if. In the example, the turtle will be ro-
tated left by 90 degrees if the value of the variable TestTurn is 1; other-
wise, it will be rotated to the right by 90 degrees.

Finally, when the entire template is used, the result is a compli-
cated statement that makes a multi-way decision among several possi-
ble courses of action. Figure 6.6 gives an example. (Variations of this
example might well be the second most common example in program-
ming texts, following only a program for displaying the message “Hello
World.”) Multi-way choices are common enough in programming that
it is useful to think of them as another type of tool available to the pro-
grammer, along with loops, two-way choices, assignment statements and
subroutines.

6.3. Building Programs

It is fairly easy to understand what loops and if statements are meant
to do. If only writing programs with them were so easy! Before leaving
this chapter, we will work through the development of a few programs
in some detail. Along the way, I will point out some techniques and
strategies for developing programs.

In all but the most trivial cases, writing a program does not mean
sitting down at a computer and starting to type. The quickest way to
a working program is to begin with an analysis of the problem to be
solved, followed by the design of a program based on that analysis. Of
course, even careful analysis and design do not guarantee a totally error-
free program, but they are likely to produce a program with fewer errors.
More important, it is usually easier to track down and eliminate errors
in a well-built program based on a clear design.
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if Grade > 90 then
TellUser("Excellent")
Count A := Count A + 1

or if Grade > 80 then
TellUser("Good")
Count B := Count B + 1

or if Grade > 65 then
TellUser("OK")
Count C := Count C + 1

or if Grade > 50 then
TellUser("Not satisfactory")
Count D := Count D + 1

else
TellUser("Failing")
Count E := Count E + 1

end if

Figure 6.6. An example of a multi-way-decision if statement. The
computer evaluates the conditions one by one until it finds one that is
true; it then executes the associated group of statements and jumps to
whatever follows end if. If all the conditions are false, then the group
of statements following else is executed. Note that only one group of
statements is executed, even if more than one condition is true, since
the computer stops testing conditions as soon as it finds the first one
that is true. In this example, if the value of Grade is 85, only the sec-
ond group of statements is executed.

6.3.1. Two Squares. We start with an easy problem: to write
an xTurtle program that draws a picture of two squares, as shown on
the left in Figure 6.7. Let’s assume that the point where the squares
meet is (0,0) and that each side is five units long. Although the prob-
lem of drawing these squares is simple, the solution will illustrate some
important ideas.

Recall from the previous chapter that the sequence of steps in the
execution of a program is called a process. A process is like a movie,
with the program playing the role of a script. The individual “frames”
of the process are called states. A state consists of all information rele-
vant to the execution of the program at a given moment in time. This
information would include, for example, the values of all variables and,
in xTurtle, the position and heading of the turtle. The execution of each
program instruction advances the computer from one state to another;
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Draw
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Process
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Figure 6.7. The process of drawing the two squares shown on the left
can be trivially broken into two steps: draw the first square, then draw
the second square. On the right is the result of a failed attempt to draw
the squares. A “picture” of a process that draws two squares is shown
in the center. This picture is a timeline. The X’s represent states of
the computer, and the line segment between two X’s represents the exe-
cution of the instructions that carry the computer from one state to the
other.

in fact, the only thing that defines the meaning of an instruction is its
effect on the state of the computer.

This image provides an approach to program design. A problem
can be stated in terms of the desired final state of the computer at the
end of the program’s execution. For example, the final state might be,
“The screen is displaying a picture of two squares, arranged in such and
such a way.” In general, it is not possible to see immediately how a
desired final state can be achieved, but it is usually easy to pick out
a number of important intermediate states that occur along the way to
that goal. These states break the process into a number of smaller pieces,
and each piece can then be worked on separately. In the example, you
might imagine drawing the top-right square, then drawing the bottom-
left square. This leads to the image of the process shown in Figure 6.7.7

We could tackle the problem of drawing a single square in the same
way, but here it is easy enough to construct an appropriate sequence of
steps in terms of built-in xTurtle commands:

forward(5) turn(90) forward(5) turn(90)
forward(5) turn(90) forward(5)

7 Even on a problem as simple as this, there are many, many ways of getting
to the goal state, and you are free to script the process any way you like. For
example, you might imagine drawing the line from (−5,0) to (5,0), then drawing
the line from (0,−5) to (0,5), and then adding the two remaining sides of each
square. This would lead to a completely different program.
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This just draws a sequence of four sides, separated by 90-degree left
turns. Now, can we construct a program for drawing the two squares by
copying out these instructions twice? Unfortunately, it’s not so simple.
The picture produced by this strategy is shown on the right in Figure 6.7.
The reason why this doesn’t work is important: The effect of executing
a sequence of instructions depends not only on the instructions but also
on the state of the computer at the beginning of the sequence. Thus, the
instructions will have the desired effect only if the required conditions
are met before the instructions are executed.

Technically, the effect of the sequence of instructions is called its
postcondition, and the conditions that are required to be true at the
start are referred to as the precondition. The precondition describes
the initial state of the computer before the instructions are executed; the
postcondition describes the final state and shows how it depends on the
initial state. We can rewrite the instructions for drawing a square, this
time including a precondition and postcondition:8

{ precondition: turtle at (a,b), facing right, pen down }
forward(5) turn(90) forward(5) turn(90)
forward(5) turn(90) forward(5)

{ postcondition: turtle at (a,b), facing down, and a 5-by-5
square is displayed with lower-left corner at (a,b) }

The postcondition describes the figure drawn by the instructions and
says that the turtle ends up at the same point where it started, but
facing in a different direction. (Having the name “(a,b)” for the initial
position just makes stating the postcondition a little easier.) Note how
the truth of the postcondition depends on the truth of the precondition.
If the turtle is not facing to the right to begin with, then the square will
not be drawn in the position stated in the postcondition. If the pen is
not down, then nothing will be drawn at all.

Looking back at the problem of drawing two squares, we see that the
postcondition that holds after drawing the first square does not match
the precondition that would be required to draw the second square cor-
rectly. The turtle is not facing right and is not at the point (−5,−5), the
lower-left corner of the second square. To use the movie analogy again,

8 In an xTurtle program, any text enclosed in set braces (“{” and “}”)
is ignored by the computer and is meant entirely for human readers of the
program. The text is called a comment on the program. The ability to write
helpful and informative comments is itself an important programming skill.
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forward(5) turn(90) forward(5) turn(90)
forward(5) turn(90) forward(5)

face(0)
PenUp
moveTo(−5,−5)
PenDown

forward(5) turn(90) forward(5) turn(90)
forward(5) turn(90) forward(5)

Figure 6.8. One of many possible programs for drawing the squares in
Figure 6.7.

it’s as if Scene 1 ends with a shot fired on the docks at midnight, and
Scene 2 opens with a knock on the door of the detective’s office.

The script writer for the movie can rely on the moviegoer to un-
derstand the transition, but a programmer must spell out everything in
complete detail for the computer. This means that we must insert extra
code to set up the preconditions for drawing the second square. The
command face(0) will achieve the precondition that the turtle is facing
right. The condition that the turtle be at (−5,−5) can be achieved with
moveTo(−5,−5), but we must be careful here: We need a PenUp before
the moveTo command (because having the pen raised is a precondition
for moving without drawing) and a PenDown after it (because having
the pen down is a precondition for drawing the second square). The
complete program is shown in Figure 6.8.

This is not the only program that solves the problem, nor is it nec-
essarily the best. In this simple case, it might be easier just to write a
new set of instructions for drawing the second square. (Changing the
90-degree turns to −90 degrees would work.) If the task were much
more complicated than drawing a square, though, it would probably be
more difficult to alter the existing code than to set things up so that the
unmodified code will work.

Furthermore, in addition to being a tool for splicing together existing
chunks of program code, preconditions and postconditions can be part of
a strategy for designing programs. A precondition is a reminder that you
need to do one of two things: Either examine the preceding instructions,
to make sure that they have a matching postcondition; or insert an
if statement into the program to test the condition, and write extra
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Figure 6.9. Five nested squares, shown at the upper left, and the re-
sults of four incorrect attempts to draw them. All the incorrect at-
tempts result from easy-to-make (but also easy-to-avoid) errors.

instructions to handle the case where the condition fails. For example,
consider the statement

Average := TotalOfItems / NumberOfItems

Since division by zero is not allowed, this statement has the obvious pre-
condition that NumberOfItems should not be zero. Noting this precondi-
tion might lead you to realize that your program needs an if statement,
“if NumberOfItems = 0 then. . . else. . . ,” so that it can take different
actions in the cases where the value of the variable is, and is not, zero.
Alternatively, if you don’t expect the value zero to occur, you might be
reminded to check the code that precedes the assignment statement, to
make sure that the NumberOfItems cannot be zero.9

6.3.2. Nested Squares. Figure 6.9 shows another picture made
up of squares, in this case a sequence of squares nested one inside the
other. Let’s assume that the smallest square is one unit on a side and
that the distance between a square and the square that encloses it is one
unit on all sides. We could draw the picture with five squares as shown
in the figure by writing separate instructions for each square, but let’s

9 Even if you believe that the value of NumberOfItems is absolutely posi-
tively guaranteed to be nonzero, it might still be a good idea to include an if
statement to verify the fact. This use of an if statement—to verify something
that you think has to be true—is sometimes referred to as a sanity check.
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make things more interesting by supposing that the number of squares
to be drawn will be input by the user. The program we write must be
able to draw a different number of squares each time it is run.

It is still easy to imagine a process that will draw the squares. A
timeline for such a process is shown in Figure 6.10. The timeline includes
a segment for drawing each square, which can be done with the usual
sequence of forward and turn commands. But, as we have learned, these
instructions won’t have the desired effect unless their precondition has
been established, so the timeline includes a “setup” before each square
is drawn.

As you have probably guessed, the sequence of repeated segments

setup, draw square, . . . setup, draw square . . .

can be folded into a loop, but doing so is not entirely trivial. First of all,
as any programmer quickly learns, the setup for the first repetition of a
loop is generally different from the setup for the remaining repetitions.
This is almost inevitable, since the first setup splices the loop to whatever
precedes it, while the others provide splicing from one repetition of the
loop to the next. So, the program will have the general form:

{ get input from user }
{ setup for first square }
loop

{ draw square }
{ exit if all squares have been drawn }
{ setup for next square }

end loop

Now, the problem is to write code for the loop that will work no matter
which square is being drawn. Since the squares are of different sizes,
we need a variable to represent the length of the squares’ sides. If this
variable is named length, then the instructions for drawing a square are

forward(length) turn(90) forward(length) turn(90)
forward(length) turn(90) forward(length)

The precondition for these instructions is: (1) the turtle is at the lower-
left corner of the square we want to draw, (2) the value of length is equal
to the length of the sides of that square, (3) the turtle is facing to the
right, and, of course, (4) the pen is down.

Let’s assume that the lower left corner of the innermost square is at
the point (0,0) and that the squares are to be drawn starting with the
innermost square and working out. Then the the initial setup can be
done by setting the value of length to 1. (The remaining conditions are
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declare count, HowMany, length

AskUser("How many squares should I draw?", HowMany)

count := 0
length := 1

loop

forward(length) turn(90)
forward(length) turn(90)
forward(length) turn(90)
forward(length)

count := count + 1
exit if count = HowMany

length := length + 2
PenUp Move(−1,−1) PenDown
face(0)

end loop

Figure 6.10. A picture of the process that draws nested squares, and
the program that implements this process.

always satisfied when a program begins.) The setup between repetitions
involves changing the value of length and moving and rotating the turtle.

Note that each square sticks out one unit on each side of the previous
square, so that the length of its side is two units longer than a side of
the previous square. After drawing one square, we can set up the value
of length for the next square by increasing its value by two. This is done
with the assignment statement length := length + 2.

To get the turtle into the correct position, we must move it from the
lower-left corner of one square to the lower-left corner of the next. This
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can be done by moving the turtle one unit to the left and one unit down.
That’s exactly what is done by the command move(−1,−1). Of course,
we have to raise the pen before moving the turtle and lower it again
afterwards.

Finally, of course, we can make the turtle face to the right with a
face(0) command. A complete program is shown in Figure 6.10. Note
that the loop used in this program is an example of a counting loop of
the type shown in Figure 6.3. The variable count is used in the program
only to count how many squares have been drawn and to decide when
to exit from the loop.

Getting all the details right in this program is by no means easy.
Some of the errors that can occur, even when the basic loop structure
is correct, are shown in Figure 6.9. The pictures in that figure were
all produced by students trying to write the program (even the correct
one!). In each case, the error can be traced to failure to set up one or
more of the required preconditions correctly. Taking note of precondi-
tions and dealing with them really can shorten the path to a correct
program.

6.3.3. Nested Statements. The final example of the chap-
ter deals with a simple little problem. The program that solves it il-
lustrates an important, and perhaps surprising, feature of the xTurtle
language. The BNF templates for xTurtle in Figure 6.4 show that if
statements and loop statements are made up of, among other things,
lists of 〈statement〉s. But when you check to see what a 〈statement〉
is, you find that among the possibilities are. . . if statements and loop
statements!

What this means is that a loop statement can include an if statement
nested inside it, an if statement can contain a loop, one loop can be
nested inside another, and so forth. Furthermore, you can have even
deeper nesting, such as a loop inside an if statement which is inside
another loop. No limit is set on how deep such nesting can go. The
templates for xTurtle are deceptively simple. In fact, they can produce
programs of great complexity.

The program in Figure 6.11 provides a simple example of nesting: an
if statement inside a loop. The odd looking test in the if statement

if N/2 = trunc(N/2) then. . .

is a way a testing whether the value of N is an even integer. The function
trunc deletes the fractional part of a number. For example, trunc(7.8)
is 7, trunc(3.5) is 3, and trunc(8) is 8. The only way that N/2 can be
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declare N , StepCount
AskUser("What is the initial value for N?", N)
StepCount := 0
loop

exit if N = 1
if N/2 = trunc(N/2) then

N := N / 2
else

N := 3 ∗ N + 1
end if
StepCount := StepCount + 1

end loop
TellUser("It took #StepCount steps to reach 1.")

Figure 6.11. This program contains an if statement nested inside a
loop statement. The syntax of the language allows nesting of statements
to any depth, but programs quickly become difficult to write and difficult
to understand when this feature is overused.

equal to trunc(N/2) is for N/2 to be an integer, with no fractional part,
and in that case N is an even integer.10

Suppose that the user types in the number 3 in response to the ques-
tion, “What is the initial value of N?” Since 3 is odd, the first time
through the loop the condition in the if statement is false, so the state-
ment N := 3 ∗ N + 1 is executed. This changes the value of N to 10.
Then, the next time through the loop, N is even, so the first alternative
in the if statement, N := N / 2, is executed. This divides N by 2, so
that its new value is 5. If we continue to trace the program, we see that
N goes through the sequence of values

3 10 5 16 8 4 2 1.

Once N becomes equal to 1, then the next time the computer executes

10 This discussion is strictly true in a mathematical sense, but it is not valid
for large real numbers stored in a computer. The problem is that the computer
does not store exact values of real numbers. It only stores a certain number
of significant digits. For example, if the computer uses 10 significant digits,
then it might be that when 1727356284831 and 1727356284832 are stored as
real numbers, both are represented as 1727356285000. So the whole distinction
between odd and even numbers breaks down for large numbers. This is not by
any means the only problem that comes up when working with real numbers
on a computer.
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the exit statement, “exit if N = 1,” the condition will be true, and the
execution of the loop will end. The message in the TellUser statement
will be displayed and the program will terminate. Since the variable
StepCount counts the number of repetitions of the loop, the message in
this case will be, “It took 7 steps to reach 1.”

If the user enters a different initial value for N , then the sequence of
values of N and the number of items in the sequence will be different. If
the starting value is 7, then the sequence is

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

while if the initial value is 27, the sequence begins

27 82 41 124 62 31 94 47 142 71 214 107 322 162. . .

and goes on for 111 steps. Something interesting is happening here:
Given the initial value, there seems to be no way to predict how long
the sequence will go on. It’s not just that when the initial number gets
bigger, the number of steps also increases—the sequence starting with
28 has only 19 steps. Even such a short program can have unpredictable
behavior.

The situation is even worse. It is not even obvious that the program
will always terminate. It is conceivable that there is some positive integer
such that the sequence starting with that number will go on forever,
without ever reaching 1.

Perhaps it would be nice if I could tidy up the end of this chapter
by saying, “But of course if we analyze the problem from the point of
view of the mathematical theory of . . . ,” and then tell you the answer.
But I can’t. No one knows. This little problem has been around for
quite a while. So far, no one has found a starting number for which
the sequence goes on forever (though programmers have tried all the
possibilities up to very large values), and it has not been proved that no
such numbers exist (though many mathematicians have worked on the
problem). Once again we come to the conclusion we reached at the end
of Chapter 4: Computation can surprise you. It’s not naturally tidy.
Personally, I prefer it that way.

Chapter Summary

A typical programming language makes available some basic commands,
such as assignment statements and built-in subroutines, and a number
of ways of combining them into complex control structures, such as loop
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statements and if statements. Programming consists of constructing so-
lutions to problems using these basic building blocks.

To use a programming language, you must understand both its syntax
and its semantics. Syntax, i.e., grammar, can be described conveniently
and unambiguously using Backus-Naur Form. Semantics refers to the
meaning of the language; it is generally more subtle and more difficult
to describe than syntax.

Names play a fundamental role in programming since they, perhaps
more than anything else, make it possible to hide low-level details. Vari-
ables are names used to refer to memory locations; their use frees the
programmer from details of data storage. Similarly, a subroutine hides
the details of a complex task behind a single name which can be used by
the programmer to perform that task.

Although programming is not easy, the systematic approach known
as software engineering can help to make problems manageable. For
example, analysis of a problem in terms of states, preconditions, and
postconditions, can help in piecing together a solution.

Questions

1. Discuss the similarities and differences between writing a complex
program and designing a complex circuit.

2. Consider the built-in subroutine forward, which will draw a line
on the computer’s screen. Try to figure out what is happening inside the
black box. What happens, on the level of machine-language instructions,
when this subroutine is executed? Don’t forget to think about how a line
is represented on the screen.

3. This chapter mentions a number of style guidelines for program-
ming, some of them in footnotes. Make a list of as many of them as you
can find, and explain why each is justified. More generally, what is the
use of worrying about “good style” in the first place?

4. What happens in the program from Figure 6.10 if the user enters
a negative number for the number of squares to be drawn? (Remember
that “the user” is assumed to be either very stupid or actively malicious.)
A hidden precondition for the loop to work is that the number of sides is
positive. Rewrite the program in two different ways to take this precon-
dition into account. First, modify it so it does nothing when the number
of sides is negative. Second, modify it by using a loop to get the user’s
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input; the loop should continue until the user enters a positive number.
(The program will also fail if the user enters a number that is not an
integer, such as 2.5. Why? Can you fix this more subtle problem?)

5. Develop a program to draw the following picture of a “comb.”
Don’t draw each line individually; use a loop. (Be careful: The number
of vertical lines is not equal to the number of horizontal segments joining
one vertical line to the next.)

6. The English language has a complicated grammar, but it is still
possible to describe at least part of that grammar using BNF templates.
For example, all the 〈sentence〉s that can be formed using the following
templates are legal English sentences, even though most of them don’t
make much sense.

〈sentence〉 ::= 〈noun part〉 〈verb part〉
〈noun part〉 ::= 〈proper noun〉 | 〈common noun phrase〉

〈proper noun〉 ::= John | Mary | Richard Nixon |
The President of the United States

〈common noun phrase〉 ::= 〈article〉 〈common noun〉 [ who 〈verb part〉 ]
〈article〉 ::= a | the | some | every

〈common noun〉 ::= fish | dog | unicorn | man | woman

〈verb part〉 ::= 〈intransitive verb〉 |
〈transitive verb〉 〈noun part〉

〈intransitive verb〉 ::= runs | thinks | cries | is bald
〈transitive verb〉 ::= loves | hates | understands | knows | is

Give some examples of 〈sentence〉s produced by these rules. As you apply
these rules, you have to make some choices. For example, when an ex-
ample calls for a 〈noun part〉, you have to choose between a 〈proper noun〉
and a 〈common noun phrase〉. Try building sentences by making all such
choices randomly, say by flipping coins or rolling dice. (These templates
exhibit “nesting” similar to that discussed in the last subsection of the
chapter. Can you see where?)
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Chapter 7

Subroutines and Recursion

THE PROGRAMMER WHO doesn’t understand how to write subroutines
is like a mechanic who owns three general purpose tools—a wrench, a
hammer, and a screwdriver—and tries to tackle every job with just those
three tools. Perhaps in theory it is possible, but it is probably not
pleasant. And as jobs become more complex, they will tend to become
unreasonably difficult.

Subroutines are a tool for dealing with complexity. A subroutine is a
chunk of code for performing some task, sealed in a black box and given
a name. Once a subroutine exists, it can be used as a building block
for constructing programs, or even other subroutines, that perform more
complex tasks.

This chapter deals with writing and using subroutines in the xTurtle
programming language. But more important, it discusses how subrou-
tines can be used in any language to help in the construction of correct
solutions to complex problems. The main purpose of going through all
the gritty details of subroutine use is to give you an idea of exactly what
type of building blocks they are.

The third section of the chapter deals with recursion, a particularly
magical and wonderful example of subroutine use. Finally, the last sec-
tion will give you some idea how subroutines can be implemented on real
computers in terms of machine-language instructions.

205
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7.1. Writing and Using Subroutines

The basic idea of subroutines is elegant and clear. As so often happens
when dealing with computers, though, the many details of syntax and
semantics easily can get in the way of understanding. I will cover many
of the details, but it will be important for you not to get lost in them.
The black box metaphor is a guide for keeping things straight. You
should keep in mind the three aspects of subroutines considered as black
boxes: their design, their use in complex programs, and their interface.
Or to put it another way, the view from the inside of the box, the view
from the outside, and the relationship between these two views.

A subroutine is designed to perform some task. The point of this
is to allow the programmer, once the subroutine has been written, to
think of that task as a single operation which can be performed with a
single command. That command can then be used as a building block
in a complete program, or even in another subroutine. A well-designed
subroutine will perform a coherent task that is easy to think of as a
single operation, and it will fit easily into place in a larger structure.
This means that its interface—the way it communicates with the outside
world—should be straightforward and easy to understand. The entire
discussion of subroutines that follows is based on these principles.

We have already seen how built-in subroutines like PenUp and for-
ward are used in an xTurtle program. Once a new subroutine has been
defined, it is used in exactly the same way: by giving its name along with
any required parameters. So, we just need to understand how to define
new subroutines in the first place. For the record, the official syntax
rules for defining xTurtle subroutines are given in Figure 7.1, but it will
take most of this section to explain it all.

We start with a simple subroutine that draws a five-by-five square.
The idea is to take the instructions for drawing the square, group them
together, and give them a name. Using Square5 as the name, we can do
this in xTurtle as follows:

sub Square5
forward(5) turn(90)
forward(5) turn(90)
forward(5) turn(90)
forward(5) turn(90)

end sub

This is a subroutine declaration. The name of the subroutine and the
list of instructions are bracketed between the words sub and end sub,
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〈program〉 ::= 〈program item〉 [ 〈program item〉 ]. . .
〈program item〉 ::= 〈statement〉 | 〈subroutine declaration〉

〈subroutine declaration〉 ::= sub 〈subroutine name〉 [ ( 〈dummy parameters〉 ) ]
[ 〈subroutine item〉 ]. . .

end sub

〈dummy parameters〉 ::= [ ref ] 〈name〉 [ , [ ref ]〈name〉 ]. . .

〈subroutine item〉 ::= 〈statement〉 | 〈import list〉
〈import list〉 ::= import 〈variable name〉 [ , 〈variable name〉 ]. . .

Figure 7.1. Further BNF templates for xTurtle, specifying the syntax
for subroutine declarations. The template for 〈program〉 given here re-
places the template in Figure 6.4. The new version allows a program to
include subroutine declarations, as well as statements. The remaining
templates from Figure 6.4 remain valid. The upshot of all this is that
the inside of a subroutine looks just like a program, with two exceptions:
A subroutine cannot include another subroutine declaration (though it
can include subroutine call statements), and a subroutine can include
“import lists” while a program cannot.

which mark the beginning and end of the subroutine.
When the computer encounters a subroutine declaration in a pro-

gram, it remembers the list of instructions and associates them with the
specified name, which in this example is Square5. Later in the program,
if it come across the single word Square5 used as an instruction, it will
recognize it as the name of a subroutine and will execute the associated
list of instructions. For example, a program consisting of the subroutine
declaration for Square5, as given above, followed by the instructions

Square5
PenUp MoveTo(−5,−5) PenDown
Square5

will draw the two squares shown in Figure 6.3 in the previous chapter.
It is important to remember that just declaring the subroutine does not
actually draw a square; it just defines the meaning of the subroutine
name for later use. Once declared, a subroutine can be reused in the
program any number of times, just by giving its name.1

1 To clear up one possible confusion: The computer only remembers the
subroutine until the end of the program. If you want to reuse it in another
program, you must copy the entire subroutine declaration into that program.
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7.1.1. Parameters. Square5, like PenUp, is a simple subroutine
with no parameters. Recall that parameters, such as the variable length
in the instruction forward(length), add immensely to the power of a
subroutine. A subroutine with no parameters performs one fixed task;
when a subroutine has a parameter, it can perform a different task for
each possible value of that parameter. Square5 can only draw a square
measuring five units on a side. If a square-drawing subroutine had a
parameter for specifying the length of a side, it would be able to draw
squares of all possible sizes.

You will be happy to know that you can write subroutines with pa-
rameters in xTurtle, as you can in almost all programming languages.
As a first example, here is an improved square-drawing subroutine in
xTurtle:

sub Square(side length)
forward(side length) turn(90)
forward(side length) turn(90)
forward(side length) turn(90)
forward(side length) turn(90)

end sub

Once this subroutine has been declared in a program, the command
Square(5) will draw a five-by-five square, whereas Square(1) will draw a
square one unit on a side. And if length is a variable, then the command
Square(length) will draw a square whose side is given by whatever value
length happens to have at the time the command is executed.

Figure 7.2 shows this subroutine used in a complete program. No
drawing occurs until the subroutine is called at the beginning of the
loop. The first time through the loop, the value of length is 1, and a
square of side 1 is drawn. After that, each time through the loop, the
value of length increases and a bigger square is drawn.

The parameters of a subroutine are part of its interface. They provide
a means of communication between the subroutine and the program in
which the subroutine is used. In the command Square(5), the 5 is a mes-
sage to the subroutine telling it how big a square it should draw. As we
will see later, there is a way of doing back-door communication, without
parameters. However, it is generally better to keep the communications

It might be nice if you could permanently teach the computer the meaning of
a new word by defining a subroutine. This is not possible in xTurtle, but some
more sophisticated languages do make it much easier to reuse subroutines in
many different programs.
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sub Square(side length)
forward(side length) turn(90)
forward(side length) turn(90)
forward(side length) turn(90)
forward(side length) turn(90)

end sub

declare count, HowMany, length
AskUser("How many squares should I draw?", HowMany)

count := 0
length := 1

loop

Square(length)

count := count + 1
exit if count = HowMany

length := length + 2
PenUp Move(−1,−1) PenDown

end loop

Figure 7.2. Another xTurtle program for drawing nested squares. This
program is equivalent to the one in Figure 6.10, but uses a subroutine
to draw the individual squares.

out in the open. First of all, it allows the computer to detect certain
types of errors; for example, any attempt to use the command Square
with the wrong number of parameters would produce an error message
from the computer. Just as important, the presence of a parameter in
a subroutine call will help any human reader to understand just what
communication is taking place.

Parameters and variables are very different things. Consider, for ex-
ample, side length in the subroutine declaration for Square. Although it
looks like a variable, it is not. It is what is called a dummy parameter,
or sometimes a “dummy variable” or a “formal parameter.” A dummy
parameter is a place-holder for the actual parameter—such as “5” in
the command Square(5)—that is provided when the subroutine is used.
Inside the subroutine declaration, the dummy parameter acts a kind of
stand-in for the unknown value of this actual parameter. When you tell
the computer
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sub Square(side length). . .

you are saying, “Here is what the command Square(side length) would
mean, if side length were a variable: . . . .” The computer generalizes from
this to the meaning of Square(5), Square(2 ∗ Count + 1), and so forth.
You have to write the subroutine as if the dummy parameter already
has some definite, though unknown, value. In fact, it doesn’t really get a
value until the subroutine is called during program execution, and then
it is assigned the value of the actual parameter automatically.

One aspect of dummy parameters is especially confusing. A subrou-
tine is supposed to be a black box. A dummy parameter is like a slot
through which information—the value of an actual parameter—is passed
into the box. When the box is viewed from the outside, the name of the
slot is irrelevant. In fact, the name of the dummy parameter has no
meaning at all outside of the subroutine declaration. In the program
in Figure 7.2, side length is never declared as a variable. If this name
were used outside the subroutine declaration in that program, the result
would be an “undeclared variable” error. Even stranger is the fact that it
would be perfectly legal to declare an actual variable named side length
in the program, but that variable would have nothing to do with the
dummy parameter of the same name. The dummy parameter and the
variable would be on opposite sides of the box.2

Figure 7.3 gives another sample program that uses subroutines. Most
of the program consists of the declarations of two subroutines, petal and
flower. No drawing actually occurs until the last three lines, which use
the subroutines to draw the three figures shown on the right in the figure.
Let’s try to understand how this program works.

A “petal” drawn by the subroutine petal is actually a rhombus, that
is, a diamond shape with four sides of the same length. The two pa-
rameters for petal specify the length of a side and the angle between the
sides that meet at one corner of the diamond. Since the first side of the
rhombus is drawn in whatever direction the turtle happens to be facing,

2 And here is the most confusing part (hidden safely in a footnote): It would
be perfectly OK to use the command Square(side length) in that program.
While the subroutine is executing, the value of the program variable side length
would become the value of the dummy parameter side length in the subroutine.
But that would only be because the variable was used as the actual parameter
in the command, not because they have the same name. The two identical
names should be regarded as a harmless coincidence. Novice programmers tend
to have a great deal of trouble using parameters correctly, partly because they
fail to see a dummy parameter and an actual parameter as two separate things.
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sub petal(angle, side)
forward(side) turn(180−angle)
forward(side) turn(angle)
forward(side) turn(180−angle)
forward(side) turn(angle)

end sub

sub flower(petalCt, size)
declare count, angle
angle := 360/petalCt
count := 0
loop
petal(angle,size)
turn(angle)
count := count + 1
exit if count = petalCt

end loop
end sub

petal(5,30) Move(0,−8)
flower(8,3) Move(0,−16)
flower(24,5)

Figure 7.3. A program containing two subroutines, and the picture
drawn by the program. As this example shows, one subroutine can be
used as an instruction inside another subroutine. Once a subroutine
has been declared, it becomes part of the programming language and can
be used throughout the remainder of the program in exactly the same
way as a built-in subroutine. (This example also shows the syntax for
defining subroutines with more than one parameter.)

the orientation of the rhombus will depend on the heading of the turtle
when the subroutine is called. When the subroutine ends, the position
and heading of the turtle are left unchanged from their starting values.

A flower consists of a number of petals radiating out from the cen-
ter. The definition of subroutine flower reflects this by calling subrou-
tine petal repeatedly to draw each petal. The turtle rotates a bit after
drawing each petal, so that each of the petals is drawn in a different
orientation.

The parameters of flower specify the number of petals to be drawn
and the size of the petals. The size parameter is simply passed on to
petal, to be used as the length of the petal’s sides. A counting loop
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is used to draw the specified number of petals; the petalCt parameter
specifies the number of times this loop will execute. Note that the angle
used for each petal is given by 360/petalCt. This value is chosen so that
the angles at the bases of the petalCt petals will add up to 360 degrees,
that is, a full circle.

7.1.2. Gritty Details. You now know enough about subroutines
to follow a discussion about how they are used in building complex pro-
grams. But before we go on to that, this subsection will cover some of the
gritty details of internal construction and interface that a programmer
needs to know to become an expert user of subroutines.

Look again at the subroutine flower in Figure 7.3. Note that it
contains a declare statement that creates two variables, count and angle.
As you might expect, these variables are part of the internal workings of
the black box and are completely invisible from the outside.

Variables declared inside a subroutine are called local variables for
that subroutine. Ordinary variables—that is, those declared outside any
subroutine—are called global variables. It might be that a local vari-
able has the same name as some global variable. There is nothing wrong
with this. They are two different variables that just happen to have the
same name. Their associated memory locations will be different, and
changing the value of the local variable will have no effect on the value
of the global variable.3

In fact, a local variable has an associated memory location only so
long as the subroutine is being executed. That memory is released when
the subroutine ends. It can even happen that when the subroutine is
called again, its local variables will be assigned to completely different
memory locations. Not only is a local variable inaccessible from outside
the subroutine; it doesn’t even exist except when the computer is actually
executing the subroutine.

Of course, a subroutine is not completely cut off from the rest of the
program. Parameters exist precisely to allow communication between
the two sides of the black box. In the examples we have seen so far,
the parameters are used for input. (That is, “input” from the point
of view of the subroutine.) Sometimes, however, a subroutine produces
new information which is meant to be used by the program after the
subroutine ends. To get that information out of the subroutine and back

3 Good thing, too. It would be as if when your refrigerator motor came on,
it changed the channel on your television set. That would mean, of course, that
your refrigerator was not a proper “black box.”
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to the program, we need a new kind of parameter, called a reference
or ref parameter. A ref parameter can be used to output a value from
the subroutine to the rest of the program.4

Here, for example, is a ridiculously short subroutine that computes
the interest on a given amount of money, assuming an interest rate of
six percent. (“Six percent” means “6 per 100,” that is, 6/100 or 0.06.)

sub ComputeInterest(Amount, ref Interest)
Interest := Amount ∗ 0.06

end sub

The word ref in front of the dummy parameter Interest tells the com-
puter that this is a ref parameter. This allows the subroutine to change
the value of the corresponding actual parameter, something which is im-
possible for non-ref parameters. For example, if myInt is a variable in
the program, then the procedure call statement

ComputeInterest(274.59, myInt)

will compute the interest on $274.59 and store the answer in the variable
myInt. Since Interest is a ref parameter, the assignment statement in
the subroutine will change the value of the actual parameter myInt.

Parameters represent slots or holes in the black box through which
information can pass back and forth between a subroutine and the pro-
gram that uses it. You might think that a black box should be completely
sealed off from the outside, but if it were it would be of little use. It
would go humming along, doing whatever it does, with no way of ever
affecting or being affected by the rest of the world. Any black box needs
an interface to connect it to the outside world. For subroutines, pa-
rameters are the obvious, straightforward part of the interface. There is
nothing sneaky about them: A glance at the first line of a subroutine
declaration will tell you exactly what parameters that subroutine uses.

Sometimes, though, it is useful to be sneaky—to smuggle informa-
tion into or out of a subroutine through the back door, without passing
it through a parameter. This is really only legitimate when it is done to
avoid distracting the programmer who uses the subroutine with unnec-
essary details. Although you haven’t thought of it in these terms, you
have already been the beneficiary of such courtesy. Consider the com-
mand forward(5). This command draws a line. The parameter 5 gives

4 We have already seen a ref parameter in the built-in subroutine, AskUser.
Terminology gets a bit confusing here: AskUser requests the user to input a
number; that number is in turn output by AskUser to the program. Remember
that “input” and “output” are relative terms, depending on point of view.
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declare InterestRate
sub GetInterestRate

import InterestRate
AskUser("What is the interest rate?", InterestRate)

end sub
sub ComputeInterest(Amount, ref Interest)

import InterestRate
Interest := Amount ∗ InterestRate

end sub

declare Money, Int
AskUser("How much money do you have?", Money)
GetInterestRate
ComputeInterest(Money, Int)
TellUser("The interest on $#Money is $#Int.")

Figure 7.4. A program to compute the interest on a given amount of
money. Both of the subroutines in this program make direct use of the
global variable, InterestRate. A subroutine gains access to a global vari-
able with an import statement. In xTurtle, a global variable is invisi-
ble from inside a subroutine unless it is explicitly made visible with an
import statement (or by being passed to the subroutine as a parame-
ter).

the length of the line, but the subroutine also needs other information to
determine exactly what line to draw: It needs to know the position and
orientation of the turtle. How does the subroutine know these values?
They have to be stored somewhere “out there” in the computer’s mem-
ory in something like global variables, and the subroutine must be able
to access those variables. But as a programmer using turtle graphics,
you deal only indirectly with these variables, through the turtle graphics
commands. You don’t need to think about them or mention them in
your program.

Figure 7.4 shows how something similar can be done with user-defined
subroutines in xTurtle. The extra information used by the two subrou-
tines is stored in the global variable InterestRate.5 From the point of
view of the last five lines of this program, this variable is just “out there”

5 In xTurtle, global variables are ordinarily invisible from inside subroutines.
However, they can be made visible with import statements. (The import
statement makes a “crack” in the black box through which the global variable
is visible.) Note that a declare statement in a subroutine makes a new, local
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somewhere and is used only indirectly, through the subroutines. Ideally,
perhaps, the two subroutines and the variable InterestRate should be
grouped together inside a black box that would give InterestRate some
enforced protection from being tampered with by the rest of the pro-
gram. Although this is not possible in xTurtle, the idea is an important
part of some more advanced languages that will be discussed in the next
chapter.

7.2. Real Programs

Our approach to understanding complex systems, including complex
computer programs, can be summarized easily: Don’t try to keep too
many details in mind at one time. We have seen how complex systems
can be built up, level by level, from extremely simple components. On
each level, structures are built using black boxes from the levels below.
These structures then become new black boxes for use on higher levels.
If the step from each level to the next is kept small enough to be compre-
hensible, then very complex systems can be fully understood in this way.

The black boxes that make up complex systems are sometimes re-
ferred to as modules. A module is a more-or-less self-contained compo-
nent of a larger system which interacts with other components in well-
defined, easy to understand ways. In an xTurtle program, the modules
are subroutines that interact by passing parameters and sometimes—at
the risk of making the interaction less comprehensible—by using global
variables. As mentioned at the end of the last section, other program-
ming languages provide additional types of modules. But the idea is the
same: Tackle a problem by dividing it into manageable pieces.

The sample programs in this book are quite short and, I hope, fairly
easy to understand. In the real world, however, single programs that
are as long as this book are common, and the most complex existing
programs would fill it many times over. A program of that size is written
by a team of many programmers, and no single individual understands
the entire program in full detail. The software engineer in charge of
the project will be familiar with the major program modules and their
interactions but will trust the internal design of the modules to other
team members. Individual programmers will be intimately familiar with

variable, but an import statement just makes an already existing variable
visible. In many languages, global variables are automatically visible from
inside subroutines.
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the modules they work on but will be aware of other modules only as
black boxes with certain carefully specified behaviors.

For an individual programmer writing a complete program of mod-
erate complexity, there is no problem of coordinating the efforts of a
number of different people. But the problem of coordinating the various
components of the program remains, and it offers many of the same dif-
ficulties. In fact, it is sometimes useful for such a programmer to be a
bit schizophrenic—to keep the details of different program components
in different components of the mind, as it were. Much of my discussion
here applies to programs written by individuals as well as by teams of
programmers.

7.2.1. The Software Life Cycle. Some programs, especially those
written as learning experiences, are meant to be used a few times by the
programmer who writes them and then forgotten. Most “real” programs,
on the other hand, are written for an audience and are meant to be
used over a long period of time, possibly in changing circumstances.
Such programs have a life cycle that begins with a specification of the
problem to be solved and ends years later, after many revisions. The
actual writing of the program is only a small part of this life cycle.

The software life cycle begins with an analysis of the problem to
be solved. Often, an initial statement of a problem is far too vague
to use as a basis for a program. The goal of problem analysis is to
produce a specification of exactly what the program is expected to do.
The specification should be complete and unambiguous, so that it will
be possible to determine whether or not the program that is produced
meets the specification.

Then, before any instructions are written, a design for the program is
produced. A design is a kind of blueprint for the program, showing all the
major components, their responsibilities, and how they will interact. In
a large programming project, the design will exist as a separate, detailed
document, stored on paper or in the computer. The design organizes
the division of labor not just among program components but among
programmers working on the project.6

6 For an individual programmer (in my own case at least), the program
design can be a skeletal version of the actual program, leaving details to be
filled in as the program is gradually written. Think of an xTurtle program, for
example, in which many subroutine declarations exist but do not yet contain
any instructions. It is possible to write an outline of the entire program in this
way and then to fill it in and test it bit by bit.
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Once the design is complete, the program itself can be written. This
part of programming—writing down instructions in some programming
language—is sometimes called coding, with the implication that it is a
merely mechanical translation of the program design into programming
language. In fact, of course, coding is by no means a trivial skill.

Before a program can be called complete, it must be thoroughly tested
to check that it is as error-free as possible and that it meets its specifi-
cation. Since unplanned, haphazard testing is not likely to uncover all
the errors in a program, a systemic testing strategy should be part of
the program design from the beginning. It is rarely possible to eliminate
all errors from a program, no matter how thoroughly it is tested, for
the simple reason that it is impossible to test the program’s responses
in all possible circumstances. But it is certainly possible to increase the
reliability of a program by careful testing.7

Analysis, design, coding, and testing do not necessarily take place
independently or in strict sequence. Part of the advantage of a modular
approach is that components can be worked on independently. One com-
ponent might be coded and in the process of being tested while another
is still being designed. Furthermore, problems that arise at any stage
might force the process back to a previous stage. For example, questions
of efficiency or even feasibility might be raised when programmers try
to translate the design into program code, resulting in changes in the
design. And testing might uncover errors in analysis, design, or coding
that have to be fixed.

In most cases, a newly completed program has just begun its life
cycle. Most programs are designed to be used over a period of years,
and it is unlikely that they will remain unmodified. Instead, they will
go through constant revision to add new features, to react to changing
circumstances, and to correct newly discovered errors (and, too often,
errors that are introduced into the program during revision). This part
of the software life cycle is called maintenance, and it is usually re-
sponsible for a majority of the cost and effort that go into a program. A
good program is designed to be as easy to maintain as possible.

7 There is a great deal of interest in finding techniques for proving beyond
any doubt that a program is correct, but existing proof techniques work only
for fairly short programs. Furthermore, the most that can be proved is that a
program meets its specification. Unfortunately, errors can occur in specifica-
tions as well, either because they don’t exactly express what is really desired of
the program, or because they fail to take into account some possible situations
that the program will have to deal with.
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The modular approach to programming is useful in all stages of the
software life cycle. During coding, modularity permits different compo-
nents of the program to be worked on independently. Independence of
modules is also importing during testing. Testing does not have to be
put off until the program is completely written. Well-designed modules
can be tested individually, before the program is assembled, to make
sure they meet their requirements. If each module is correct, and if the
relationships among modules are straightforward and well-defined, then
the entire program has a good chance of being correct.

Modularity is particularly important during maintenance. Recall the
basic idea of the black box: As far as the outside world is concerned,
only the behavior of the box is important. The inside of the box, the
implementation, doesn’t matter as long as it produces the correct behav-
ior. The implication of this is that changes made to one module don’t
affect the rest of the program, as long as they don’t change the module’s
behavior as seen from the outside. During maintenance, changes in im-
plementation can be made without worrying about how they will affect
the rest of the program. The other aspect of modularity—that the inter-
actions among modules should be simple and well-understood—implies
that when a change does affect other modules, it should be possible to
determine exactly what the effect will be and to make changes in the
other modules to account for it.8

7.2.2. Design Strategies. The advantages of the modular ap-
proach extend to the analysis and design stages of the software life cycle.
It is, of course, easier to design a program as a collection of components,
rather than all at once, as a massive jumble of detail. But, more than
that, the modular view offers some definite guidelines about how to go
about designing a complex program.

Remember that we view a program as a hierarchy with many lev-
els of complexity. At the top of the hierarchy sits the program, con-
sidered as a whole. It is made up of components from lower levels of
the hierarchy, which are themselves made up of components from even
lower levels, and so on, down to the most primitive operations that the
computer can perform. This view suggests two possible approaches to
program design, which we can call top-down design and bottom-up
design.

8 I should note that the ideal of true modularity is rarely achieved. Many
errors in programs, especially errors introduced during maintenance, occur be-
cause of unexpected or undocumented interactions among modules.
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Top-down design is also called problem decomposition. The idea is
to start with the overall problem to be solved and to break it into several
subproblems. Each subproblem can in turn be broken into even smaller
problems and so on, until the problems become trivial enough to be
solved easily. The overall problem corresponds to the entire program, at
the top of the complexity hierarchy. The subproblems correspond to the
modules that make up the program.

In terms of xTurtle programming, the top-down strategy goes some-
thing like this: Start writing the program. When you come to something
you don’t know how to do easily, call it a subroutine and worry about
writing it later. When you get to the end of the program, start working
on the subroutines in the same way. As a trivial example, suppose you
wanted to write a program to draw a house. You might start out by
writing the instructions

DrawWalls
DrawRoof
DrawDoorsAndWindows

and then go back and write the three subroutines DrawWalls, DrawRoof,
and DrawDoorsAndWindows.

In bottom-up design, as I’m sure you’ve guessed, the complexity hi-
erarchy is constructed starting at the bottom. At each stage, new com-
ponents are assembled from components that have already been con-
structed. Obviously, there must be some overall direction to all this
construction, and that direction must be derived from the problem at
hand. But it doesn’t come from dividing the problem into subproblems.
Instead it comes from recognizing that a certain tool will be useful for
solving the problem and then building that tool. After enough tools are
built, the problem will be easy to solve. For example, if you want to draw
a house, you know you will have to draw a roof, so why not work on a
subroutine to do so. This looks less trivial when the distance between
the top and the bottom of the hierarchy is larger: If you want to write
a program to keep track of a mailing list, you know you will need tools
for sorting a list of addresses, for inserting a new address, for changing
an address, for printing out the list and so on. After a sufficient number
of such tools are assembled, the task of finishing the program will be
reduced to a manageable scale.

The term “tool” here is meant to imply something that can be applied
in a wide range of circumstances, wherever the particular service that it
performs is needed. Once a tool has been created, it can be reused in



220 Chapter 7. Subroutines and Recursion

sub Square(ref side length)
forward(side length) turn(90)
forward(side length) turn(90)
forward(side length) turn(90)
forward(side length) turn(90)
side length := side length + 2
PenUp Move(−1,−1) PenDown

end sub

declare count, HowMany, length
AskUser("How many squares should I draw?", HowMany)
count := 0
length := 1
loop

Square(length)
count := count + 1
exit if count = HowMany

end loop

Figure 7.5. Yet another xTurtle program for drawing nested squares.
Compare the subroutine in this program to the subroutine in Figure 7.1.
The square-drawing subroutine in Figure 7.1 is much more likely to be
useful in other programs.

other programs. The writing and testing of the tool can be done once
and for all. Each time the tool is reused, that much programming effort
is saved. In fact, it might be worth the effort to write a more general-
purpose tool than is needed in a particular program; such a tool is more
likely to be reusable, and the effort saved when it is reused can more than
make up for the extra effort it took to write it. For example, a tool for
sorting a list of addresses will certainly have application beyond a single
mailing list program. But a more general list-sorting tool, although
harder to write, would be even more useful.

Of course, every subroutine is a tool in some sense, but it is al-
ways tempting to write subroutines that are so carefully sculpted to fit
into a particular program that they will be of no use elsewhere. It is
especially easy to do this when applying a strict top-down approach.
Consider once again (last time, I promise!) the nested squares problem.
Figure 7.5 shows another program for solving this problem. In addition
to the instructions for drawing a square, the subroutine in this figure
includes instructions that set things up for drawing the next square. In
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the original version of the subroutine, these instructions were outside
the subroutine, in the loop. The new version is inferior because a sub-
routine to “draw a square of size side length” is much more likely to be
reusable than a subroutine to “draw a square of size side length, increase
side length by 2, and move the turtle one unit left and one unit down.”

The problem here is not only the lack of reusability. Even if it were
not reusable, the original version of subroutine Square would be prefer-
able because the description of what it does is simpler. This makes it
more likely that the original version will be used correctly in a program.
It also makes it easier for someone trying to read the program to under-
stand what is going on.

In general, the interface of a subroutine should be straightforward
and easy to understand. One way to describe the interface is in terms of
preconditions and postconditions, which were introduced in the previous
chapter. The precondition of a subroutine represents the requirements
that must hold for it to work correctly. Its postcondition describes the
effect that the subroutine will have, provided that the precondition was
satisfied. A full statement of precondition and postcondition should al-
ways include a description of requirements and effects for all parameters
and global variables used by the subroutine. A subroutine is likely to
connect up well with the rest of the program, and to be reusable in other
programs, if the precondition is minimal and the postcondition can be
easily expressed.

7.3. Recursion

So, naturalists observe, the flea
Hath smaller fleas that on him prey,
And these have smaller still that bite ’em
And so it goes, ad infinitum.

—Jonathan Swift

I have been describing a complex system as a hierarchy of components, in
which each component is constructed using components from the levels
below. In a program, the components are subroutines, and one subrou-
tine uses another by referring to its name in a subroutine call statement.

In order to keep track of the structure of a program, it is sometimes
useful to diagram the relationships among its subroutines, as shown in
Figure 7.6. Note, however, that the lower diagram in that figure doesn’t
represent a hierarchy at all, since it contains “loops” of subroutines that
call one another. A hierarchy has a definite top-to-bottom ordering; one
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Figure 7.6. The structure of a program can be visualized as a diagram
in which each subroutine is represented by a box. The main program—
the instructions that are not inside a subroutine—is represented by a
box at the top of the diagram. A line is drawn between components to
indicate that one component uses another. The diagram on the top
left represents a program in which the subroutines are organized into
a strict hierarchy. The diagram on the right includes some common
complications: A subroutine can be used by several different subrou-
tines, possibly on different levels of the hierarchy. The diagram on the
lower left illustrates a surprising possibility: What happens if a program
contains loops of subroutines that call each other, or even a single sub-
routine that calls itself?

component can use another only if it lies above it in the hierarchy. Sur-
prisingly, perhaps, nonhierarchical programs with loops of subroutines
that call one another are allowed in most programming languages.9

A subroutine is called recursive if it is part of such a loop of sub-
routines. The simplest example of such a loop is a single subroutine that
calls itself. Syntactically, this type of recursion is trivial: It just happens
that one of the instructions in the definition of a subroutine refers to the
very same subroutine that is being defined. But what could such a thing
mean, and could it ever be useful?

In fact, recursion is a very useful and powerful programming tech-
nique that arises naturally from the idea of a subroutine as a black box.
Recall that the task performed by a subroutine can depend on the pa-
rameters that it is passed and on the values of any global variables that it

9 Douglas Hofstadter uses the term tangled hierarchy to refer to such
hierarchies-with-loops. His wonderful book, Gödel, Escher, Bach, can be read
as a 700-page investigation into the implications of tangled hierarchies.
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Figure 7.7. A sequence of trees of increasing complexity. Each tree in
the sequence has one more level of branching than the preceding tree.
The “equation” in the bottom half of the figure shows how a tree can
be constructed from three pieces: a trunk, represented by a straight
line, and two identical branches. Each of the branches is really just a
small tree, rotated 45 degrees from its usual orientation. Of course, this
doesn’t apply to the first tree in the sequence, which is just a vertical
line with no branches at all.

imports. For example, you would expect three subroutine calls Tree(4,3),
Tree(2,1), and Tree(1,0) to have different effects, even though they all
refer to the same subroutine. Now suppose it happens that part of the
task performed by Tree(4,3) is exactly the same as the task performed by
Tree(2,1). In that case it would make perfect sense for the execution of
subroutine Tree (with parameters 4 and 3) to include a call to the same
subroutine Tree (with parameters 2 and 1). Tree(4,3) and Tree(2,1) can
be thought of as being different black boxes, and there is nothing wrong
with one of the boxes using the other.

Figure 7.7 shows how this situation could arise in practice. Each tree,
except for the first, is made up of a trunk and two branches. Each branch
happens to be a scaled-down and rotated tree. It seems reasonable that a
subroutine that draws such a tree should be able to call itself to draw the
branches. The subroutine will have two parameters to tell it how large a
tree to draw and how complex the tree should be. Note that the branches
are smaller and less complex than the whole tree. When the subroutine
is called, it receives certain values for the parameters; when it calls itself
in turn to draw a branch, it must pass different values for the parameters.
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sub Tree(size, complexity)

{ Draw a tree with base at the current turtle position, “growing” }
{ in the direction of the current turtle heading. Size is }
{ the (approximate) height of the tree. Complexity is the }
{ number of levels of branching in the tree; the value of Complexity}
{ must be greater than or equal to zero. At the end of the }
{ subroutine, the turtle is at its original position and heading. }

if complexity = 0 then
forward(size)
back(size)

else
forward(size / 2)
turn(45)
Tree(size / 2, complexity − 1)
turn(−90)
Tree(size / 2, complexity − 1)
turn(45)
back(size / 2)

end if

end sub

Figure 7.8. A recursive subroutine for drawing binary trees. The com-
ments inside curly braces give a slightly informal description of what
the subroutine does. (The postcondition that the turtle is left in its
original position and heading is essential if the branches are to end up
in the correct position and orientation. The back commands and the
final 45-degree turn are required to achieve this postcondition.)

We can number the trees according to their complexity, starting with
zero for the tree that has no branches. Note that for n > 0, the branches
of a tree with complexity n are trees of half the size and of complexity
n− 1. The first tree—with complexity zero—must be treated as a special
case, since it consists of just a trunk with no branches. Figure 7.8 gives a
subroutine, Tree, for drawing trees, written in the xTurtle programming
language. If the parameter complexity is zero, this subroutine just draws
a line; otherwise, it draws a tree consisting of a line and two branches.
Each branch is drawn with a statement

Tree(size / 2, complexity − 1)

which calls the same subroutine to draw a smaller, less complex tree.
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The trees in Figure 7.7 can be drawn with the commands Tree(10,0),
Tree(10,1), Tree(10,2), and so forth.

Like most recursive subroutines, Tree uses an if statement to divide
its task into two cases: a trivial case that does not require recursion,
and the recursive case. The trivial case in a recursion is called the base
case. If you think about it, you will see that everything is, in the
end, built up from the base case. A tree of complexity 3 contains two
trees of complexity 2, which in turn contain trees of complexity 1, which
contain trees of complexity 0, which are just straight lines. Recursion
is a wonderful example of building up complexity level by level starting
with trivial components. Since the process of going from one level to
the next is the same no matter which level is being considered, that
process can be described once and for all—with a single subroutine, for
example—and then repeated over and over to reach extraordinary levels
of complexity.

7.3.1. Getting from A to B. Another example will be useful.
This time, we consider a complex path from one point A to another
point B. The easy way to get from A to B is to follow a straight line.
In xTurtle, this would correspond to a single command forward(dist),
assuming that dist is the distance from A to B and that the turtle is
facing in the right direction.

If we want to add a little variety, we might take a detour to the left
after traveling one-third of the distance. This path is shown in the upper
right in Figure 7.9. It could be drawn with the xTurtle commands10

forward(dist / 3) turn(60)
forward(dist / 3) turn(−120)
forward(dist / 3) turn(60)
forward(dist / 3)

This path consists of four line segments. Suppose that in the middle of
each of these line segments, we decide to take a little detour to the left.
The resulting path is the middle example in Figure 7.9.

But why stop there? We can repeat the process of adding a detour in
the middle of each line segment, and we can do this as often as we like,
reaching truly ridiculous levels of complexity. Considering the number of
line segments involved, it looks like the paths we get would be very diffi-
cult to draw in xTurtle. The idea of writing a single subroutine capable

10 There is a bit of mathematics here that you don’t necessarily need to worry
about: The triangle with vertices at C, D, and E is equilateral, so that all its
sides have length dist / 3. This also accounts for the 60-degree angles.
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sub Koch(dist, complexity)
if complexity = 0 then

forward(dist)
else

Koch(dist / 3, complexity − 1)
turn(60)
Koch(dist / 3, complexity − 1)
turn(−120)
Koch(dist / 3, complexity − 1)
turn(60)
Koch(dist / 3, complexity − 1)

end if
end sub

Figure 7.9. Getting from A to B, along increasingly complex paths.
The first path is a straight line. After that, each path is made up of
four segments, and each segment is a one-third-size replica of the pre-
ceding path. If we number the paths by complexity, starting with zero
for the straight line, then these paths can be drawn by the xTurtle sub-
routine Koch.

of drawing all the different paths might seem out of the question—unless
you know about recursion.

If you look at any of the paths in Figure 7.9, except for the straight
line, it consists of four segments, separated by points C, D, and E. Each
segment is in fact a one-third-size replica of the preceding path in the
sequence. This is especially easy to see for the path with a single detour:
Each segment is a straight line. In the next path, each segment is a path
with a single detour, and so forth.

It follows immediately that we can draw the paths with a recursive
subroutine. The base case, with a complexity of zero, is a straight line.
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Figure 7.10. The Koch snowflake and a Koch Island. These pictures
and those in the next figure are taken directly from a computer screen,
and so do not show detail at a level smaller than the size of a pixel.
For these pictures this is almost an advantage, since it leaves you free
to imagine a potentially infinite amount of detail within a single pixel.

For complexity greater than zero, the path can be drawn by calling
the subroutine recursively four times, once to draw each segment. The
subroutine is shown in Figure 7.9.11

7.3.2. Random Recursion. There is something attractive about
Koch curves, especially those with a high level of complexity. If three
Koch curves are attached at their endpoints, the result is the beautiful
“Koch snowflake” shown on the left in Figure 7.10.

The Koch curve is attractive because of its regularity and symmetry.
Many things in the natural world are attractive in spite of, or perhaps
because of, a lack of symmetry. The shapes of trees, clouds, mountains,
and lightning are not symmetric, but neither are they entirely irregular.
Their attractiveness seems to come from a combination of regularity and
randomness.

The same combination can be achieved in a recursive subroutine by
introducing an element of randomness. Often, the result has a surpris-
ingly natural appearance, and computer artists have found this technique
to be useful for producing realistic images. (Even if you have never vis-
ited an exhibit of computer art, you have seen their work in movies and
television commercials.)

11 It is called Koch after the mathematician Anders Koch, who studied these
curves. Koch was actually interested in what happens if the process of adding
detours is repeated an infinite number of times.
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Figure 7.11. A collection of images produced by recursive subroutines.
The “coastline” on the upper left and the two trees incorporate an ele-
ment of randomness that gives them a natural appearance. The drawing
on the lower left is called a C-curve. (Look at it rotated −90 degrees.)
On the lower right is a Sierpinsky triangle.

The regular Koch curve is made by adding many levels of detours to
a straight line. All the detours are to the left, starting with a 60-degree
turn. We could just as easily have used detours to the right, starting with
a turn of −60 degrees. Suppose that while drawing the curve, whenever
it is time to make a detour, we make a random choice between detouring
to the right and detouring to the left.12 The result preserves much of the
regular, “bumpy” appearance of the Koch curve, but now the bumps go
in random directions. If we join three such random Koch curves at their
endpoints, the result is the Koch island shown on the right in Figure 7.10.
The random Koch curves do a fair job of simulating a rugged coastline.

Various types of randomness could be added to our tree-drawing sub-
routine to produce more natural-looking trees. For example, we could
decide randomly on the number of branches, their lengths, and the angles
they make with the trunk. Truly realistic images require more sophisti-

12 A computer cannot generate truly random numbers, but there are tech-
niques for generating sequences of numbers that look random. These numbers
are called “pseudo-random,” and are good enough for most purposes.
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cated techniques than those discussed here, but the basic idea of using
recursion to mix regularity with randomness is the same.

Recursion turns out to be a powerful programming technique, with
applications far beyond turtle graphics. But few things are more effec-
tive at bringing home the power of recursion than looking at a beautiful,
complex drawing and knowing it was produced by a short recursive sub-
routine. Figure 7.11 shows some of the variety of images that can be
produced in this way.

7.4. Postscript: Implementation Issues

Since the central processing unit of a computer can directly execute
only machine-language instructions, instructions in a high-level language
must be translated into machine language before they can be carried
out. It is not all that difficult to find machine-language instructions
that are equivalent to assignments, loops, and if statements, at least in
simple cases. A translation of a short xTurtle program into the machine
language of xComputer is shown in Figure 7.12. (Of course, xComputer
can only handle integers while xTurtle uses real numbers, but you get
the idea.) Things are not so easy, however, when it comes to dealing
with subroutines, especially recursive subroutines.

While a subroutine is being executed, storage space in memory is
needed for its parameters and local variables. The block of memory lo-
cations used by a subroutine during its execution is called an activation
record. This record is created when the subroutine is called. After the
subroutine ends, it is no longer needed and can be reused for other pur-
poses. Note that the activation record is simply the storage place for
all information inside the black box that is the subroutine. Any global
variables used by the subroutine are not in the black box and are not
stored in the activation record.

In addition to parameters and local variables, there is one other item
in the activation record. Recall that after executing the subroutine,
the computer must pick up where it left off when the subroutine was
called, by jumping back to the instruction that follows the subroutine
call statement. It must keep track of where in memory that instruction
is located, so that it will know where to jump. The location is called
the return address. It is convenient to store the return address in the
activation record.
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declare x, y
x := 0
y := 0
loop
exit if 80 < y
y := y + 3
x := x + 1

end loop
if x < 10 then
x := 10

end if

0 LOD-C 0
1 STO 100 ; x := 0
2 STO 200 ; y := 0
3 LOD-C 80 ; compute 80− y
4 SUB 200
5 JMN 13 ; if < 0, jump to if
6 LOD 200 ; add 3 to y
7 ADD-C 3
8 STO 200
9 LOD 100 ; add 1 to x
10 ADD-C 1
11 STO 100
12 JMP 3 ; back to start of loop
13 LOD 100 ; compute x− 10
14 SUB-C 10
15 JMN 18 ; if < 0, skip to end
16 LOD-C 10 ; otherwise, x := 10
17 STO 100
18 HLT ; end of program

Figure 7.12. A translation of a rather useless xTurtle program into
machine-language. Actually, the translated program is in assembly lan-
guage; recall from Chapter 3 that each assembly-language instruction
corresponds to a binary number, which is the actual machine-language
instruction. The numbers on the left in the assembly language program
give the location in the computer where each instruction is stored. In
the translation, the variables x and y correspond to memory locations
100 and 200 respectively. The translation of the loop starts at loca-
tion 3; the if statement starts at location 13.

For example, suppose that a subroutine ExampleSub has two dummy
parameters—a ref parameter named p1 and a non-ref parameter named
p2—and two local variables named x and y. Consider the subroutine call
statement

ExampleSub(glob, 317)

where glob is some global variable. When the computer executes this
instruction, the first thing it does is to create an activation record with
space for five items—the two parameters, the two local variables, and
the return address. It fills in values for the return address and for the
two parameters. For the ref parameter p1, it fills in the address of the
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actual parameter glob. For p2, the value (317) of the actual parameter
is copied into the activation record. And of course, the return address is
filled in with the location of whatever instruction follows the subroutine
call statement. Once the activation record has been set up, the computer
jumps to the first instruction in the subroutine. When the subroutine
ends, the computer jumps to the return address and destroys the activa-
tion record. (“Destroys” here only means “releases for other use.” The
memory is, of course, still there.)

7.4.1. The Stack. All this is complicated by the fact that while the
computer is executing one subroutine, it might encounter a subroutine
call statement that sends it off to execute another subroutine. And there
is nothing to stop the second subroutine from calling a third, and the
third a fourth. In fact, there is no limit on the length of such a chain
of subroutine calls. The basic idea still works: When a subroutine is
called, an activation record is created for it, and that record exists until
the subroutine ends. It’s just that when one subroutine calls another,
a new activation record is created while the old one still exists. This
means that the computer must be very careful about keeping track of
what is stored where in memory.

The solution is the stack. All the activation records are “stacked
up” in a region of memory set aside for the purpose. When a subroutine
is called, its activation record is added to the end of the stack. While
a subroutine is actually being executed, its activation record is the last
one on the stack; any other record on the stack belongs to a subroutine
that is suspended because it has called another subroutine. A memory
location called the stack pointer is used to keep track of where the end
of the stack is currently located. As activation records are created and
destroyed, the stack grows and shrinks and the value of the stack pointer
increases and decreases.

Figure 7.13 shows what a stack might look like. In this example, the
end of the stack is at the bottom of the picture. Subroutine C is cur-
rently being executed. It was called by subroutine B, which was called
by subroutine A. When subroutine C terminates, the value of the stack
pointer will be changed to 1005, indicating the beginning of the activa-
tion record for subroutine B. This will effectively delete subroutine C’s
activation record from the stack.

The stack pointer always gives the address of the activation record
for whatever subroutine is currently being executed. Whenever the com-
puter needs to access that activation record—to read the value of a
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1010

1011

1012

Location

Activation record for subroutine A

Activation record for subroutine B

Activation record for subroutine C

(Available Space)

...
Figure 7.13. A possible structure for the stack. The stack contains all
the activation records for currently active procedures. In this example,
subroutine A has called subroutine B, which has in turn called subrou-
tine C. The stack starts at location 1001. Location 1000 contains the
stack pointer, which holds the address of the activation record at the
end of the stack. In this case, the stack pointer holds the address of the
activation record for subroutine C.

parameter or to change the value of a local variable, for example—it
can simply check the stack pointer for the location of the activation
record. The subroutine will work correctly no matter where on the stack
its activation record happens to be stored.13

7.4.2. Implementing Recursion. The implementation of recur-
sive subroutines requires no special treatment, but it can be difficult
to follow exactly what is going on. Whenever a recursive subroutine is
called, a new activation record is set up for it. This is true even when a
subroutine calls itself.

13 In most modern computers, the stack pointer is actually a register in the
CPU, and there are specialized machine-language instructions for dealing with
the stack. These instructions use a special addressing mode to make it easy
to access items in the stack. This makes translating a subroutine into machine
language much easier than it would be without such instructions.
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If the subroutine is being executed, there is already an activation
record for the subroutine. When it calls itself, both the existing record
and the newly created one will be on the stack. The two records can
contain different values for the return address, for local variables, and
for parameters. In a sense, they represent two different black boxes, one
inside the other. Of course, the nesting can proceed to deeper levels. For
example, a call to Tree(8,4) will produce successive calls to Tree(4,3),
Tree(2,2), Tree(1,1), and Tree(0.5,0). While the last of these calls is
being executed, there will be five activation records for Tree on the stack.
There is no limit on how deep such nesting can go.

It is probably better to stick to a black-box view of recursion. Execut-
ing the subroutine call Tree(8,100) involves drawing a line to represent
the trunk and calling Tree(4,99) twice to draw the branches. That’s all
you need to know in order to write the routine. As soon as you try to
open the box, you are faced with level after level of increasing complexity,
with no limit in sight. But if you can control the vertigo for a moment,
perhaps you can enjoy the view and savor once again the power we have
acquired for dealing with complexity.

Chapter Summary

Complex systems are usually constructed from modules. A module is
a black box with an interface, which defines the way it interacts with
the rest of the system, and an implementation, which includes the de-
tails of its internal workings. Subroutines are one type of module used
in constructing programs. A subroutine is a named chunk of code for
performing some task; once a subroutine is defined, that task can be
performed by calling the subroutine by name.

The main part of a subroutine’s interface consists of its parameters,
which allow communication between the subroutine and the program
which calls the subroutine. A subroutine is written using dummy pa-
rameters which stand in for the actual parameters that will be passed to
the subroutine when it is called. There can also be “hidden” communi-
cation using global variables.

Modularity, including the modularity provided by subroutines, is im-
portant throughout the software life cycle. The life cycle of a program in-
cludes analysis of a problem, design of a solution, coding of that solution
into a program, and testing of that program. It also generally includes
an extended period of use during which maintenance of the program is
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required to keep it up-to-date and to correct newly found errors. Modu-
larity supports both top-down and bottom-up design strategies. Modules
can be tested and coded separately and then assembled into a complete
program. During maintenance of a well-designed program, individual
modules can be modified without affecting the rest of the program.

The fact that one subroutine can call on another as a black box for
performing some task leads to the idea of a subroutine that can call on
itself. A subroutine that does this is said to be recursive. Recursion
turns out to be a powerful and important programming technique (and
not just because it can produce pretty pictures).

From the machine-language point of view, recursive subroutines are
implemented in the same way as any other subroutine, that is, by using a
stack of activation records to store the data required for each subroutine
call.

Questions

1. Discuss the similarities and differences between programmer-
defined subroutines and built-in subroutines such as forward and penUp.

2. The actual parameter corresponding to a ref parameter must
be a variable. For a non-ref parameter, the actual parameter can be a
constant, a variable, or a formula. Why the difference?

3. Write an xTurtle subroutine to draw a house. If you like, you can
write and use other subroutines to draw the roof, windows, etc. Then, use
your subroutine to draw a village consisting of several houses of different
sizes in different positions. Your subroutine will need a parameter to
specify the size of the house. There are two ways to handle the position:
Either specify it with parameters, or write a subroutine that will draw
a house at the current turtle position, whatever it is. Give a careful
description of what your subroutine does, in terms of precondition and
postcondition. Why is your subroutine superior to one that can only
draw a single-sized house (even if the assignment had been to draw just
one house)?

4. Write an xTurtle subroutine to draw a star (or substitute any other
small object you like). Then write a subroutine to draw a row of stars,
where the number of stars is given by a parameter to the subroutine.
Your second subroutine should call the first. Finally, write a subroutine
to draw a field of stars, that is, stars arranged into rows and columns
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in a rectangular grid. It should have two parameters, one to specify the
number of rows and one to specify the number of columns. It should call
your second subroutine to draw each row of stars. What subroutine call
statement would you use to draw a six-by-eight field of stars?

5. Section 7.3 starts with a poem. Explain what it’s doing there.

6. Draw the figures that would be produced by the subroutine calls
Bar(8,0), Bar(8,1), Bar(8,2), Bar(8,3), and Bar(8,4), if Bar is the fol-
lowing recursive subroutine:

sub Bar(length, complexity)
if complexity = 0 then

forward(length / 2)
back(length)
forward(length / 2)

else
forward(length / 2)
turn(90)
Bar(length / 2, complexity − 1)
turn(−90)
back(length)
turn(90)
Bar(length / 2, complexity − 1)
turn(−90)
forward(length / 2)

end if
end sub

You can solve this problem by thinking “recursively,” without trying
to follow the execution of the subroutine in every detail. (However, if
you want to understand the implementation of recursive subroutines, it
would be a useful exercise to trace the execution of Bar(8,2) step by
step, keeping track of exactly what is stored on the stack.)

7. If recursion did not exist, the stack would not be necessary. Ex-
plain why. (Hint: Saying that a subroutine is recursive is equivalent to
saying that it might have several activation records at the same time.)
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Chapter 8

Real Programming Languages

ALREADY IN 1969, the proliferation of high-level programming languages
was being compared to the Tower of Babel.1 Since then, programming
languages have continued to increase in number and complexity. A study
of programming languages cannot hope to deal with all of these languages
in detail, or even the most important of them. Instead, we will look at
some of the themes and principles in their development and illustrate
these with discussions of just a few languages.

The first section of the chapter is an overview of the development
of high-level programming languages, including a brief survey of their
history. The second and third sections cover two of the main trends in
that development in more detail.

8.1. Virtual Machines

The native language of a computer is its machine language. In Chapter 3,
we saw how machine-language instructions are executed directly, auto-
matically, and mechanically by the hardware of the machine. Most pro-
grammers, however, write their programs in high-level languages. Such

1 Jean Sammet, in her book, Programming Languages: History and Fun-
damentals, reported that, starting in 1960, “Over two hundred languages were
developed in the next decade, but that only thirteen of them ever became sig-
nificant in terms of either concept or usage.”

237
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programs must be translated into machine language before they can be
executed, but the programmer doesn’t have to think about machine lan-
guage or even know anything about it. In fact, the programmer is free
to imagine a computer that can directly execute high-level language pro-
grams. Such imaginary computers are called virtual machines.

Every programming language defines a virtual machine, for which
it is the machine language. Designers of programming languages are
creating computing machines as surely as the engineer who works in
silicon and copper, but without the limitations imposed by materials
and manufacturing technology.2 In this sense, this chapter is just a
continuation of Chapter 5, which dealt with the development of hardware
machines.

8.1.1. Trends. We should avoid the temptation to think in terms
of an “evolution” of bigger and better programming languages, leading
to some ultimate ideal language. First of all, different areas of applica-
tion place different demands on languages. A good language for numeric
computation would probably not be so good for writing artificial intel-
ligence programs. A language designed to support the development of
huge programs by large teams of programmers would seem cumbersome
and restrictive to someone who just wants to knock off a quick program.
Furthermore, there is no objective definition of what it means to be a
good language. Programmers argue over the advantages of various lan-
guages, with opinions often based as much on fashion and individual
style as on objective criteria.

Nevertheless, there are a few consistent trends that can be recognized
in the history of programming languages. My own view of that history
can be summarized in terms of three very general themes:

1. Putting it in the language. Actually, this might say it all. There is
a sense in which all programming languages are equivalent, in the same
way that all computers are equivalent: Ignoring restrictions of time and
memory, they can all be used to solve the same class of problems. High-
level languages are translated into machine language, and, in theory, any
program could be written directly in machine language. But of course,
no programmer could think exclusively in terms of individual machine-
language instructions. A complex program, as we have seen over and
over, has structure. In machine language, that structure exists almost

2 Translating or interpreting a high-level language program to run on a real
computer can then be seen as simulating the virtual machine on a real machine,
in the sense of Section 4.1.
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entirely in the mind of the programmer, and if the translation from mind
to program is not perfect—well, that’s the programmer’s problem. In a
high-level language, the structure of the program can exist as an aspect
of the program itself. There is less distance between the “abstract”
program in the programmer’s mind and the real program. It is easier to
make the translation without error, and when an error does occur, it is
often possible for the compiler that translates the program into machine
language to find it.

A structure that exists “in the mind of the programmer” is called
an abstraction. The first trend in the development of programming
languages has been the inclusion of increasing support for abstraction.

As an example, consider loops and decisions. I introduced these all
the way back in Chapter 1 as structures that can be used to build com-
plex programs. But, in fact, loops and decisions don’t really exist in
machine language. They are abstractions; machine language has only
jump instructions. Jumps can be used to write loops and decisions, but
they can also be used to write unstructured programs, sometimes called
“spaghetti code,” in which the jumps appear to go to random locations
and in which it is impossible to identify blocks of code as loops or de-
cisions. It is difficult to read such unstructured programs and almost
impossible to modify them without introducing catastrophic errors. A
high-level language, on the other hand, can provide loop and if state-
ments, or their equivalent, which make it easy to program loops and
decisions and difficult or impossible to write unstructured code. From
this point of view we can say that loops and decisions are control ab-
stractions and that they can be implemented in a language by loop
statements and if statements.

Subroutines represent another form of support for abstraction, in this
case procedural abstraction. The programmer starts with an abstract
idea of a procedure for performing a certain task. A subroutine is a
concrete expression of that procedure in some programming language.
The term algorithm is often used to refer to the idea behind a pro-
gram. A program is the expression of an algorithm in some computer
language.3

3 Technically, an algorithm is defined to be a definite step-by-step procedure
that is guaranteed to terminiate after a finite number of steps. Unfortunately,
in view of the unsolvability of the halting problem (see Chapter 4), there is
no general way to tell whether a program will halt after a finite number of
steps. So, it seems that it is not always possible to tell whether something is
an algorithm or not!
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Of course, when abstractions are implemented in a language, it should
be done right. Correct use of the abstraction should be enforced by
the language, rather than left to the programmer’s respect for “good
style.” As an example, consider the treatment of global variables in the
programming language Pascal. Recall that a global variable is a variable
that is declared outside of a subroutine. For years, programming students
learning the language Pascal have been told, “Don’t use global variables
in subroutines.” The justification is that a subroutine is a black box that
should have a simple, well-defined interface with the outside world. But
in spite of this style rule, the language actually allows global variables to
be used freely in subroutines. If there is really an absolute prohibition
against using global variables in subroutines, then the language should
enforce that prohibition; the compiler should label any attempt to do so
as a programming error and should refuse to compile the program. If,
as I would maintain, it is usually a bad idea to use global variables in
subroutines, but sometimes necessary, then the language should make
it possible to do so without allowing it automatically. The programmer
should be forced to think consciously about violating the style guideline.
This is the idea behind the import statement in xTurtle.

2. Increasing respect for data. The very first section of this book,
Section 1.1, was about building complex structures of data, starting with
individual bits as the fundamental building blocks. This is analogous
to the way computers are built from transistors, and programs from
machine-language instructions. And it is just as important. Since that
first section, I have ignored data almost entirely. The same was true
of early programming languages, which provided only a few basic data
types, such as integers, real numbers, and characters, and one or two
ways of combining them into structures.

Of course, programmers still had to work with very complex data
structures, but once again these structures were only abstractions in
the mind of the programmer. Newer languages, following the general
principle that abstractions should be expressed explicitly in a program,
have tended to provide much more support for data structures.

But more important has been a change in the way data is viewed.
Traditionally, programs were thought of as made up of instructions that
manipulate data. The data was seen as having a passive, secondary role.
Writing a program was seen as finding the right sequence of instructions
to solve a given problem. This is, I will admit, the view that I have
presented of programs and programming.
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More recently, though, data has come to be viewed as of equal im-
portance with instructions. Often, in a reversal of the traditional view,
a program, or a large chunk of it, can be most conveniently viewed as a
data structure together with some subroutines that manipulate it. For
example, in a program for maintaining a mailing list, it is the mailing
list itself that is central. That list is manipulated by subroutines that
can sort it, add a new address, and so forth. During program develop-
ment, program designers are advised to begin by identifying the data
abstractions required by the program. A data abstraction consists (in
the mind of the programmer) of some data and the operations that can
be performed on it. Many modern languages include support for repre-
senting a data abstraction as a type of module that can include both a
data structure and the subroutines that manipulate it.

The development of the data-oriented view of programming is traced
more fully in Section 2 of this chapter.

3. Moving away from the machine. A program written in machine
language or in assembly language is closely tied to the design of a partic-
ular machine. The difficulty of writing such programs led to the creation
of the first high-level languages. An important side effect of their creation
was that it became possible to free the programmer from dependence on
the details of a single type of machine. Since high-level languages must
be translated into machine language in any case, it should be possible to
translate the same high-level language program into a number of different
machine language programs to be run on various machines. Obviously,
this would save an immense amount of programming effort and make
useful programs much more widely available.

A program that can be compiled to run on many different comput-
ers is said to be portable. One of the trends in the development of
programming languages has been towards increased portability. Now,
portability is not quite as easy or as automatic as it might sound. There
is a wide range of possible computer designs, differing in the types of
machine-language instructions supported, the representations used for
data, and especially in the facilities provided for input and output. It is
all too easy to design a language that depends on the features available
on a particular type of machine; it is far harder to design a language that
permits translation into efficient machine-language programs for many
different machines.

Indeed, the problem is still not completely solved. The current sit-
uation is that it is possible to write programs that are close to univer-
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sally portable, but such programs will not take advantage of advanced
machine-specific features that are often most important to the user. Most
languages have a “standard dialect” which conforms to a strict definition
set by ANSI (the American National Standards Institute) or ISO (the In-
ternational Organization for Standardization). Programs written in that
dialect can be compiled to run on almost any machine. Unfortunately,
the standard dialect can only include features that are available in a
reasonably standardized form on most machines. As a result, there are
many “local dialects” of a language, each specific to one type of com-
puter. In practice, most programs are written in a local dialect, with
some effort made to confine the deviations from the standard dialect to
as small a part of the program as possible. Then, when the program
is ported to a different type of computer, only that small part of the
program will have to be changed.

There is another, more profound, way in which programming lan-
guages have moved away from the machine. In spite of their many differ-
ences, most computers are variations on the basic von Neumann machine;
that is, they include a memory unit and a central processing unit that
fetches instructions from memory and executes them one by one. Pro-
grams written in traditional languages reflect this design. They consist
of instructions to be carried out in a step-by-step, sequential fashion.

There is no reason, however, why a high-level language could not in
theory be based on a completely different model of computation. And
it turns out that there are in fact other ways of describing a compu-
tation besides giving step-by-step instructions for carrying it out. The
traditional style of programming, in which the programmer “commands”
the computer to perform each individual step, is called imperative pro-
gramming. Section 3 of this chapter introduces several nonimperative
programming languages, which support very different styles of pro-
grams and program development.

8.1.2. A Very Brief History. The history of programming
languages starts at the same time as the history of general-purpose com-
puting machines,4 but the first high-level language in the modern sense
was FORTRAN, the creation of John Backus and a team of programmers

4 With a notation for writing programs developed by Charles Babbage and
used by Ada Lovelace to write programs for the Analytical Engine. (Note:
There are many textbooks on the design and implementation of programming
languages. Most of them begin with a historical survey. In writing this sec-
tion, I consulted [Horowitz] and [MacLennan] and, for information on C++,
[Stroustrup].)
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at IBM. The first version of FORTRAN was conceived in 1954, and the
first compiler was released in 1957. Although it has been revised several
times since then—the latest version is known as FORTRAN 90—FORTRAN

is still in widespread use, especially for scientific programming.5

Before FORTRAN, it was not even clear that a compiler could produce
high-quality, efficient machine-language code. Much of the effort in the
original FORTRAN project went into making sure that the compiler could
do just that, with such success that FORTRAN in particular and high-
level languages in general were quickly accepted as the best way to write
most programs.

FORTRAN was designed to create programs for the IBM 704 com-
puter. Even before it was completed, though, it was clear that a more
machine-independent language would be desirable, one that could be
compiled to work on any computer. In 1958, an eight-member interna-
tional committee met in Zurich, Switzerland to design such a language.
A preliminary report describing a language known as ALGOL-58 was re-
leased, and comments and suggestions were collected. A final, revised
report, incorporating many suggestions, was completed in 1960. That
report, only fifteen pages long, is the single most influential document
in the history of programming languages. The language described in the
report is known as ALGOL-60. It was widely used in Europe but never
became popular in the United States, where FORTRAN was already well
established. Certainly, it never came close to becoming a single, universal
programming language, as its creators had hoped. But it has influenced
almost every language that was designed since 1960, and some of the
ideas it introduced have become almost universal.

Among the important features in ALGOL were nested control struc-
tures such as loops and decisions, the requirement that all variables must
be declared, a so-called “block structure” that amounts to a distinc-
tion between local and global variables, and recursive subroutines imple-
mented using a stack of activation records. One curious omission was the
lack of any standardized input/output facilities. Each implementation
of the language on a particular machine would provide input/output fa-
cilities appropriate for that machine. The designers of ALGOL felt, prob-
ably correctly, that it was too early to define a standard version of in-
put/output. The variation among machines was too large, and there was

5 Generally, old programming languages never die, at least not if they have
seen widespread use. The investment in programs written and programmers
trained is too great to be lightly discarded.
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not yet sufficient agreement on just what a standardized input/output
facility should look like. Nevertheless, the lack of such a facility probably
contributed to ALGOL’s failure to win universal acceptance.

Another contribution of the ALGOL-60 report was the introduction of
Backus-Naur form (BNF) for describing syntax. (See Subsection 6.2.2.)
John Backus, the major force behind FORTRAN, was also on the ALGOL

committee. The ALGOL-58 report used informal English descriptions of
syntax. Backus had already developed a formal notation for describing
syntax; when he presented a description of ALGOL-58 in this notation,
Peter Naur, then editor of the Algol Bulletin, realized that his interpre-
tation of the syntax of ALGOL-58 was different from Backus’. Obviously,
this was a problem: If two people implementing ALGOL on different com-
puters had different ideas about what the language description meant,
they could easily end up creating, in effect, different languages. Pro-
grams would not be portable; one computer might be perfectly happy
with a program that the other computer thinks is full of syntax errors.
Naur recognized the problem and devised a variation of Backus’ notation,
which was adopted for the ALGOL-60 report.

Like FORTRAN, ALGOL was directed at the scientific community and
was designed with numeric applications in mind. In 1959, the United
States Department of Defense organized an effort to develop a language
more suitable for the types of data processing required in business and
government. The result of this effort was the language COBOL. The first
COBOL compilers became available in 1960. For many years after that,
COBOL was probably the most widely used computer language.

The most important innovation in COBOL was a method of describ-
ing complex data in a machine-independent way. COBOL introduced the
record, a data structure that can contain several related items of data,
such as an employee’s name, address, age, social security number, and
hourly wage. A file was introduced as a collection of records stored on
some input/output device. This was the beginning of the database man-
agement systems that will be described in Chapter 9. More important,
it was a step towards increased respect for the importance of data and
towards the standardization of input/output.

The development of COBOL was led by Grace Murray Hopper, who
first became involved in programming with the Harvard Mark I computer
in the 1940s.6 Hopper was a pioneer in the development of programming

6 During her work on the Mark I, she helped to introduce the term bug to
describe an error in a program. On one occasion, the Mark I stopped working
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languages and was one of the major advocates of the computerization of
the United States military.

All the languages described above were designed to be used for batch
processing, in which there is no interaction between the user and the
computer while a program is running. In the late 1960s, John Kemeny
at Dartmouth College wanted to make it possible for students to program
computers interactively. He created the BASIC programming language for
this purpose.7 BASIC, especially in its original version, is a very small
programming language. When the first microcomputers were introduced,
BASIC was small enough to fit into their limited memories, and it became
perhaps the most popular language among nonprofessional programmers.
Although programming language theorists do not consider it to be an
interesting or well-designed language, many programmers still consider
it a good choice for small programs written by individual programmers.

In the meantime, programming language theorists went on to design
ALGOL-68 as a successor to ALGOL-60. Although ALGOL-68 introduced
some important ideas, it was a very complicated language with almost
unreadable documentation. It never achieved any popularity, and I am
not even sure whether it was ever completely implemented. One member
of the ALGOL-68 committee who didn’t like the result was Niclaus Wirth,
who had proposed much more modest changes to ALGOL-60. In 1968,
Wirth began working on his own language, Pascal, embodying his ideas.
The first Pascal compiler became available in 1970.

Pascal is a small but elegant language. It preserves many of the
features of ALGOL-60, and it adds extensive support for data represen-
tation. Pascal was widely adopted for teaching purposes, and is still in
widespread use in colleges and high schools. Pascal is covered extensively
in Section 2 below.

Since the introduction of Pascal, there have been two more major
rounds of innovation in programming languages, exemplified by the lan-

because a small insect had crawled into one of its mechanical relays. The
computer had to be “debugged” before it would work again. After that, when
a program didn’t work correctly, the programmer could claim that the problem
was probably a bug. From that time on, correcting the errors in a program has
been known as debugging [Kurzweil, p. 178].

7 BASIC stands for Beginner’s All-purpose Symbolic Instruction Code. As
for languages mentioned previously, FORTRAN stands for FORmula TRANs-
lator, ALGOL for ALGOrithmic Language, and COBOL for COmmon Business
Oriented Language. (Programming languages represent a fortunate corner of
the world where the use of acronyms has actually declined; newer languages
seem to be less likely to have an acronym as a name.)
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guages Ada and C++. Like COBOL, Ada was developed under the aus-
pices of the United States Department of Defense. It is named after Ada
Lovelace. Ada is based on Pascal but incorporates many changes and
many, many additions. The most important additions reflect new ideas
about modularity that arose in the early 1970s. They make Ada more
suitable than Pascal for writing large programs, and make it easier for
programmers to reuse old work in new programs. Ada was first intro-
duced in 1979. It was designed by a team at CII-Honeywell-Bull headed
by Jean Ichbiah. In 1984, its use became mandatory for certain types
of military software. Outside the military, its use is more limited but
continues to grow.

C++ also addresses the issues of large programs and reusability, but
it does so through object-oriented programming. (See subsections
7.2.3 and 7.3.1 below.) C++ was designed by Bjarne Stroustrup at Bell
Laboratories in the early 1980s and was first used outside Bell Labs in
1983. It is based on an earlier language, C, designed by Dennis Ritchie,
which is very much in the tradition of ALGOL and Pascal. C and C++
would probably be ranked as the most popular professional programming
languages.8

There are many important languages that haven’t even been men-
tioned in this brief survey. (Three of them, the nonimperative languages
Smalltalk, LISP, and PROLOG, will be covered in Section 3.) In addition,
one important trend, the increasing importance of concurrency and mul-
tiprocessing, will have to wait until Chapter 10. But I hope I have given
you some sense of the wide variety of programming languages and how
they have developed historically.

8.2. The Other Half of Programming

It was probably easy to ignore the whole issue of building data structures,
at first. After all, it is so obvious that data has structure. A date is made

8 One problem with both Ada and C++ is that they are extremely complex
languages. Niclaus Wirth, who designed Pascal as an elegant alternative to the
overly complex language ALGOL-68, designed another small language, Modula-2,
incorporating many of the best ideas in Ada. His newest language, Oberon, is
an object-oriented language and can be seen in some ways as an alternative to
C++. By the way, I personally am not a fan of C, which I consider to be a
rather ugly language and unnecessarily difficult to use. C++ has many nice
features but still suffers from some of C’s problems.
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up of three parts, month, day, and year, no getting around it. A mailing
list consists of a collection of addresses, and each address in the list has
parts such as name, street address, and zip code. There is really no
avoiding the structure, and just for that reason, it might not seem worth
much fuss.

But it is one thing to say that data has structure, and quite another to
say that that structure can be represented in a language. On the general
principle that a program should reflect what exists in the programmer’s
mind as closely as possible, it makes sense to put explicit mechanisms
for building data structures into a programming language. Inside the
computer, of course, the data will still be just a jumble of bits, but in
the program there might be dates, addresses, words, chess boards, tax
records, airline flight schedules, or batting averages. It becomes easier to
read programs and a little harder to make mistakes while writing them.

Data structures are built according to blueprints called data types.
A data structure is really just a collection of bits; its data type is a
roadmap telling how those bits are to be interpreted. When you declare
a variable in a language that uses data types, you have to say what the
data type of that variable is. The computer uses the data type to decide
how much memory the variable needs and what each bit in that memory
means. For example, a data type for representing dates might require
three memory locations to hold the three parts (month, day, and year)
of a date.

Every language provides some built-in data types, just as it pro-
vides built-in subroutines. Taking data seriously means providing the
programmer with some way of creating new data types, just as new sub-
routines can be created. A programmer should be able to draw up a
blueprint for a new type of data structure, even if no one has ever con-
ceived of it before. This allows the data structures in a program to be
crafted into whatever form is best suited to the problem at hand. Indeed,
once data is taken seriously, it becomes clear that the crafting of data
structures is every bit as important as the crafting of subroutines. If
the data representation is well chosen, the program will tend to fall into
place around it. As this has become clearer, the support in programming
languages for data representation has grown.

8.2.1. Pascal and Data Structures. As a case study of data
representation in programming languages, we will look at Pascal, which
includes a large variety of mechanisms for building data structures and
creating new data types.
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program ThreeN ;
var N , StepCount : integer ;

procedure ComputeNext(var Num: integer);
begin
if odd(Num) then
Num := 3 ∗ Num + 1

else
Num := Num div 2

end;

begin
writeln(’What is the initial value for N?’);
readln(N);
StepCount := 0;
while N > 1 do begin
ComputeNext(N);
writeln(N);
StepCount := StepCount + 1

end;
writeln(’It took ’, StepCount, ’ steps to reach 1.’)

end.

Figure 8.1. An example of a complete Pascal program. This pro-
gram computes and prints out a sequence of numbers according to the
“3∗N+1” rule discussed at the end of Chapter 6. It is equivalent to the
xTurtle program in Figure 6.11 (except that the xTurtle program did
not print out the numbers in the sequence). The procedure defined in
lines three through nine is Pascal’s version of a subroutine.

Control structures and subroutines in Pascal are similar in concept to
those in xTurtle, although Pascal provides a greater variety of statements
and uses a somewhat different syntax. Figure 8.1 gives an example of a
complete program written in Pascal.

With just a little help, you can probably read this program. The
first line simply gives a name to the program. The second declares two
variables, N and StepCount, and tells the computer that the values of
these variables will be integers. Var in this context is similar to declare
in xTurtle, and integer is an example of a built-in data type.

The next seven lines define a procedure, the name used in Pascal
for a subroutine. The instructions defining the subroutine are enclosed
between begin and end. (Div here is the operator used in Pascal in
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place of “/” for dividing two integers.) ComputeNext is the name of the
subroutine, and Num is the name of a dummy parameter to be used in
the subroutine definition. (See Section 7.1.) Here, in front of a dummy
parameter name, var is equivalent to ref in xTurtle; that is, it makes it
possible for the procedure to change the value of the actual parameter
provided when the procedure is called. (I would say that this use of the
word var with two different meanings is a questionable design decision.)

Note that the data type of the dummy parameter is specified as in-
teger. This implies that the actual parameter in a subroutine call state-
ment must also be an integer. Pascal is what is called a strongly typed
language: Every variable has a data type. The data type determines not
just what the bits stored in the variable mean, but also what can legally
be done with that variable in the program. For example, the data type
of an actual parameter must be the same as the data type of the corre-
sponding dummy parameter, and in an assignment statement, the data
type of the value on the right must be the same as that of the variable
on the left.9 This is a safety feature: Usually, mixing data types just
doesn’t make sense. Doing so in any language would be a programming
error; in Pascal it would be a syntax error that can be detected by the
compiler.

The “main” part of the program consists of the instructions between
the begin on the tenth line and the end on the last line. These are the
instructions that the computer executes when the program is run. The
main program uses Pascal’s input/output routines, writeln and readln, to
communicate with the user of the program. Writeln, pronounced “write
line,” displays output on the computer terminal; readln allows the user
to type in a response, and it stores that response in a variable where it
can be accessed by the program.

The five lines starting with “while N > 1” form a while loop. The
computer repeatedly tests the condition “is N > 1?” and executes the
instructions between the begin and end as long as the test is true.
Pascal has two other types of loops. One is a counting loop, in which all
the counting bookkeeping is done automatically. The other is similar to
the while loop, except that the condition is tested at the end of the loop
rather than at the beginning. Curiously, Pascal provides no way to exit
from the middle of a loop.

9 I am oversimplifying here. The actual requirement is that the types must
be “compatible.” For example, it is legal to assign an integer value to a real
variable, even though integer and real are different data types. However, it is
not legal to assign a real value to an integer variable.
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The first thing you might have noticed about the program in Fig-
ure 8.1 is that it contains a lot of semicolons and a lot of begins and
ends. Pascal uses semicolons to separate the individual instructions in
a list, but the exact rules about where they are required, where they
are allowed, and where they are forbidden are difficult to state. Begin
and end are used to group instructions together. Whereas xTurtle has
several ways of grouping instructions (loop and end loop; if, else, and
end if; sub and end sub), Pascal relies almost entirely on begin and
end for this purpose.

Pascal’s overly complex rules for semicolons and its overuse of begin
and end are responsible for many syntax errors in programs. (People
have done studies on this; see [Horowitz, p. 69], for example.) This
shows how even small design decisions in a language can be important. In
Pascal’s successor languages, Ada and Modula-2, the rules for semicolons
have been cleaned up, and grouping of the type used in xTurtle has been
introduced.

This brief look at one example program certainly does not give you
enough information to write your own programs in Pascal. However, it
should have given you a general idea of what Pascal is like. In particular,
you should be able to follow a discussion of data types in Pascal, which
is what really interests us here.

Standard Pascal has four simple built-in data types: integer, real,
char, and boolean. Recall that data types are used to declare variables.
The data type of a variable determines what type of value can be stored in
that variable. Integer and real variables hold integers and real numbers,
respectively. A char variable holds a single ASCII character. A boolean
variable holds a single bit representing one of the logical values, true or
false. (The boolean type is named after George Boole, who invented
Boolean algebra.)

In addition, most dialects of Pascal have a more complex built-in
data type called string, which for some reason is not included in standard
Pascal. A value of type string is a sequence of characters. For example,
’Hello’, ’Z’, and ’Do it!’ are examples of strings. A value of type char
can only be a single character, such as ’Z’.

From these five built-in types, new data types of arbitrary complexity
can be built up. When a new data type is created, it is given a name,
which is used for declaring variables of that type. The newly created
type can also be used as a building block in creating even more complex
types. Of course, once a type has been created and named, it becomes
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a black box, or abstraction, which hides its complexity inside a single
concept.

New data types can be defined in a Pascal program by specifying a
name for the type and a description of the data structure it represents.10

The formal syntax of data type declarations is shown in Figure 8.2, with
some simplifications. Here is an example in which four new types named
Date, Game, League, and Schedule are created:

type
Date = record

month: integer ;
day : integer ;
year : integer ;

end;
Game = record

opponent : string ;
when: Date;

end;
League = array [1..10] of string ;
Schedule = array [1..30] of Game;

The examples here use two different methods for building new data types
from existing types: records and arrays.

As mentioned earlier in the chapter, a record is a data structure
consisting of several related items of data (related, that is, in the pro-
grammer’s mind). Each of the items is called a field of the record, and
each field has its own name, which can be used to select it from among
all the items in the record. In the example above, a Date is a record data
type that can be used to create record variables. Each of those variables
will be a data structure with three fields, named month, day, and year,
and each field will hold an integer value. A variable of type Date would
be declared as follows:

var Today : Date;

This tells the computer to reserve memory to hold three integers. The
variable Today is a collective name for the entire record. The indi-

10 It is important to remember that a data type definition provides a blueprint
for building a data structure, but no structure will actually be built until the
type is used to declare a variable. The variable name (not the type name) is
then used to refer to that structure. Furthermore, the blueprint can be reused
to define several variables with the same structure; each of those structures will
have its own variable name.
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〈type declarations〉 ::= type 〈type list〉
〈type list〉 ::= 〈type name〉 = 〈type definition〉 ;

[ 〈type name〉 = 〈type definition〉 ; ]. . .
〈type definition〉 ::= 〈array type〉 | 〈record type〉 |

〈pointer type〉
〈array type〉 ::= array [〈constant〉 .. 〈constant〉] of 〈type name〉

〈record type〉 ::= record

[ 〈field name〉 : 〈type name〉 ; ]. . .
end

〈pointer type〉 ::= ˆ 〈type name〉

Figure 8.2. Simplified BNF syntax specification for data-type declara-
tions in Pascal. Everything shown here is legal in Pascal, but many op-
tions and other complications are omitted. (Note: The square brackets
used in the definition of 〈array type〉 are part of the syntax of Pascal.
All other square brackets, shown in boldface, are part of BNF, used to
indicate an optional item in a definition.)

vidual integers—the fields of the record Today—would be referred to
as Today.month, Today.day, and Today.year. For example, if Birthday
is another variable of type Date, then the program could include the
instruction

if (Today.month = Birthday.month)
and (Today.day = Birthday.day) then

writeln(’Happy Birthday!’)

Furthermore, Date could be used as the data type of a dummy parameter
in a subroutine, as in

procedure NextDate(Today : Date; var Tomorrow : Date);

As this example shows, once a data type has been defined, it becomes
part of the language and can be used in the same ways as a built-in type.
In particular, it can of course be used in the definition of other types.
The data type Game, the second example defined above, shows how data
types can be combined to make complex, hierarchical structures. One
of the fields in a record of type Game is itself a record. If a variable of
type Game is declared with

var OurNextGame: Game;

then OurNextGame.when is a record of type Date, which has fields such
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as OurNextGame.when.day. As you can see, names for the pieces of
a data structure can get quite complicated, but the point is that you
only need to use such names when you need to break into the black
box. OurNextGame is a conceptual unit representing, presumably, some-
one’s next game. If you need to look inside that conceptual unit to
find out the date when that game will be played, you can refer to
OurNextGame.when.

Arrays, which have been available in most programming languages
from the very beginning, provide another method of chunking together
pieces of data. They differ from records in two ways: In an array, the
individual items must all be of the same type, whereas there is no re-
striction on what types of data can be combined to make a record. And
the items in an array are referred to by number rather than by name.
The declaration

type League = array [1..10] of string ;

is a blueprint for a data structure consisting of ten items, numbered
from 1 to 10. Each of those items will be a string of characters. If
TeamName is declared to be a variable of type League, then the ten items
that make up the variable TeamName are referred to as TeamName[1],
TeamName[2], . . . , TeamName[10]. Note that the item number is added
to the variable name, enclosed in square brackets.

The really neat thing about arrays is that the item number doesn’t
have to be given as a constant number. It can also be specified by
a variable or even by a mathematical formula. For example, if i is a
variable of type integer, then TeamName[i ] could be used to refer to any
one of the items in the array TeamName. Which item will depend on
what value happens to be stored in i . Inside a loop, TeamName[i ] could
refer to a different item each time through the loop. In fact, counting
loops are often used to process arrays; each pass through the loop does
the processing of one item in the array.

Since programmer-defined types are used in the same way as built-in
types, there is nothing to stop a field in a record from being an array
or the items in an array from being records, as the definition of type
Schedule in the example above shows. A variable of type Schedule is an
array of thirty items of type Game. If G is a variable of type Schedule,
then G [7] is a data structure of type Game, which might be used to hold
data about the seventh game of the season. G [7].opponent would be the
name of the opposing team in that game, and G [7].when would be the
date when it is scheduled to be played.
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type FamilyTree = ˆFamilyMember ;
FamilyMember = record

name: string ;
MothersFamily : FamilyTree;
FathersFamily : FamilyTree;

end;

var ME : FamilyTree;

Figure 8.3. A “family tree” and its representation in Pascal. In the
tree, each box holds a person’s name and is connected to that person’s
mother and father (if the mother’s and father’s names are available.)
This tree can be represented in Pascal using the data types shown. The
fields MothersFamily and FathersFamily do not contain data. Instead,
they contain “pointers,” that is, addresses in memory where the data is
to be found. (A special pointer value called nil is used when no data is
available.)

Array and record types can be used to build up very complex data
representations in a structured, hierarchical way. However, not all data
structures can be built naturally out of arrays and records. There are
two problems. First of all, arrays and records both have definite, fixed
sizes that are set in advance and cannot be increased without changing
the program, recompiling it, and running it again. Consider a program
designed to read a document and make a list of all the words in it. If the
program stores the words in an array, it will run into trouble whenever
it finds more words in a document than there are spaces in the array.

The second problem is more serious. Not all data structures look (in
the mind of the programmer) like arrays or records. Consider a data
structure containing your name and the names of your ancestors. The
natural image of that data structure would be a kind of “family tree”
like that shown in Figure 8.3. In Pascal, tree-like data structures, as
well as structures of data with even more complicated interconnections,
can be built using pointer types. Furthermore, those structures can
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grow to any size, limited only by the amount of memory available on the
computer.

Figure 8.3 shows how a pointer type, FamilyTree, can be used to
represent a tree structure. The value stored in a pointer variable is
actually the memory address where some data can be found, rather than
the data itself. The pointer variable “points to” that data. In this
example, the value stored in the variable ME is the address of a record
of type FamilyMember. That record can be referred to as MEˆ. (Think
of this as telling the computer, “Get the value of ME and then follow
the pointer.”) The individual fields in that record are referred to in the
usual way, for example, MEˆ.name.11

Pointers are an example of low-level programming in Pascal. They
provide access to something that really exists at the “low” level of ma-
chine language, namely addresses of memory locations. Pascal does not
provide support for tree structures as such; instead it provides access
to the same mechanism that would be used to build such structures in
assembly language. Of course, this tends to make pointers difficult to
understand and use. On the other hand, it makes it possible to use many
more different types of data structures than could possibly be built into
a single language.

8.2.2. Abstract Data Types and Modularity. The meaning of
a data type is determined not just by the structure of the bits that make

11 Of course, just declaring the variable ME doesn’t automatically build an
entire family tree. The program would have to include instructions for building
the tree and entering names into it. I don’t want to go into the details of how
that would be done, but I will give an example of a procedure for processing
a family tree once it has been built. Since a family tree can be described
recursively as consisting of a name plus two family trees, it should not be too
surprising that subroutines for processing trees are often recursive. Here is an
example of a subroutine that will print out all the names in a family tree. (The
symbol “<>” means “is not equal to.”)

procedure OutputFamilyNames(Family : FamilyTree);

begin

writeln(Familyˆ.name);

if Familyˆ.MothersFamily <> nil then

OutputFamilyNames(Familyˆ.MothersFamily);

if Familyˆ.FathersFamily <> nil then

OutputFamilyNames(Familyˆ.FathersFamily);

end;
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it up but also by the operations that can be performed on those bits.
Being an integer means more than being represented by a certain number
of bits in the computer’s memory. Integers can be added, subtracted,
multiplied, divided, and compared, and they can be input and output.
All these operations are part of the abstract idea of “integer.” In fact,
of course, you don’t even care that integers are represented by bits, as
long as you can add them, subtract them, and so on—and get the right
answers.

Suppose you come up with an idea for a new data type, something you
want to use in a program you are writing. Of course, you have some idea
about the kinds of things you want to do with that data. In fact, that’s
probably a lot clearer to you than the Pascal data structures you will
need to represent the data. And although you know what operations you
want to perform on the data, you don’t yet know what Pascal instructions
you will need to implement those operations. What you have “in mind”
is called an abstract data type.

Your abstract data type is, conceptually, just an interface for a black
box. Inside the box, once it is built, will be the implementation, the
actual data representation and the subroutines that perform operations
on the data. From outside the box, in the rest of the program, the
implementation doesn’t matter. All that matters is that you can do
certain things with the data by calling the subroutines provided—and
that those subroutines give the right answers.

Ideally, you should be able to represent your abstract data type as
a module which chunks together both data structures and subroutines.
Many newer languages, such as Ada and Modula-2, allow programmers
to write modules of this type and to build programs from them. Stan-
dard Pascal does not, but many existing dialects of Pascal do, including
THINK Pascal for Macintosh computers and Turbo Pascal for IBM PCs.
In both THINK Pascal and Turbo Pascal, the modules are called units.

A unit consists of two parts, an interface section and an implemen-
tation section. Everything in the implementation section is hidden from
a program that uses the unit. That program “sees” only what’s in the
interface. The interface can include types, variables, and procedures to
be used by the program, but it does not include the instructions for
carrying out the procedures. Those instructions will be in the imple-
mentation part, which can also include hidden variables that are used
by the procedures but that are invisible from outside the unit.

Figure 8.4 shows a program that uses two units. The program reads
a document specified by the user and prints an alphabetical list of all
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unit WordList ; { Makes an alphabetical list of words }
interface
procedure BeginWordList ;
procedure AddWordToList(word : string);
{ word is inserted in correct alphabetical position }

procedure PrintWordList ;
implementation
. . . { Definitions of procedures go here! }

end.

unit WordReader ; { Reads the words in a document }
interface
procedure StartReading(DocumentName: string);
procedure GetNextWord(var nextWord : string);
{ Note: returns an empty string (’’) at end of document }

implementation
. . . { Definitions of procedures go here! }

end.

program ListWordsInDocument ;
uses WordList, WordReader ;
var word, document : string ;
begin
writeln(’Enter name of document you want processed.’);
readln(document);
StartReading(document);
BeginWordList ;
GetNextWord(word);
while word <> ’’ do
AddWordToList(word);
GetNextWord(word);

end;
PrintWordList ;

end.

Figure 8.4. Example of units in Turbo Pascal or THINK Pascal. The
implementation parts of the units are omitted. The two units and the
program would be stored in three different files, and each could be writ-
ten and compiled separately. (Although you can probably follow what
the program does, the main point here is just to show an example of
how units are defined and used.)
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the words contained in the document. It does this by getting words one
at a time from the document and adding them to a list; when the entire
document has been read, the list is printed. All necessary operations on
the list of words are performed by procedures from the unit WordList,
and operations on the document are provided by the unit WordReader.

The implementation parts of these units, which contain the complete
definitions of the operations, are not shown, but that should not affect
your understanding of the program—even if you have absolutely no idea
how those implementations could be written. That is, of course, the
whole point. (The interface section of a unit should properly include a
careful description of what each procedure does. In this example, I am
counting on your being able to figure this out, more or less, from the
procedures’ names. But in real programming, understanding something
“more or less” tends to lead to disaster.)

Units, and similar sorts of modules in other languages, are impor-
tant software engineering tools. The main program, together with the
interface section of each unit that it uses, represents the overall design of
the program. Once that design exists, the implementation part of each
unit can be written and tested separately. During program maintenance,
units are replaceable parts: A unit can be removed and replaced with a
new-and-improved or corrected version, as long as the new version has
the same interface as the old.

Units are especially important in supporting reuse of existing code.
A unit that has been carefully designed, written, and tested represents
a resource that can be used in many different programs. A programmer
can build up a library of units, representing work that has been done
once and need never be done again. Ideally, no programming problem
would be solved more than once.

That, at least, is the theory. In practice, the ideal is not at all easy
to achieve.

8.2.3. Objects. In practice, it often happens that a unit can almost
be reused but requires minor modification. The problem with this is that
even a minor modification turns a carefully tested, perfectly working unit
into an unknown quantity. Even a small change can introduce errors that
have to be tracked down and eliminated. And even if no new errors were
introduced, the unit must be thoroughly retested in order to verify that
fact.

It would be nice if we could take an existing unit and add to or
modify its behavior without changing the existing code. This might
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sound unlikely, and it is not possible with units. However, this is the
basic idea behind objects and classes, the foundation of an increasingly
important style of programming called object-oriented programming,
or OOP.

An object is similar to a data structure, but in addition to data it
also contains subroutines for performing operations on the data. Like a
data structure, an object has a data type which can be thought of as a
blueprint for building objects. The data type of an object is called its
class. Since a class specifies both the data and the subroutines to be
included in the object, a class is essentially an abstract data type.

When a new class is needed that is similar to an existing class, it
can build on the existing class. Only the changes and additions will
have to be programmed and tested, so that the work invested in the old
class does not have to be redone. The definition of a new class can say
in effect, “This class is just like such-and-such a class, except for the
following additions and modifications. . . .” The new class inherits the
data representations and subroutines from the old class, but can add
new data and subroutines. It can also specify a new definition for an
inherited subroutine. The old definition is still there and is used for
objects of the old class; the new definition applies only to objects of the
new class.

Objects and classes have been around for a long time. They were first
introduced in the language SIMULA in the 1960s. SIMULA was designed
for writing programs to simulate complex systems such as an oil refinery
or a battleship. The “objects” in a SIMULA program correspond to real
objects in the system being simulated. In the 1980s, objects moved into
the mainstream of programming, largely because they offered hope of
a solution to the reuse problem. But their importance extends beyond
that to a whole new way of looking at programs and programming, as
we will see in the next section.

8.3. Escape from the von Neumann Machine

A single central processing unit, connected by a single data pathway
to a memory unit and sequential, one-step-at-at-a-time execution of
instructions—these are the characteristics of the von Neumann machine.
When John von Neumann first put everything together in the proposal
for the EDSAC computer, he laid the foundation of modern computer
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and programming technology. But now, half a century later, the limita-
tions of the von Neumann machine have become more apparent.

There are, of course, the physical limitations. The single CPU of a
von Neumann machine can never do more than one thing at a time. All
instructions and data must be fed single file through the single pathway
between the memory and the CPU.12

More important from the point of view of this chapter, however, are
the conceptual limitations. Are detailed, step-by-step, beginning-to-end
instructions really the only thing a computer can understand? When
you are faced with a problem, is looking for such instructions always the
best way for you to go about solving it?

8.3.1. Object-oriented Programming. In the previous section,
I introduced the object-oriented approach to problem solving. In this
approach, the first step in solving a problem is to identify the data objects
that will be needed and the operations that will be performed on those
objects. Let’s twist this description just a bit. Instead of thinking of
objects as passive things to be operated upon, think of them as active
entities with behaviors. Instead of a list of addresses that you can sort
or print by calling subroutines, think of a Mailing List that knows how
to sort itself and how to print itself when requested to do so. Instead
of issuing an instruction to the computer to sort the list, think about
sending a message to MailingList, telling it to sort itself.

In true object-oriented programming, the model of computation is
very different from the step-by-step instructions of the von Neumann
model. A program consists of a collection of objects, which communicate
with each other by sending and responding to messages. When you want
to “run” the program, you send a message to one of the objects, asking
it to perform some task. As it is doing so, it will probably send messages
to other objects to get them to help out. Eventually, you will get a
response to your original message.

Now, this new model of computation could conceivably correspond
to a new reality, that is, to a non-von-Neumann computer. It is possible
to imagine a computing machine with many processors, instead of a
single CPU. On such a machine, each object could “live” at a different
processing unit, sending messages over a large number of separate data
pathways. Problems could be solved by many different objects working

12 In fact, that pathway has become known as the “von Neumann bottleneck”
because it has become difficult or impossible to shove enough bits through that
pathway to keep up with the huge appetites of today’s powerful CPUs.
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and communicating at the same time. But even if a program is to be
run on a standard von Neumann computer, the object-oriented model
provides a very different way of thinking about the program, one which
might lead to a quicker or better solution than the traditional model.

Many programming languages now include some support for object-
oriented programming. C++ is the most popular of these languages, but
both THINK Pascal and Turbo Pascal allow the programmer to create
objects. In these languages, objects are an add-on, a tool that can be
used in addition to traditional programming methods.

However, there are also completely object-oriented languages. The
most prominent of these is Smalltalk, developed in the early 1970s as
part of Alan Kay’s Dynabook project at the Xerox Palo Alto Research
Center. The Dynabook was an early and prophetic vision of a truly per-
sonal computer—a powerful, notebook-sized computer with a windows-
oriented graphical user interface that inspired the Macintosh GUI and
Microsoft Windows.13 It is only now, two decades later, that we are
coming close to realizing the Dynabook vision in full.

In Smalltalk, everything is an object, and nothing can be accom-
plished except by sending messages between objects. Even the expression
3 + 7 is thought of as sending the message “add 7 to yourself and send
back the answer” to the object 3. Programming in Smalltalk requires a
thought process completely different from that used when programming
in a language like Pascal.14

8.3.2. Functional Programming and LISP. There are other
models of computation on which new programming languages and new
problem-solving methods can be based. One of these “new” languages
is actually almost as old as FORTRAN, the first high-level programming
language. That language is LISP, and the model of computation on which
it is based is called functional programming.

13 Certainly, the rise of graphical user interfaces in the 1980s was partially
responsible for the increasing acceptance of the object-oriented approach. In
a GUI, the programmer is forced to deal with “objects” on the screen such as
windows and menus. The computer screen itself becomes a visual image of an
object-oriented world.

14 I should probably admit that I have never become at all comfortable pro-
gramming in Smalltalk, although I have found objects to be very useful in Pascal
and in C++. I can only report other programmer’s claims that it is possible
and useful to develop a completely object-oriented mindset. The same remark
applies to Prolog and logic programming, which are described below. (On the
other hand, I am quite happy programming in LISP.)
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LISP was designed by John McCarthy in the late 1950s for use in
writing artificial intelligence programs, and ever since then, it has been
the most important language in that field (although recently it has been
challenged by Prolog). It is remarkable that a language has remained
not just widely used but theoretically interesting for such a long time.

There are many different versions of LISP, and some aspects of syntax
vary greatly among dialects. The most widely used version is probably
Common LISP, but the dialect that best illustrates functional program-
ming is called Scheme. My discussion here follows Scheme most closely,
but much of it is true for any version of LISP.

A function is a rule that takes one or more values as input and pro-
duces an output value based on those inputs. The mathematical func-
tions that you are already familiar with work with numbers, but more
generally the input and output values can be anything at all. From the
point of view of computer programming, a function is very similar to a
subroutine, except that the purpose of a subroutine is to perform a task
while the purpose of a function is to compute a value.

In pure functional programming, everything is accomplished by defin-
ing functions and by applying functions to input values to compute out-
puts. Furthermore, there should be no restriction on what types of things
those inputs and outputs should be. In fact, to qualify as true functional
programming, it must be possible to define functions whose inputs and
outputs are other functions! A programmer can write one function whose
purpose is to build other functions that can then be used to solve a prob-
lem. This is, in fact, possible in Scheme.

The advantage of functional programming is that its semantics is very
simple. There is only one operation to understand: applying functions.
This simplicity has a price: There are no variables or assignment state-
ments in a pure functional language. LISP violates this rule, and in fact
it is difficult to imagine a really practical programming language that
does not.

Nevertheless, LISP is conceptually much simpler than other languages.
Everything in LISP is still accomplished by calling functions, but some
of those functions do more than just compute and return a value. They
have “side effects,” such as assigning a value to a variable, printing out
a value, or reading a value typed by the user.

The simple semantics of LISP is matched by a simple syntax. Every-
thing is either a number, a symbol, or a list. Numbers and symbols are
called atoms; like chemical atoms, they cannot be split down any fur-
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ther. You can think of the symbols as being words, but there is no way to
break down a symbol into individual characters. It is the symbol manip-
ulation capability of LISP that makes it suitable for artificial intelligence
applications. A list can contain numbers, symbols, and smaller lists. The
items in the list are separated by spaces and enclosed in parentheses. For
example,

(milk eggs apples cookies)
(tom (class sophomore) (gpa 3.2) (friends (bill mary)))
(sqrt 9)
(plus x 1)
(cons ’a ’(b c))
(if (equal x 0) 1 2)
(lambda (x ) (times x 3))
()

are lists. The last one, a list containing zero items, is called the empty
list.

The distinction between program and data breaks down in LISP. A
symbol can be used as a word (an item of data) or as a variable (some-
thing in a program that holds data). A list can be a data structure or it
can represent the application of a function to some input values. (Since
lists can contain other lists, they can represent complex, hierarchical
data structures.)

The first two sample lists above are pretty clearly being used as data
structures. “Milk” is not a variable storing some value; it is itself a data
value. However, if you ask LISP to evaluate any list, it will try to do
so. It will succeed only if the first item in the list is a function and the
remaining items are legal inputs for that function. The value of the list is
just the output value computed by that function for those inputs. In the
list (sqrt 9), for example, sqrt is the mathematical square root function.
The value of this list is 3, the output value when sqrt is applied to the
input value 9.

Real versions of LISP have many built-in functions, but only a few are
really essential. There are functions such as plus and times for perform-
ing common operations on numbers, and other functions such as cons for
operating on lists. Cons adds an item onto the beginning of an existing
list. The value of the sample list (cons ’a ’(b c)) is the list (a b c).15

15 Cons is used to build lists; two other functions, car and cdr, are used to
extract the component parts of a list. If aList is a list, then (car aList) is the
first item in the list, and (cdr aList) is the list that remains after its first item is
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(define (NextTerm N )
(if (even N)

(quotient N 2)
(plus (times N 3) 1)

))

(define (Sequence N )
(if (equal N 1)

’(1)
(cons N (Sequence (NextTerm N )) )

))

Figure 8.5. Two functions, NextTerm and Sequence, defined in LISP.
Together, these functions are essentially equivalent to the Pascal pro-
gram in Figure 8.1. Sequence is used to build a “3N+1” sequence.
For example, the value of (Sequence 3) is the list (3 10 5 16 8 4 2 1).
There is enough information in the text for you to figure out everything
that is going on here, but the main point is just to show what LISP
functions look like.

Each quote character in this example tells the computer not to evaluate
the symbol or list that follows it; ’a is a way of writing “the symbol
a itself,” treated as a data value rather than as a variable. Similarly,
’(b c) refers to the list (b c) itself rather than to the result of applying a
function b to the value of a variable c.

LISP also has built-in functions that are similar to control structures
such as loop and if statements. In fact, it could theoretically do without
loops entirely, since anything that can be done with a loop can also be
done by using recursion. It does need some way to choose between al-
ternatives. The traditional if statement chooses between two alternative
courses of actions; LISP’s if function chooses between two alternative
values. This can seem very strange to someone used to imperative pro-
gramming. When the list (if (equal x 0) 1 2) is evaluated, its value will
be either 1 or 2 depending on whether the condition (equal x 0) is true
or false. This value could even be used in a larger expression such as

( plus num (if (equal x 0) 1 2) )

which will have the value of num+1 if x is 0 and num+2 otherwise.

removed. The names of these two functions can be traced back to the machine
language of the first computer on which LISP was implemented. Sometimes the
more appropriate names head and tail are used.
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Of course, things will only really get interesting when you know how
to define new functions. This is done in LISP using define. For example,

(define (TimesThree x ) (times x 3))

defines a new function TimesThree such that for any x, the value of
(TimesThree x ) will be computed as (times x 3). The symbol x is being
used here as a dummy parameter. You can see that function definitions
in LISP are similar to subroutine definitions in xTurtle.

In LISP, or at least in Scheme, a function is also a data object—a
thing that can be copied, assigned to a variable, used as a parameter to
another function, placed in a list and, so forth. The define statement
above actually creates such an object and stores it as the value of the
symbol TimesThree, but that object could also be created directly, in-
dependently of any define statement. This is done using the so-called
lambda notation.16 The value of the list

(lambda (x ) (times x 3))

is “the function with input parameter x whose output value is given by
x times 3.” Consider the function definition

(define (MakeMultiplier N )
(lambda (x ) (times x N )))

The value returned by MakeMultiplier is created using lambda. That is,
the returned value is itself a function. Exactly which function depends
on the value of the parameter N . The value of (MakeMultiplier 3) would
be a function that multiplies a number by 3; that is, it would be exactly
the same function as TimesThree. It could even be used in the same way,
as in

((MakeMultiplier 3) 5)

which would be the same as (TimesThree 5) and would have the value 15.

With the ability to treat a function as an object and to perform
operations on it, the distinction between data and program is almost
destroyed. With this idea, we have reached a very advanced level of LISP
programming. Of course, I have skipped all but a few high points along
the way, but perhaps I have told you enough to give you some idea of
the nature and power of LISP and of functional programming.

16 This notation was invented by the mathematician Alonzo Church, who
used it in his definition of computation. LISP is loosely based on Church’s ideas
about computation, in the same way that traditional languages are loosely based
on Turing machines.
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8.3.3. Logic Programming and Prolog. Object-oriented pro-
gramming and functional programming are very different from tradi-
tional imperative programming, but at least they still carry a feeling
of something happening, a process—whether it’s objects responding to
messages or functions computing output values. But there is another
model of computation in which the whole idea of process disappears.

In logic programming, the computer is given a list of facts and
can then answer questions based on those facts. The programmer does
not specify any process for finding the answers; a program contains only
facts and questions. The computer is supposed to deduce the answers
logically, based on the facts it has been given.

The logic programming language Prolog was developed in France in
the early 1970s by Alain Colmerauer, but it did not become popular
until the 1980s. Like LISP, Prolog was developed for use in artificial
intelligence programming. It is not a pure logic programming language,
since in some cases the programmer must give the computer hints about
how to go about answering a question, but it does come close.

There are two types of facts in Prolog, statements and rules. A
statement is a simple statement of fact, such as that John is a parent of
Jane. In Prolog, this might be expressed as “parent(john, jane)”. The
first word, “parent,” is called the predicate in this fact. The predicate
represents some relationship or condition that holds for the items in
parentheses. Prolog makes a distinction between symbols and variables.
Any word that starts with an uppercase letter is a variable. Thus, “John”
would be a variable, but “john” is a symbol, that is, a data item.

A rule tells the computer conditions under which a statement will be
true. For example, the rule

father(X,Y) :– parent(X,Y), male(X)

tells the computer that X is the father of Y if both X is a parent of Y
and X is male. Since X and Y are variables, this rule holds for any values
of X and Y whatsoever. The symbol “:–” can be read as “if” or, more
properly, as “can be deduced if.” A particularly powerful kind of rule
can be made by introducing a new variable on the right hand side, as in

grandparent(X,Y) :– parent(X,Z), parent(Z,Y)

Here, the variable Z stands for any item that can be found that fulfills
the condition. Thus, this rule says that X is a grandparent of Y if any
value can be found for Z such that X is Z’s parent and Z is Y’s parent.

Figure 8.6 contains a short list of Prolog statements and rules. A
complete program would follow this list by one or more questions. (In
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parent(john, jane)
parent(mary, jane)
parent(john, bill)
parent(mary, bill)
parent(tom, mary)
parent(ann, mary)
parent(fred, ann)
male(john)
female(jane)
female(mary)
male(tom)
male(fred)
father(X,Y) :– parent(X,Y), male(X)
mother(X,Y) :– parent(X,Y), female(X)
grandparent(X,Y) :– parent(X,Z), parent(Z,Y)
sibling(X,Y) :– parent(Z,X), parent(Z,Y)
ancestor(X,Y) :– parent(X,Y)
ancestor(X,Y) :– ancestor(X,Z), parent(Z,Y)

Figure 8.6. A list of Prolog facts that the computer can use as the ba-
sis for answering questions. Each of the last six lines gives a rule that
can be used for making deductions. Note that the last rule is recursive.

fact, Prolog is generally used interactively, so that the user could sit
at a computer typing in facts and questions one after another.) The
convention for asking a question is to precede it with the “:–” symbol.
For example,

:– mother(mary, jane)

asks the computer whether mary is the mother of jane. The computer
would answer yes, since the fact that mary is the mother of jane can be
deduced from the information it has been given. But when asked

:– mother(ann, mary)

it would answer no, since this fact cannot be deduced using only the
statements and rules in Figure 8.6.17 It is important to remember that
the computer knows nothing about the meanings of any of the symbols

17 A person would see that mary’s parents are fred and ann and that fred is
male and would deduce that ann is mary’s mother. However, this uses knowl-
edge that is not in any of the rules that have been given to the computer. (It
also uses the unstated assumption that ann and fred are not the same person.)
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it is using. It just manipulates the symbols according to the rules you
give it. If it has not been told a fact, and if it cannot deduce that fact
logically from what it has been told, then it assumes that the fact is
false. This is very different from the way people think.

If a question contains a variable, the computer will try to find values
of that variable that will make the statement true. For example, to the
question

:– father(X, jane)

the computer will respond “X is john.” And to

:– father(john, X)

it will respond, in succession, “X is jane” and “X is bill.” The question
“:– sibling(X,bill)” will produce the interesting pair of answers “X is
jane” and “X is bill.” Although bill would not usually be considered to
be his own sibling, as far as the computer has been told, he would. In
order to avoid this, the definition of sibling(X,Y) would have to include
the fact that X is not equal to Y.

I will not explain how data structures can be dealt with in Prolog, or
even how numeric computations can be performed. You should already
be able to see that logic programming is very different from other styles
of programming. It encourages the programmer to forget about how
something can be accomplished and to concentrate on what knowledge is
available. The details of the process by which new knowledge is deduced
are left to the computer.

Chapter Summary

Many high-level programming languages have been developed since the
first, FORTRAN, appeared in 1957. The history of high-level languages
has been one of increasing support for abstraction, especially for data
abstraction. An abstraction is essentially a specification of the behavior
and interface of a black box. Programmers think naturally in terms of
abstractions; a language that supports abstraction gives programmers a
better chance of translating the ideas in their heads into working pro-
grams.

Support for data abstraction starts with the idea of data types. Data
in a computer is represented as a sequence of bits; the structure of that
data—which exists in the programmer’s mind as an abstraction—is ex-
pressed in a program using data types. Every language provides some
built-in data types, as well as ways of building data structures using
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the built-in types as a basis. The programming language Pascal, for
example, provides records and arrays. It also provides pointers, which
can be used to build data structures such as binary trees which are not
supported directly by the language.

A full description of a data type includes not just the structure of
the data but also the operations that can be performed on that data.
All this information—leaving aside implementation details—forms an ab-
stract data type. Some languages support abstract data types directly in
the form ofmodules that chunk together both data types and subroutines
that operate on those data types.

Traditional programming languages such as Pascal are based on the
model of computation embodied in the von Neumann machine. Other
models of computation are possible, and these lead to very different
styles of programming such as object-oriented programming, functional
programming, and logic programming.

Object-oriented programming in particular is becoming increasingly
important. From one point of view, objects are a natural step in the pro-
cess of adding support for data abstraction to programming languages.
However, objects lead naturally to a model of computation in which
problems are solved by self-contained, cooperating entities that commu-
nicate with each other by passing messages back and forth. This model
supports new ways of thinking about problems and designing solutions.
The real importance of nontraditional programming languages is their
support for such new ways of thinking.

∗ ∗ ∗
With this chapter, we have reached the end of the general survey of

the fundamentals of computer science which was begun in Chapter 1.
In the remaining four chapters of the book, we will look at some of the
practical applications to which computers can be put.

Questions

1. State some principles that can be used as guidelines in designing
a new programming language. What features would you include in a
language if you were designing one yourself? Does your answer depend
on the purposes for which the language is to be used? Should it?

2. Why is it important for the syntax of a language to be specified
completely and rigorously, for example, by using BNF? There is no sim-
ilar generally accepted formal method for describing the semantics of a
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language. What do you suppose the consequences of this would be? Do
you have any suggestions for dealing with semantics?

3. Why might having several different instruction-grouping methods,
as in xTurtle, be better than Pascal’s use of a single method (begin and
end)?

4. A computer science class has thirty students, and each student has
three test grades. Design a data structure in Pascal that can be used to
store information about all the students in the class. Start with a record
type that can store a student’s name and three test grades. What would
you do if you don’t know exactly how many students there are in the
class, but you do know that there are not more than 100? What if you
know no definite upper limit on the number of students?

5. If you were working in LISP instead of in Pascal, how would you
represent the data in the previous question? How would you represent
the data as a list of Prolog statements?

6. In Section 8.3.2, I say that anything that can be done with a
loop can be done using recursion. Try to explain why this is true. Can
you write a recursive subroutine in xTurtle that will draw nested squares
without using a loop?

7. Is there any reason for a programmer to learn more than one
programming language?
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Applications

THE FIRST EIGHT CHAPTERS of this book laid a foundation for an un-
derstanding of what computers are, what they can do, and how they do
it. The rest of the book builds on that foundation by discussing some of
the ways in which computers are commonly used.

It is possible to use computers as black boxes, without knowing much
about what goes on inside. There is, of course, nothing wrong with this.
It is a reasonable approach to dealing with complex technology—one that
many people (including me) adopt when dealing with things like cars and
microwave ovens. Still, opening the black box to at least some extent is
much more intellectually satisfying, and it is essential if one wants to be
more than a passive consumer of magic-like technology. This, I presume,
has something to do with the reason you are reading this book in the
first place.

So, my aim will be not just to describe computer applications but
also to explain something of how the computer accomplishes the many
complex tasks involved (although, in fact, I will do this mainly in Chap-
ters 10 through 12). We begin in the first section of this chapter with
a brief look at applications that are familiar to most users of desktop
computers. The second section introduces some less familiar but impor-
tant large-scale applications. The final, rather technical section returns
briefly to theoretical computer science to address the questions of effi-
ciency and practical limitations on computing.
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The remaining chapters of the book tackle three major application ar-
eas of computer science in more detail: parallel and distributed comput-
ing, graphics, and artificial intelligence. Note that Chapters 9 through
12 can be read independently and in any order.

9.1. The Works

The desktop computers found in homes and offices tend to be used pre-
dominantly for running a rather small variety of application programs.
The most common of these are sometimes bundled together by software
companies into packages with appropriate names such as ClarisWorks or
Microsoft Works. For many people, “the works” includes all the soft-
ware their computer will ever need.1 This section looks at applications
commonly found in such packages.

9.1.1. Word Processing. Probably, the most familiar computer
application is word processing, in which the computer is used for cre-
ating text documents. Word processing is to be distinguished from text
editing, where the user enters simple lines of plain text. Text editing is
often used to produce computer programs and data files—things meant
mostly to be read or processed by a computer. A word processing pro-
gram, on the other hand, lets a user format the text to make it more
appropriate for humans, with frills like footnotes, underlined or italicized
text, large-size text for headings, tables, and pictures.

A text editor is a comparatively simple program. It works with a
sequence of characters, each represented by an ASCII code number, as
explained in Chapter 1. The data for a word processing program is
more complicated, since in addition to the text itself, the data structure
has to include some encoding of the visual appearance and position of
each item in a document. There are many different ways to encode
such data, and every program uses its own encoding scheme. A word
processing program can use a data file from another program only if it
knows how to translate the data encoding used by that program into its
own format. Most word processors can translate the data formats used

1 I am ignoring here an important category of software for home (and maybe
office) computers: games. In fact, the best games are sophisticated programs
that stretch the limits of machine performance and programming talent. Many
of the ideas I discuss in this book find application in computer games. Another
major application area that I will avoid is educational software.
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by a wide variety of other programs, but the only type of data that is
automatically usable by any word processor is the same type of plain
ASCII text used by text editors, without all the formatting information.

A step up from word processing is an application called desktop
publishing, which tends to deal with documents with fancier layouts
and more pictures, often meant to be published, or at least to look
like professional publications. Desktop publishers use word processing
to create their text, but they make use of a “page layout program” to
arrange all the items on a potentially complex page. They might also
use programs like those described in the next subsection to create and
process pictures. Desktop publishing is one of the ways that computers
have empowered people with only moderate resources to take on tasks
that once required specialists with expensive equipment.

9.1.2. Painting and Drawing. Some types of information can’t
be conveyed easily or at all in words. Scientific data is often best pre-
sented in the form of a graph. A picture of a person or scene, or an
architectural drawing of a proposed building, can be understood more
quickly and thoroughly than any verbal description. And visual artists
create images that simply have to be seen in order to be appreciated.
So it is not surprising that there is a wide range of programs for manip-
ulating all kinds of images.

Most common on desktop computers are programs used for painting
and drawing. With a painting program, the user applies color to the
computer’s screen the way a painter applies paint to a canvas. Generally,
the computer’s mouse plays the role of the brush. The data for a painting
program is fairly simple: For each pixel in the image, there is a number
representing the color of that pixel. Nevertheless, an image created by
one painting program cannot automatically be used by another. The
second program has to understand the type of data encoding that has
been used to represent the image. First of all, there is the matter of
deciding how the various pixel colors are to be encoded as numbers;
usually, information about this encoding is included with the image data.
More important is the fact that the image data is often compressed.
Compression is used to reduce the amount of memory needed to store a
data file.2 Fortunately, there is only a small number of image-encoding

2 For example, a simple form of compression called run-length encoding
can be used on files that tend to contain long sequences of identical values. This
is often true for image files. In a run-length encoded file, a string of fifty-seven
threes would be replaced with the pair of numbers: 57, 3.
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methods that are widely used for exchanging pictures between programs.
These go by names like TIFF, GIF, PICT, and JPEG.

It is worth noting that, obviously, not all the images displayed on
computers are created by hand. Any image—a photograph, a frame
from a video, the Mona Lisa—can be converted into a list of pixel colors
that can be used to display it (at least approximately) on a screen.
Once the image is in numeric form, it can be manipulated by an image
processing program, which is a kind of “digital darkroom” that, for
example, lets the user enhance the image, adjust the contrast, edit the
colors, or make a composite of several images.

Turning to drawing programs, we find that they relate to painting
programs in much the same way that word processors relate to text
editors. Instead of dealing with a simple sequence of pixel colors, a
drawing program works with a complex data structure that represents
objects in a scene. The basic objects are mostly simple geometric shapes
like circles and rectangles, but they can be combined to make complex
models such as a floor layout in an architectural drawing. The user edits
the image by adding, rearranging, and deleting objects and by modifying
their appearance (for example, by changing their size or color).

The ability to edit an image in this way gives drawing an advan-
tage over painting for many applications. For example, sophisticated,
high-precision drawing programs are used in computer-aided design
(CAD), where they have largely replaced the traditional drafting table
and pencil. And I created the illustrations for this book with a draw-
ing program called Canvas. The principles and techniques behind such
programs, including ones that can work with three-dimensional objects,
will be covered in some depth in Chapter 11.

9.1.3. Spreadsheets. In 1979, a little program called VisiCalc
transformed the way people thought about personal computers. What
had been seen as impractical and slightly comical little boxes appropri-
ate for hobbyists and visionaries suddenly became a vital tool for the
forward-looking businessman. VisiCalc was the first spreadsheet.

A spreadsheet displays rows and columns of rectangular boxes, each
box capable of holding a number. Not very exciting, it seems. But
the little boxes—known more formally as cells—are not mere passive
containers. A cell can actively compute a number based on the contents
of other cells in the spreadsheet. For example, the cell in the top row,
fifth over from the right, might compute and display the sum of the first
four numbers in the top row. If you change one of those four numbers,
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the sum is recomputed automatically. That sum might in turn be used
in computing the number in some other cell. If so, that number will also
change, and the changes can cascade for many levels, as you watch. The
numbers seem to have come to life.

Each cell in a spreadsheet has either an associated number or an
associated mathematical formula,3 which can be modified by the user
of the spreadsheet program. A number is simply displayed in the cell;
a formula tells how to compute the contents of the cell in terms of the
contents of other cells. Behind the scenes, the computer keeps tracks of
all the formulas, and whenever the user modifies the number or formula
associated with a cell, it makes all the implied changes in the display.

Spreadsheets are used for mathematical modeling. A mathemati-
cal model consists of one or more quantities, together with mathematical
formulas showing how those quantities are related. For example, there
is a simple model that relates the amount of money you deposit in a
bank account and the interest rate it will earn to the amount that will
be in the account ten years from now. A more complex economic model
might be used to relate a company’s predicted profits or losses to such
things as the cost of raw materials, the amount of merchandise it can
sell, and the expected inflation rate. The formulas that define such a
model can be entered into a spreadsheet, which can then be used to
watch what happens when assumptions are changed. What if we cut the
price of the widgets we manufacture by ten percent? What happens if
inflation is a percentage point higher than we are assuming? It was the
ability to do this type of modeling on a personal computer that made
VisiCalc so popular. Modeling is important not just in spreadsheets and
not just for economic models. In fact, we will see later in this chapter
that huge amounts of computer time are devoted to various sophisticated
mathematical models.

9.1.4. Databases. In Chapter 8, we encountered the idea of a data
structure, which is a collection of data of specified types, organized so
that it can be used in certain ways by a program. Data structures exist
in a computer’s memory while the program is running. If you imagine
the same sort of thing stored in a file on the computer’s disk, you have
the idea of a database—with one major difference: A database tends to
be larger and more complex, and to permit more complicated operations,
than the data structures commonly used in programs.

3 Or some text. Text is simply displayed for the information of human
readers; it plays no active role in the spreadsheet.
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On a desktop computer, the typical example of a database is a mailing
list, consisting of a potentially large number of names and addresses. One
particular name and address is called a record, and individual items
such as the first name, last name, street address, city, state, and zip
code are referred to as the fields of that record. For the mailing list to
be useful, it should be possible to add new names and addresses to the
list and to delete or modify existing items. More complex operations are
also needed, such as sorting the list by zip code or printing out all the
addresses in a particular state.

A database program should let the user manage not just mailing lists
but data of many different kinds. A small business, for example, might
want to keep track of inventory, suppliers, customers, sales, and customer
accounts. Data for the inventory might consist of records containing the
name of an item, the supplier from whom it is bought, the quantity
on hand, and the price. Data for a sale would include things like the
customer, the item purchased, the amount of the sale, the amount paid,
and an invoice number. The operations that the user might want to
perform on this data include things like finding all the sales made to
a particular customer, or listing all the inventory items for which the
quantity on hand is less than 100 and the supplier is from out-of-state.

The challenge in designing a database program is that there is no way
for the designer to know what data all the various users of the program
might want to store, or what they might want to do with that data.
The solution is provide an abstract data model that will let the user
describe the data to the program and a query language for specifying
operations to be performed on the data. Together, the data model and
the query language make a kind of specialized programming language,
and using a database program (like using a spreadsheet) is something
akin to programming.

A big advantage of using a specialized data model and query language
is that it hides most of the complexity of what actually goes on in the
database from the user. (This is another example of black boxes.) A
database can contain a huge amount of information. Simply looking
through that information one piece at a time would be impractical. So
the data is not really stored as a simple list of records. It has a complex
structure with extra information that is used to make searching through
the data much more efficient.

A data model used in many database programs is the relational
database model. A “relation” here is used to mean a list of records,
where each record in the relation must have the same set of fields. The
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inventory data in the example above would be a relation. Customers’
names and addresses would make up another relation, as would the data
for sales. A database generally contains several different relations holding
different types of data, as in this example. Each relation has its own
name, and each field of the records in that relation also has a name. To
create a new relation, a user simply has to provide these names, specify
what type of data each field will contain, and then enter the data. An
important point is that two different relations might have fields with the
same name. Those fields are then taken to be the same. For example,
the field name ItemNumber might appear in both an Inventory relation
and a Sales relation. The same number in the ItemNumber field in
both these relations would represent the same actual item. This sort of
indirect relationship, through shared field names, is the only way that
two relations are linked.

A query is a request to a database program to retrieve specified
information from a database. A query language is used to form such
requests. One widely used language is called SQL (Structured Query
Language). In SQL, it is possible, for example, to make a request that
amounts to, “Give me the names and address of all customers who have
unpaid bills dating from before January 1, 1995, and sort them into
alphabetical order.” (The actual SQL query would would have to be
much more formal, and it would refer to relations and fields by name.)
Note that in satisfying this request, the program would have to collect
data from at least two different relations.

9.1.5. Communications. As the final stop on this brief and
incomplete tour of desktop computing, we look at communication facili-
ties, which allow you—or more exactly, your computer—to communicate
with other computers. Before any communication can take place, there
has to be some sort of physical connection between your computer and
another computer.4 Computers in an office environment are often on a
network, which can connect anywhere from a few computers to thou-
sands or millions. A network connection gives a computer and its user
access to resources made available by other computers on the network,
such as data files, programs, and even computing time on their CPUs. A
network also serves as a communications device that allows users of differ-
ent computers to communicate with each other, for example by sending

4 This is not quite true. There are “wireless” communication systems where
the only physical link is provided by radio waves or infrared radiation. However,
such communication still requires specialized hardware.
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messages from one computer that can be read on another. Chapter 11
discusses the uses of networks and how they work.

Communication from a home computer generally uses a modem.5

Two computers can communicate over regular telephone lines using a
pair of modems. One way to use a modem is with a terminal emu-
lation program. A terminal is an input/output device consisting of a
keyboard and screen meant for providing access to a large, multi-user
computer. Terminals are often called “dumb” terminals because all the
actual processing is done on the computer; the terminal merely relays the
user’s keystrokes to the computer and displays the computer’s responses
on the screen. A terminal emulation program makes an expensive com-
puter with a fancy graphical user interface act like a cheap, dumb termi-
nal that displays only lines of ASCII characters.6 This is more exciting
than it sounds, because it gives you access to the resources of any com-
puter that will accept your call. For many people, this means being able
to use the main computer at their business or school from home.

For more people, though, in growing numbers, having a modem
means begin able to connect to bulletin board systems and online
services. A bulletin board system, or BBS, is just a computer running
a program that accepts incoming calls via modem and lets the caller
read and respond to messages left by other users. Users can post public
messages that can be read by any user of the BBS. The public message
area of a BBS is usually organized into a number of lively, ongoing dis-
cussions. Most systems provide other services as well, such as the ability
to leave private messages for other users and to relay messages to users
of other BBS’s and computer networks. Often, users can obtain copies
of software stored on the BBS (not, I’m afraid to say, always legally).
Some BBS’s are available free to the public. Others have a membership
fee and restricted access. Although some of them are very large, most
BBS’s are set up by individuals as a hobby or business.

5 Modem stands for modulator/demodulator. A modem takes a digital sig-
nal from the computer and “modulates” it into an analog signal that can be
sent over a telephone line. In the other direction, it listens for signals coming
over the phone line and “demodulates” them into the digital signals required
by the computer.

6 Until recently, the rate at which reasonably-priced modems could transmit
data was too low to make them practical for much more than text. Within
the last few years, inexpensive high-speed modems have made graphical user
interfaces via modem feasible. The online services mentioned below have taken
advantage of this with custom programs that provide a “user-friendly” interface
to their services.
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Most users, though, will probably get their computer connectivity
through online services, such as CompuServe and America Online. These
are the large-scale, commercial version of BBS’s, catering to a huge range
of interests and offering more different types of service—and somewhat
less anarchy—than the typical BBS.

9.2. Off the Desktop

Not all computing is done on desktop computers, even today when a
computer on your desktop can be more powerful than most large, “main-
frame” computers were a decade ago. In this section, we will look at a
few large-scale applications of computing that you should not expect to
find on your typical home computer.

9.2.1. Weather and Other Dynamical Systems. Most people
know that weather forecasts are produced by computers, without, per-
haps, understanding how that could be. Computer weather forecasting
is based on numeric simulation of the physical processes that produce
actual weather. The idea is simple in theory: The Earth’s atmosphere
is governed by the laws of physics. Those laws take the form of math-
ematical equations. If you can solve those equations, you know exactly
how the atmosphere will behave and you can predict the weather exactly.
Obviously, things don’t quite work out that way in practice.

Weather is an example of a dynamical system. In a dynamical
system, future behavior is predicted based on knowledge of the cur-
rent situation—technically referred to as the initial condition of the
system—and an equation that governs how the situation changes with
time. The so-called “dynamic equation” for weather is well known, but
it is not an equation that can be solved exactly, the way you can solve
3x+ 1 = 7 to find that x = 2. The solution—that is, the prediction of
what the weather will be at some point in the future—is obtained by sim-
ulating the atmosphere on a computer. The atmosphere is represented
in the computer by a large set of numbers, each giving the value of a
physical quantity such as temperature, air pressure, or humidity at some
location. The dynamic equation is applied to these numbers to see how
they will change with time. What happens to the numbers is an approxi-
mation of what will happen to the real physical quantities they represent.
The abstract, simulated weather system inside the computer is called a
computer model of the real thing. This is a large-scale version of the
same type of modeling that can be done using spreadsheets.
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There are several sources of error which make this model only an
approximation rather than a perfect prediction of reality. First of all,
an accurate prediction depends on knowing the initial condition (that is,
the weather now). In practice, current weather is known only partially
and inaccurately, from measurements made at a relatively small number
of weather monitoring stations and other sources such as satellite data.
The accuracy of the initial data puts a limit on the accuracy of the
prediction that can be made.

More important, though, are the errors introduced because of the
way dynamical systems are simulated numericly. A quantity like air
pressure or temperature has a value at every location throughout the
Earth’s atmosphere, and at every moment of time. In mathematical
terminology, they are “continuous” quantities. The numbers that the
the computer manipulates are a so-called “discrete” approximation of
these continuous quantities. Instead of dealing with every moment of
time, the computer might jump from each hour directly to the next.
Instead of working with each point in the atmosphere, it might represent
with a single number the average conditions in a cube of air a mile on a
side. Obviously, it will be missing something!

The more points in space and time that the computer uses, the more
accurately its model will reflect reality. Unfortunately, the more points
it uses, the more numbers it has to deal with, the more computation it
has to do, and the longer it takes to run the model. As a result, weather
forecasting consumes large amounts of computer time.

Weather is only one example of computer modeling and simulation.
Computers can be used to simulate any system whose dynamic equation
is known. In one particularly neat application, for example, two colliding
galaxies are modeled as they interact over a period of millions of years.
The equations in this case state the well-known law of gravity: Each star
in the two galaxies is pulled and tugged by the gravitational attraction
of each of the other stars according to a simple formula. The number of
stars involved, though, makes this an application for massive computing
power, and even then the model can include only a fraction of the billions
of stars in real galaxies.

There are many other examples. The behavior of an airplane wing can
be modeled on a computer so that many different designs can be tested
without the expense of building a physical model of each. Simulating
the flow of oil through the types of porous rocks where it is often found
might help in the development of better techniques for extracting oil.
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A model of wind and ocean currents might predict what will happen to
oil that is spilled from a tanker. The acoustics of a new concert hall can
be modeled and tested before it is built.

It is worth noting that a model is a reflection of some theory about
the way the world behaves. In the examples I have given up to now, the
theories are well-established physical laws. However, a computer model
can be useful even if the theory involved is an unproved hypothesis.
In fact, in this case the model can be seen as one way of testing the
hypothesis. If predictions made using the computer model turn out to
be true, that would count as evidence that the hypothesis is correct.
In economics, for example, a model might relate quantities such as gross
national product, interest rate, consumer price index, and money supply.
The equations of the model would represent a theory about how all
these quantities relate to and affect each other. Running the model on a
computer would make a prediction about how the quantities will change
over time. Correct predictions would tend to confirm the economist’s
theory, and even incorrect predictions might be useful, since the errors
could suggest ways to improve the theory.

9.2.2. Optimization. Besides simulation, another general appli-
cation area of computers is optimization. This refers to finding, among
a range of possibilities, the one that is “optimal,” that is, finding the best
possibility according to some specified criterion. For example, you might
ask what is the best way to arrange your dishes in the dishwasher. The
possibilities to be considered are all the different ways of arranging the
dishes. The criterion, presumably, is cleanliness. That is, an arrange-
ment is optimal if it gets the dishes as clean as possible. Unfortunately,
this is not a problem that your computer is likely to help you with.

There are, however, many optimization problems that can be solved
efficiently by computer.7 The methods used are, for the most part, rather
technical, and I will not attempt to describe them here. I will, however,
discuss two types of problems that can be solved, to give you an idea of
what can be done.

7 “Efficiently” means in a reasonable amount of time. Often, it would be
possible to find an optimum simply by testing all the possibilities and picking
the best. In interesting problems, though, there are too many possibilities for
this to be feasible. The question of efficiency is discussed below, in Section 3.
The “corridor guard problem” discussed at the end of that section is an example
of an optimization problem that cannot, as far as we know, be solved efficiently.
Even for such problems, however, a computer can sometimes be used to find
solutions that are reasonably good, even if not truly optimal.
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My first example is scheduling of tasks. Suppose that a number
of different tasks must be carried out to complete some overall project.
Think, for example, of all the different tasks involved in building a house.
Each task takes a specified amount of time. Several tasks can be worked
on at the same time, but there are constraints that stipulate that
certain tasks cannot be started until certain other tasks are finished.
(The walls of the house can’t be put up until the floors are laid; the
floors can’t be laid until the frame has been erected; the frame can’t be
erected until the foundation is in place.) The question then becomes, how
can the tasks be scheduled so that the entire project can be completed
in the shortest possible time?

Consider a sequence of tasks A, B, C, . . . , such that B depends on A,
C depends on B, and so on. Since A, B, C, . . . must be performed in
succession, the whole project obviously takes at least as long as the time
required to perform this sequence of tasks. Among all such sequences
of dependent tasks, choose one that takes the greatest amount of time.
That sequence is called a “critical path” for the project, and the tasks
in the sequence are called “critical tasks.” It turns out that the time
required for the entire project is the same as the time required for a
critical path; all the other tasks can be scheduled around the critical
tasks. A computer can be programmed to analyze the constraints, find
a critical path, and create a minimum-time schedule for the project.

My second example concerns allocation of resources. As a typical
problem, consider a steel company that can manufacture several different
types of steel, each type requiring some particular combination of raw
materials. The question is, from a given supply of raw materials, what
amount of each type of steel should be produced in order to maximize
the company’s profit?

Let’s say our steel company can produce just three types of steel, and
that its profit is 3, 4, and 7 dollars a ton, respectively, on each type. If
it produces x tons of the first type, y tons of the second, and z tons of
the third, then its total profit would be

3x+ 4y + 7z.

This is called the objective function. It is the function we want to
maximize. Now, there are constraints on the amounts that can be pro-
duced, arising from the fact that only a limited quantity of each resource
is available. Suppose that the company has 10,000 pounds of the metal
vanadium. Let’s say that the first type of steel contains 2 pounds of
vanadium per ton, that the second contains 6, and the third contains 27.
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Then the quantities, x, y, and z, of steel produced must satisfy

2x+ 6y + 27z ≤ 10000.

This is a constraint equation, and there is a similar constraint for each of
the other resources. We also have the obvious constraints x ≥ 0, y ≥ 0,
and z ≥ 0.

The formulas 3x + 4y + 7z and 2x + 6y + 27z are what mathemati-
cians call linear functions. The linear objective function together with
all the linear constraints form what is called a linear program. (The
term “program” here is not related to computer programs.) Finding the
maximum of the objective function, subject to the constraints, is called
linear programming. The most common method of solution, known
as the simplex algorithm, was invented in 1947 by George Dantzig.8

Linear programming problems come up frequently in business and indus-
try, and these real problems can easily involve hundreds or thousands of
constraints. The computer programs that solve them save companies
millions of dollars every year.

9.2.3. Beyond Numbers. So far in this section, I’ve only talked
about numeric applications. Computers are good at number crunching.
That is, they can perform massive calculations involving large collections
of numbers. There is no shortage of numbers for processing. They are
generated copiously from a variety of sources: information collected from
people in surveys, digitally encoded pictures beamed back from satellites
and space probes, measurements from scientific instrumentation, data
produced by computer simulations such as those used in weather fore-
casting. All these numbers are churned and sifted by computer programs
to produce something that people will find more directly meaningful:
weather maps instead of columns of numbers, for example.

One way of extracting essential information from an unmanageable
mass of numbers is statistical analysis. A “statistic” can be character-
ized as a number or small set of numbers that summarizes some aspect
of a large set of data. A simple example would be the average of a list of
numbers; the average gives some indication of the general character of
the numbers, summarized in a single value. The average is more useful
when combined with the standard deviation, a statistic that indicates
how widely the numbers are scattered around their average value. This
only scratches the surface of statistics. Computer programs are available
that can perform many different types of statistical analysis.

8 See [Karloff] for a full mathematical treatment of linear programming.
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Still, a statistic is still a number. People are visual creatures, who
can understand pictures much more readily than numbers. At this, we
are much better than computers. In fact, sometimes the best way to find
the pattern or meaning in long column of numbers is to represent them
somehow as an image and show the image to some handy nearby human.

One example of this is computed axial tomography (CAT), a re-
markable technique that is used to make a kind of three-dimensional
X-ray, showing the full interior structure of a human body. Ordinary
X-rays are taken from various directions. The data from these X-rays,
converted into a set of numbers, are combined mathematically to pro-
duce a density measurement for each point in the interior of the body.
Those measurements can then be used to construct a three-dimensional
image, or any desired two-dimensional cross-section. CAT has proved to
be a valuable tool in medicine—one that would be impossible without
computers because of the large amount of computation involved.

Perhaps most exciting, though, are the images the computer shows us
of things that we could never see otherwise. When a computer simulates
a thunderstorm, it is manipulating numbers and mathematical equations.
But it is capable of rendering those numbers into an animation showing,
say, the air currents and temperatures in the evolving storm. Similarly,
a program that computes the interaction between two molecules might
display its results in a way that lets a scientist see how the molecules
fit together. The computer might show an exploding star, continents
drifting through eons of simulated geologic time, or strange forms defined
only by abstract mathematical formulas. This making visible of the
unseen is called visualization, and it is increasingly important as a
scientific tool.

9.3. Postscript: Analysis of Algorithms

Chapter 4 dealt with one aspect of the theory of computation: the fun-
damental limits that apply to all computers, even given unlimited time
and memory. It is important to know these limits, if only to keep you
from trying to program computers to do something that they can never
do. However, in real applications, time and memory often impose the
real limitations on what programmers and computer users can do. The
fact that a computer will eventually come up with the answer to a prob-
lem is not all that interesting if it will take it seven-and-a-half million
years to do so.
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So, there is another aspect of the theory of computation that studies
the questions: How long will this program take to run? And how much
memory will it need for storing intermediate results as it is running? The
field that deals with these issues is called analysis of algorithms.9

There is no general method that will answer these questions in all cases
(except for the rather unsatisfactory one of running the program and
finding out). But is often possible to analyze specific programs to obtain
information about their running times or memory requirements.

The analysis of running time generally has received more attention
than memory, and I will follow the same practice here. This is justified by
the fact that many programs of interest have relatively modest memory
requirements. Also, any program that uses extremely large amounts of
memory automatically requires a lot of time—if only to store data in all
the memory that it’s using.

9.3.1. Big-Oh and Complexity Classes. Most programs are
designed to process some type of input data. In general, the more data
a program has to process, the longer it takes to run. We can ask how
the running time of the program depends on the amount of data it must
process. As a simple example, consider a program that adds up a list
of numbers. The numbers are the input to the program. The computer
starts with zero and then reads each number in turn and adds it to
the sum. We would expect the computer to spend the same amount
of time processing each number, let’s say a seconds.10 If there are n
numbers, that’s a total of an seconds to process all the numbers. It
also spends a certain amount of time, say b seconds, performing tasks
that don’t depend on the size on the input, such as initializing the sum
to zero and printing out an answer. The total running time to add n
numbers, then, is an+ b seconds. (We would expect the constants a and
b to be very small, since computers can perform operations like addition
very quickly. It might be more appropriate to use a different measure
of running time than seconds, such as the number of machine-language
instructions executed as the program runs.)

9 Recall that an algorithm is just a step-by-step procedure for solving a
problem, guaranteed to terminate after a finite number of steps. It is essentially
a computer program, although it is more accurate to think of it as the idea
behind a computer program.

10 This is not necessarily true. For example, if the numbers are being read
from a file, the time it takes to read a number might depend on how many
digits are in the number. I will ignore such complications in this example. A
more rigorous general discussion is coming up in a few paragraphs.
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This analysis is fine, as far as it goes, but note that it doesn’t really
tell us the running time of the program unless we know the values of
the constants a and b. These constants, which measure the time it takes
for the computer to do certain operations, depend on the speed of the
particular computer we are using. Different computers could have wildly
different running times. All those computers, however, would still have in
common the general character of the relationship between the size of the
input and the running time, as expressed in the mathematical formula
an + b. In analysis of algorithms, at least as a first approximation, we
tend to study such relationships without worrying too much about the
particular values of constants like a and b.

Once we stop worrying about particular constants, we can almost
stop worrying about b entirely. As n—the size of input—increases, it
is the term “an” in the formula “an + b” that drives the corresponding
increase in running time. The “b” is less significant, and it becomes less
and less significant as n gets bigger and bigger. We think of the running
time as being of the form “some constant times n, plus some extra stuff,”
where the extra stuff becomes insignificant for large values of n. There
is even a notation that gives this informal idea a rigorous basis: We say
that the running time is O(n), pronounced “big-Oh of n.”11 Similarly,
we would say that the running time was O(n2) if it were of the form
“some constant times n2, plus some extra less significant stuff.”

More generally, let’s consider some particular program of interest.
We assume that the program is an “algorithm,” in the sense that it is
guaranteed to halt eventually, no matter what input data it is given.
We also assume that the program is to be run on some selected com-
puter which will be fixed throughout the whole discussion of running
time. If we change to a different computer, we could always find a pro-
gram that performs the same task (since all computers are equivalent,
as explained in Chapter 4), but the running times would be different.
Provided that we stick to standard computers of the sort described in
Chapter 5, though, the general form of the relationship between input
size and running time would be the same. The same might not be true if

11 More rigorously, if f(n) is a formula involving n, we say that the running
time is O(f(n)) if there is some constant c such that, at least for large values
of n, the running time is less than c times f(n). The restriction to large values
of n is a way of ignoring less significant terms, such as the b in an + b. Note
that O(f(n)) is an adjective, not a name for something. When we say that “the
running time is O(f(n)),” we are saying that the running time has a certain
property.
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we were to change to some radically different type of computing machine,
such as a Turing machine.

Another choice that we have to make is how to measure the size of
the input. If the program reads input data from a file, we could count
the number of characters in the file. This is a general definition of input
size that would work for any program. However, all the programs that
we will use as examples process lists of numbers, and so we adopt the
number of numbers in the list as a more natural measure of the input
size.

Now, in general, the running time of a program will depend not just
on the size of the input but also on the specific input data. So that we can
work with one definite value, we will consider the maximum running time
(on our selected computer) of the program on any input of size n. This
maximum value is called the worst-case running time of the program
on inputs of size n, since the actual running time on any particular input
of size n will be no worse than the maximum.12

With all these preliminary definitions out of the way, we come finally
to the main definition: Let f(n) be some formula involving n, such as
n2 or n or 3n. We define the time complexity class TIME(f(n)) to
be the set of all programs which have worst-case running times that
are O(f(n)). For example, a program is in TIME(n2) if its running time
on an input of size n is less than or equal to some constant times n2.13

Note that any quantity that is less than or equal to cn is automatically
less than the bigger number cn2. Therefore, any program that is in
the class TIME(n) is automatically in the class TIME(n2). However, the
converse is not true. There are many programs in TIME(n2) that are
not in TIME(n); such programs can be thought of as being strictly more
complex than programs in TIME(n). We could write down an infinite
chain of complexity classes, each class contained in the next and each
containing programs of strictly greater complexity. For example,

. . . , TIME(
√
n), TIME(n), TIME(n2),

TIME(n3), . . . , TIME(2n), TIME(3n), . . . .

It is desirable to have some idea in advance how long a program will
take to run. Therefore, it is a useful exercise to analyze a program to

12 It is also possible to study the average-case running time, which is
defined as the average of the running times on all possible inputs of size n.

13 If we wanted to deal with memory requirements instead of time, we would
define the space complexity class, SPACE(f(n)), in a similar way.
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determine its complexity class. This is a large part of what analysis of
algorithms is all about.

Now, suppose we have a program that performs some task. We could
always speed up the program by running it on a faster computer model.
However, this would only multiply the running time by a constant; it
would not change the complexity class of the program. We would do
better if we could find a different program, of strictly lower time com-
plexity, that performs the same task. If we do this, the savings in time
can be truly remarkable. To illustrate this, we look at two very standard
examples: searching and sorting.

9.3.2. Searching and Sorting. Let’s consider the problem of
searching for some particular item in a list. For example, we might
want to find a particular book in a list of all the books in a library.
Here, we will consider the abstract problem of searching for some par-
ticular number in a list of numbers. The numbers in the list will be
referred to as A[1], A[2], A[3], . . . , A[n]. (This is the notation for an
“array” of numbers as used in the programming language Pascal, which
was described in Chapter 8.) The number n here is the size of the
input.

Suppose that the number that we want to find is S. There is an
obvious method for searching for S in the list. First, check whether
S = A[1]. If so, then we are done; if not, then check whether S = A[2].
If not, then check A[3], and so on, until either S is found or the end of
the list is reached without finding S. In the worst case, there are n steps.
Since each step takes about the same amount of time, the running time
is O(n), and the program is in the complexity class TIME(n). If we have
no further information about the numbers in the list, this is about the
best we can do.

But suppose that the numbers in the list are sorted into increasing
order. That is, A[1] is less than or equal to A[2], which is less than or
equal to A[3], and so on. With this assumption, we can do much better
than O(n), using a method known as binary search.

Start by comparing S to the number in the middle of the list. S could
be less than that number, greater than it, or equal to it. If it is less,
then, since the list is sorted, we can deduce that S cannot occur after
the middle number in the list; we can eliminate the second half of the
list from further consideration. Similarly, if S is greater than the middle
number, we can eliminate the first half of the list from consideration. So,
in either case, we have cut the number of numbers still to be considered
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in half. (Of course, if S is equal to the middle number, we’ve gotten
lucky: We’ve already found S.)

This first step has reduced the size of the list we need to search
from n to n/2. Applying exactly the same method to the reduced list
(comparing S to its middle number) will eliminate half the remaining
numbers and reduce the size of the list we still need to consider to n/4.
The next step reduces the number further to n/8, then n/16, and so on.
This will go on until either we find S or we reduce the size of the list to
a single item.

The number of steps in this process is equal to the number of times
you can divide n by two before getting an answer less than or equal to
one. For large values of n, this number is much less than n—and the big-
ger n is, the more impressive the difference. For a list of a million items,
for example, binary search requires only 20 steps. Searching through a
million items one at a time would be infeasible even on a fast computer,
if it had to be done very often. Using binary search, the search time
becomes almost negligible in comparison.

The mathematical function that describes the running time of binary
search is written as log2(n), pronounced “logarithm, base 2, of n.”14

Thus, binary search is in the class TIME(log2(n)). Programs in this class
have running times that grow very slowly with the size of their input.

Binary search requires a sorted list of numbers. In general, lists
don’t automatically come in sorted order. However, since sorted lists are
often necessary, it’s a common operation to start with a list of items in
some unknown order and to rearrange them into an increasing sequence.
For example, this process, which is called sorting, is used to put a list
of names into alphabetical order. Sorting is another standard problem
where the right choice of algorithm can lead to huge savings is run time.

The obvious sorting algorithms are in the complexity class TIME(n2).
Since n2 grows fairly rapidly as n increases, these algorithms become
unacceptably slow even for reasonable values of n, such as n = 1000.
However, a better choice of algorithm comes to the rescue. The best
sorting algorithms are in the complexity class TIME(n · log2(n)), a vast
improvement over TIME(n2).

I will not discuss specific sorting algorithms here, but Figure 9.1 will
give you some idea of the magnitude of the improvement that can be

14 If n = 2k, a power of two, then this function is defined by log2(n) =
log2(2

k) = k. Notice that if you repeatedly divide 2k by 2, you get the sequence
2k, 2k−1, 2k−2, . . . , 1. This sequence has k steps.
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log2(n) n n · log2(n) n2

2 4 8 16
4 16 64 256
6 64 384 4096
8 256 2048 65536
10 1024 10240 1048576

13.3 10000 133000 100000000
16.6 100000 1660000 10000000000
19.9 1000000 19900000 1000000000000
29.9 1000000000 29900000000 1000000000000000000

Figure 9.1. A table showing how log2(n), n
2, and n · log2(n) grow as

n increases. (In the last four rows, an approximate value of log2(n) is
used.)

realized with the right choice of algorithm. When using this table to
compare running times, keep in mind that the running time involves
a constant factor that might affect the comparison. For example, the
running times might be something like 0.003 · n2 and 0.1 · n · log2(n),
rather than n2 and n · log2(n). In that case, the n2 algorithm would
actually be better for small values of n. But no matter what the constants
are, the n · log2(n) algorithm would always be better for large enough
values of n, and its advantage would continue to grow as n becomes
larger and larger.

9.3.3. The P=NP Problem. Beyond TIME(n2) are complexity
classes TIME(n3), TIME(n4), TIME(n5), and so forth, each class containing
all the previous classes in the list. An algorithm that is in any one of these
classes is called a polynomial-time algorithm.15 Thus, an algorithm
is a polynomial-time algorithm if there is a constant exponent k and
another constant c such that the running time of the algorithm on an
input of size n is less than cnk.

The class of problems that can be solved by polynomial-time algo-
rithms is called P. For example, the problem of sorting a list of numbers
is in P, since it can be solved by a program in the class TIME(n2). In
general, we can hope to solve problems in P in a reasonable length of
time, at least for moderate input sizes.

15 The variable n raised to a constant power, such as n2 or n17 is an example
of what is called in mathematics a “polynomial.”
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Now, there are certainly algorithms that are not polynomial-time.
Here is an example: Imagine a labyrinth of intersecting corridors in a
large building. The problem is to place guards at some of the intersec-
tions so that every corridor is under observation from at least one of its
endpoints, and we would like to do this with the smallest possible num-
ber of guards. Let’s take the number of intersections to be n, and use
n to measure the size of the input. The obvious algorithm for solving
this problem is to check all the possible ways of posting guards and to
select the one that requires the fewest guards while satisfying the require-
ment of covering all the corridors. Unfortunately, there are 2n different
possibilities to consider,16 so this algorithm requires 2n steps. Now, 2n

grows faster than nk for any constant exponent k, so our algorithm is
not polynomial-time.

Of course, this does not settle the question of whether or not the
corridor guard problem is in the class P. Just because one algorithm
for solving the problem is not polynomial-time, that doesn’t mean that
there isn’t a better algorithm for solving the same problem. We have
seen examples where choosing a different algorithm has yielded immense
savings in run-time. Perhaps the same thing could happen here. At this
time, however, no one knows whether this is possible; there is no known
algorithm for solving the corridor guard problem that is appreciably
better than checking each of the 2n different ways of posting guards.

In fact, this question brings us to the most famous unsolved prob-
lem in computer science today: the “P = NP” problem. NP refers
to the class of problems that are solvable by so-called nondetermin-
istic polynomial-time algorithms. What this means exactly is hard
to state in a simple way,17 but the corridor guard problem is a typi-
cal member of the class NP. Every polynomial-time algorithm is also
nondeterministic-polynomial-time, so that the class P is contained in the
class NP. The question is whether the reverse is true: Given any prob-
lem in the class NP, is it possible to find a polynomial-time algorithm to

16 Think back to Chapter 1: Code each intersection with a one if there is a
guard there, and with a zero if not. Since there are n intersections, when you
put the data for all the intersections together, you get an n-bit binary number.
There are 2n different n-bit binary numbers, and each one corresponds to a
different way of posting guards.

17 Roughly, the term “nondeterministic” means that the computer is allowed
to make random guesses during the execution of a program. A problem is in
the class NP if there is a chance that it will be solved in polynomial time, if the
computer happens to make just the right random guesses at the right times.
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solve it? No one has been able to answer this question yet, but the gen-
eral expectation is that there are “intrinsically hard” problems in NP,
including the corridor guard problem, that are not solvable in polynomial
time.

Is this a useful thing to know about? Well, in my case, there was
a time when knowing it would have saved me some embarrassment. A
mathematician friend of mine needed a program to solve a problem that
was, essentially, the corridor guard problem. But some computer scien-
tists told him it was “too hard.” I said, “Gee, I could write that program
easily,” and proceeded to do so. My friend was impressed—until we both
realized that the program would work only for small numbers of inter-
sections. Even for as few as 20 intersections, the program took too long
to be usable. It wasn’t writing the program that was hard; it was the
problem itself that was too hard for any known program! The point—the
whole point, really, of analyzing the running time of algorithms—is that
there are practical limits to what computers can do, as well as theoretical
ones. Which is just what started us on this whole discussion.

Chapter Summary

Word processing programs are used to produce documents that consist
mainly of text. Word processors are more than text editors; they deal
with complex text styles and formats and allow the inclusion of non-text
elements, such as tables and graphics. Therefore, the files used by word
processors contain complex data structures, not just simple sequences of
ASCII codes. Each word processor has its own file format, and knowledge
of that format is necessary to decode the information it contains. The
same is true for many types of application program.

Other applications that can be found on desktop computers include
spreadsheets, in which tables of numbers represent models of real world
problems; painting and drawing programs, which are used to produce
graphics images; database programs, in which large, structured collec-
tions of data can be stored, manipulated, and queried; and communica-
tion programs, such as terminal emulators that can be used to connect
one computer to another through a network or through a pair of modems.

Of course, there are still large-scale applications that consume pro-
cessing power on a scale beyond that available on the desktop. Weather
forecasting is an example of simulation where increased processing power
can increase the accuracy of the simulation and therefore of the forecast.
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Other computation-intensive applications include computed tomography,
scientific visualization, and optimization problems such as those that
arise in scheduling and resource allocation.

The question of practical applications of computing brings with it the
question of practical, as opposed to theoretical, limits on what computers
can do. The field of analysis of algorithms studies the running time
and memory requirements of programs. Sometimes, using a different
algorithm to solve a problem can dramatically reduce the time it takes
to solve it. Such savings go beyond what can be achieved merely by
speeding up the computer, since the percentage of time saved actually
grows with the size of the problem.

Questions

1. Try to think of a way that you could use a database program
(other than a mailing list). Describe the data that you would store in
the database and what you would do with that data. What sort of
operations would you want to perform on your data?

2. Why would it be easier to transmit text through a low-speed mo-
dem connection, rather than graphics? Can you make any suggestions
for dealing with the problem? That is, would there be any way of pro-
viding a reasonable graphical user interface through a fairly low-speed
connection?

3. The algorithm for searching through an unsorted list of numbers
is in complexity class TIME(n). Can you think of any other algorithms
in this complexity class? How would you characterize algorithms in
TIME(n)?
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Chapter 10

Cooperating Computers

NO AMOUNT OF COMPUTING power, it seems, is enough. Computers
become more powerful each year, but that doesn’t mean we need fewer of
them. On the contrary, the more computing resources that are available,
the more we seem to need. Each increase in power lets us do new things
that were previously impractical, and there always seem to be really
neat applications that are just waiting for the next ten-fold increase in
computer speed or ten-fold decrease in computer cost.

Aside from waiting for newer and faster machines, there are two ways
to increase the amount of processing power that can be brought to bear
on a problem. The first is to use a computer that can execute more than
one instruction at the same time. This is called parallel processing.
The second is to connect a number of computers together so that they
can communicate. A collection of communicating computers is called a
network ; when networked computers work together to solve a problem,
they are doing distributed processing.

Instead of a single central processing unit, parallel processing com-
puters have anywhere from two to thousands of processing units that
can perform separate computations. Distributed processing is similar,
except that the processing units happen to be in different machines.
This tends to make communication between the processing units slower
and less reliable, which in turn makes some of the techniques used in
parallel processing inappropriate. But still, we will consider distributed
processing to be one type of parallel processing.

295
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At one time, parallel processing was associated mainly with su-
percomputers—large, expensive machines that use multiple process-
ing units to achieve very high levels of raw computing power. But as
the prices of computers fall, parallel processing is turning up in smaller
computers and even in desktop models.

You can buy expansion cards that add parallel processing capability
to personal computers, equipping them with computing power that a
decade ago would have put them into the supercomputer class. And in
fact, the latest generation of personal computers is based on micropro-
cessors that actually incorporate a kind of parallelism on a single chip.

Furthermore, today’s computers are more and more likely to be con-
nected to networks, which range in size and complexity from two com-
puters wired together and sharing data, to the Internet, a world-wide
network that includes millions of computers. A networked computer can
tap into computing power and information that can be spread around a
room or throughout the world.

So, it seems, we must move beyond the image of an isolated CPU
working its way through a task step by step, from beginning to end.
Instead, we can imagine a “community” of processors working together.
In this chapter, we consider how computing devices can be made to
cooperate in this way.

10.1. Programming for Parallel Processing

When people work together on a project, it often seems that the actual
productive work takes second place to the organizational problems: di-
viding up the project into tasks, assigning tasks to individuals to keep
everyone busy, and making sure that things are done in the right order
when one part of the project depends on other parts.

Getting computers to work together is, if anything, harder. The same
organizational problems come up, and—as always when dealing with
computers—the solutions must be spelled out in full detail. Some of the
details are taken care of by operating systems and specialized compilers,
but much of the work is left to the programmer, and programming for
parallel processing can be very different from standard programming.

However, different doesn’t necessarily mean bad. Recall the discus-
sion of abstraction from Chapter 8. An abstraction is, more or less, an
idea that a programmer has for solving a problem. That abstraction
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must be encoded into some specific programming language. This en-
coding will be easiest when the language offers support for the specific
abstraction the programmer has in mind. Now, sometimes that abstrac-
tion might involve parallel processing in a natural way. In that case, it
will be easiest to encode the abstraction in a programming language that
offers explicit support for parallel processing abstractions.

The main abstraction needed for parallel processing is the process.
In Chapter 5, a process was defined as the sequence of steps a computer
goes through as it executes a program. A standard computer can execute
only one process at a time. To deal with parallel processing, we generalize
this to allow several processes to be going on at the same time.

As a simple example, consider a networked computer game program
that supports several users playing against each other, with each player
at a different computer on a network. A programmer designing such a
program might well imagine a separate process for each user. Each pro-
cess would handle the interaction with one user—detecting keystrokes,
updating the screen and so forth—and it would communicate with the
other processes when necessary. Players could easily be added to the
game by creating new processes for them, or removed from the game by
terminating their processes.

Once the program is conceived in this way, it can be most easily pro-
grammed in a language that supports some kind of “process abstraction.”
It should be possible to create and terminate processes that will all be
executed simultaneously, and it should be possible for those processes to
communicate in some way. Although interprocess communication might
offer some difficulty, the programmer’s design can be expressed most
easily with such a process abstraction. Without it, the programmer
would be forced to somehow weave the separate processes into the single
thread of a standard process; this would probably be difficult, and the
programmer’s beautifully clear design would disappear into a clutter of
implementation details.

Among major languages, the programming language Ada offers the
most direct support for process abstractions of this type. Ada allows
programmers to declare tasks. A task is similar to a subroutine with
the following difference: When a program calls a subroutine, the ex-
ecution of the program is suspended until the subroutine has finished
executing; when a program starts a task, both the program and the task
continue to execute simultaneously. A program can start many tasks, all
of which can execute at the same time. These tasks can communicate
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by a mechanism called message passing, in which data is passed from
one task to another.

Now here is a curious thing: Although Ada supports the creation
of multiple processes to be executed simultaneously, Ada programs do
not have to be executed on parallel-processing computers. As we saw
in Chapter 5, a standard single-processor computer can use a technique
called timesharing to simulate parallel processing. In timesharing, the
single processor shifts its attention rapidly from one process to another,
giving the illusion that all the processes are being executed simultane-
ously. In effect, the processes are being weaved into a single thread,
but this is done automatically by the computer rather than laboriously
by the programmer. In fact, the programmer doesn’t have to know or
care whether the program will be run using real or simulated parallel
processing—this is just an implementation detail that is hidden by the
abstraction.

The point here is that the ideas of parallel processing can be useful
programming tools, even for writing programs that will be run on stan-
dard computers. Some problems can be solved more easily and more
naturally using such tools than in any other way.

In the remainder of this section, we will look at some specific examples
of problems that can be solved using parallel processing abstractions.
In this discussion, I will use an extension of the xTurtle programming
language that was used in Chapters 6 and 7. This extension allows the
creation of processes and provides some basic support for communication
among those processes. Keep in mind that it doesn’t matter whether
the processes are really executed by separate processors or by a single
processor using timesharing. In this section, it is the parallel processing
“mind-set” that is important.

10.1.1. Parallel Processing in xTurtle. A standard program in
xTurtle consists of a sequence of commands that the computer executes
one after another in a single stream. There can be loops and decisions
that cause parts of the program to be skipped or to be executed more
than once, but at any given time, only one thing is going on.

Most instructions in an xTurtle program tell the computer to do
something with the turtle, such as rotate it in place or move it forward.
Although the turtle is just a bunch of pixels drawn on the screen, it is
easy to imagine that it is the turtle itself that is reading the instructions
and carrying them out. That is, it is easy to think of the turtle as a
kind of processor that can execute a program. In fact, this point of
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view will make it much easier to think about adding parallel processing
capabilities to the xTurtle language: All we have to do is provide some
way to create new turtles, and allow each turtle to execute a different
sequence of instructions.

This new feature is provided by a built-in subroutine called fork,
which tells a turtle to split into several copies of itself. For example, after
the command fork(2) is executed, there will be two turtles where before
there was only one. The parameter—2 in this example—determines how
many copies there will be. Fork(3) will split the turtle into three copies,
fork(4) into four copies, and so forth. After the command is executed, all
the copies will continue to execute instructions, simultaneously and inde-
pendently. They are, in effect, separate processors, running in parallel.
For example, consider the short program

fork(36)
forward(5)

The first command splits the turtle into thirty-six copies. Then, each
turtle goes on to execute the second command, which tells it to draw a
line five units long.

Unfortunately, in this example the thirty-six turtles draw thirty-six
identical lines, all on top of each other! This is parallel processing of a
sort, but not very interesting. We need some way to make the turtles
execute different instructions. This is made possible by a predefined
variable called ForkNumber. After a fork command, each of the turtles
will have a different ForkNumber. The value will be 1 for the first turtle,
2 for the second, 3 for the third, and so on. This is the only thing that
distinguishes among the copies. Consider the program

fork(36)
turn(10 ∗ ForkNumber)
forward(5)

The first command produces thirty-six turtles which are identical except
for their ForkNumbers. When these turtles execute the second command,
each will perform a different action.

For the first turtle, ForkNumber is 1, and when it executes the com-
mand turn(10 ∗ ForkNumber), it rotates 10 degrees. The second turtle,
with a ForkNumber of 2, rotates 20 degrees. The third rotates 30 de-
grees. And so on, up to the thirty-sixth turtle, which rotates through
a full 360 degrees. At this point, the turtles are facing in thirty-six
different directions. Each turtle then goes on to execute the same in-
struction, forward(5), but since they are facing in different directions,
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each turtle draws a different line. The result is a picture with thirty-six
lines radiating out from a central point.

In fact, the picture drawn by this three-line parallel processing pro-
gram is the same as the picture shown in Figure 6.3. For Figure 6.3, the
drawing was done with a loop, which draws the thirty-six lines in the
picture one-by-one. That program was three times as long as the par-
allel processing version, and probably more difficult to write. Even this
simple example shows the value of parallel processing as a programming
tool.

The fork command makes it possible to do more than draw a large
number of lines with one command. In fact, it is possible to use it to
perform any tasks whatsoever in parallel. Suppose, for example, that you
have two tasks that you want your program to perform simultaneously.
Then your program can have the form:

fork(2)

if ForkNumber = 1 then
... { instructions for first task }

else
... { instructions for second task }

end if

The fork command creates two turtles. Each of these goes on to test
the condition “if ForkNumber = 1.” The first turtle, whose ForkNumber
is 1, finds that this condition is true and so it goes on to execute the
first task. At the same time, the second turtle, which has a ForkNumber
of 2, finds that the condition is false, so it goes on to execute the second
task instead. This example shows that fork is really a general-purpose
command for creating processes.

A more interesting sample program is shown in Figure 10.1. This
program uses thirty turtles to draw thirty eight-sided polygons, arranged
into three rows of ten. The result is a pattern that looks something like
bathroom tiles.1 Note that the program contains two fork commands.
The first divides the original turtle into ten copies. When these copies
execute the command forward(size ∗ ForkNumber), each copy moves

1 Thanks to my colleague, Kevin Mitchell, for this example. Kevin is inter-
ested in the mathematics of this type of repetitive pattern, known in general as
“tilings.” He pointed out that the fork command in xTurtle makes them easy
to draw.
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declare size { width (also height) of polygon }
size := 1 + sqrt(2) { some math you can ignore }
PenUp
fork(10) { create ten turtles }
forward(size ∗ ForkNumber) { spread out horizontally}
fork(3) { each turtle splits into three copies }
face(90)
forward(size ∗ ForkNumber) { spread out vertically }
face(0)
PenDown

declare count { now, draw a polygon }
count := 0
loop
forward(1) turn(45) { draw a side }
count := count + 1
exit if count = 8 { stop after eighth side }

end loop

Figure 10.1. An xTurtle program that uses parallel processing to draw
a picture containing thirty eight-sided polygons. The complete picture
drawn by the program is shown above the program. Below the program
is a snapshot taken while the program was being executed. Each of the
thirty turtles (shown as small triangles) is drawing one of the polygons.

forward by a different amount. This spreads the turtles out along a hor-
izontal line. Then, each of the ten turtles executes the fork(3) command
and splits into three copies. These copies then spread out vertically.
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(Note that after the second fork command, ForkNumber refers to the
most recent fork ; the number from the first fork is lost.)

Once the thirty turtles are in position, each one draws an eight-
sided polygon. These polygons are drawn simultaneously, but, as the
snapshot in Figure 10.1 shows, they are not necessarily drawn at the
same speed. Some of the turtles execute instructions faster than others,
so that some might draw an entire polygon while others have drawn only
a few sides. This difference in execution speed is not very important here,
but as you can imagine, it becomes very important when processes have
to communicate with each other. One process can make no assumptions
about what another process is doing at any given time; the second process
might be at any one of a number of points in the sequence of instructions
it is executing.

10.1.2. Shared Variables. There is another subtle point in the ex-
ample in Figure 10.1, having to do with the variables size and count. The
variable count is declared after all the turtles have been created. This
means that each turtle creates its own count variable. This is important
because each turtle must count off the sides of its own polygon, so each
must have a separate variable to do the counting. The variable size, on
the other hand, is declared at the beginning of the program, while there
is only one turtle. This means that there is only one copy of this variable,
and that copy is shared by all the turtles.2 The value of size is shared
data, available to all the turtles. Shared data provides a somewhat prim-
itive method for communication among the turtles: If one turtle changes
the value of size, other turtles will be able to read the new value.

In the example, there is really no communication among the pro-
cesses. Each turtle draws its polygon without reference to what the
other turtles are doing. This is a very simple type of parallel processing.
Things get more interesting and more difficult when processes are less
independent. Consider an analogy to building houses: If three people
want to build three houses, one way to do it would be to have one person
build each house. The builders would be operating in parallel, but they
would be completely independent, and there would be no need for them
to communicate. They would be like the thirty turtles in the example,
each drawing a separate polygon.

2 This was a decision that was made when the xTurtle language was de-
signed. The language could easily have been designed so that when a turtle is
copied, all existing variables are copied as well. In that case, however, a different
method would have to be provided for communication among the turtles.
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However, this method is useless if the three builders want to work
together to build a single house. In that case the tasks that the builders
perform are not independent, and they have to communicate—with each
other or with a supervisor—to see that all the tasks (walls, floors, wiring,
plumbing, . . . ) get done in the right order.

Let’s look at a simple example of interdependent tasks in xTurtle.
Consider the somewhat silly program:

declare sum
sum := 0
fork(3)
sum := sum + ForkNumber

The variable sum is shared by three turtles. Each turtle, it seems, adds
a number to this sum. The numbers added are 1, by the first turtle,
2, by the second, and 3, by the third. When the program ends, it seems
that the value of sum should be 6. As it turns out, though, the value
could be any number between 1 and 6!

The problem is that the command “sum := sum + ForkNumber”
is actually executed as a sequence of three steps: (1) Get the value of
sum; (2) Add ForkNumber to it; (3) Store the answer in the variable
sum. Each of the three turtles executes these three steps, for a total of
nine operations. The final value of sum depends on the order in which
these nine operations are actually performed. Let’s suppose that each
turtle executes step (1) at about the same time. Then each turtle will
read the same value: zero, which was originally stored in sum. Adding
ForkNumber to this will give the answer 1, 2, or 3. Each of these answers
will be stored into sum; the final value of sum will depend on which of
the store operations happens to be performed last.

We need a way of letting a process take control of the shared variable
sum for the whole time it takes to perform the entire instruction “sum
:= sum + ForkNumber.” In xTurtle, this facility is provided by a grab
command. For example:

declare sum
sum := 0
fork(3)
grab sum then
sum := sum + ForkNumber

end grab

The turtle that first executes the grab command has exclusive access to
sum until it releases that variable by executing the end grab. If a second
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turtle tries to grab sum while the first turtle is using it, it will be forced
to wait until the first turtle releases the variable. So in this example,
each turtle grabs sum in turn and correctly adds its ForkNumber to it.
The final value of sum will be 6.

A sequence of commands between grab and end grab form what is
called a critical region, that is, a section of a program where a process
needs exclusive use of a shared variable. Critical regions provide mutual
exclusion of processes: It is not possible for two processes to be in
critical regions associated to the same variable at the same time.3 Mutual
exclusion is an important consideration whenever processes communicate
by using shared variables.

The sample program that adds 1 plus 2 plus 3 is a silly example
because the turtles don’t really do anything significant in parallel: The
grab command forces them to do the three additions in sequence. It
would make more sense if, instead of just adding ForkNumber to sum,
each turtle had to do some long computation to produce a number that
would then be added to sum. The computations of the turtles could
proceed in parallel, and the grab command would ensure that all the
results were correctly added to the sum.

Controlling access to shared data is important in more realistic exam-
ples, too. Consider an airline reservation system used by several travel
agents to book seats on a certain flight. Suppose that, at the same mo-
ment, two agents are performing the sequence of operations: (1) Check
whether any seat is available; (2) If so, reserve the seat. If the shared
data—that is, information about which seats have been booked—is not
protected in some way against simultaneous use, it can happen that the
same seat is reserved for two different customers. Or consider a program
in which the shared data is the amount of money in your savings ac-
count. Suppose you and a friend, working at different automatic teller
machines, each withdraw $100 from the account at the same moment,
and that a process running on each machine records the withdrawal by
executing the instruction “amount = amount − 100.” Without mutual
exclusion, it might happen that only $100 is effectively subtracted from
your account, instead of the correct $200—something that you might

3 Note that for this to work, all the processes that use the variables must
restrict such use to critical regions. There is no way to stop a process from
changing the value of the variable without first “grabbing” it, even though such
badly behaved processes could cause serious and hard-to-fix errors in a program.
Communication by message passing, as described later in the chapter, provides
a safer method of communication between processes.
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find perfectly OK, but that would probably cause the bank to fire its
programmers.

10.2. Multiprocessing Computers

The previous section showed how some problems can be solved more
easily or more naturally in a programming language that includes parallel
processing abstractions. As far as programming goes, it doesn’t matter
whether multiple processes are really being executed at the same time,
or if instead their parallelism is being simulated using timesharing.

But the major advantage of parallel processing—increased computa-
tion speed—can only be realized when two or more processors really do
work on a problem at the same time. In this section, we consider how
computers with multiple processing units make such actual parallelism
possible.

10.2.1. SISD, SIMD, and MIMD. A standard von Neumann
machine, with a single central processing unit and a single data path be-
tween memory and CPU, is said to be an SISD, or “single instruction,
single data,” machine. For parallel processing, we need a multipro-
cessing computer, one that has multiple processors that can perform
separate computations simultaneously. There are many variations on
how such a machine can work, but they can be classified into two broad
types, SIMD (“single instruction, multiple data”) and MIMD (“multi-
ple instruction, multiple data”). Most of this chapter deals with MIMD,
which is the most general type of parallelism, but SIMD is also very
important.

SIMD is a relatively simple type of parallelism in which all the pro-
cessing units in the computer execute the same instruction at the same
time.4 As an analogy, think of all the rowers in a boat pulling on their
oars in lockstep. Such parallelism is useful because each of the proces-
sors can be working with different data (the oars in the analogy). For
example, suppose that each number in a list of numbers is to be multi-
plied by two. This operation could be done in a single step on a SIMD
computer: Each of the processors would operate on one of the numbers

4 I should say, all the active processing units, because not all the process-
ing units are necessarily used during every step of the computation. This is
important for the programming of SIMD computers, but need not concern us
here.
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in the list. More generally, SIMD computers are good at manipulating
lists and matrices of numbers. (A matrix is a just rectangular grid of
numbers laid out in rows and columns.) Such data structures turn out
to be very important in many applications that require large amounts
of computation, such as weather forecasting and linear programming.
(See Chapter 9.) And, in fact, the supercomputers with the greatest raw
number-crunching power today are probably SIMD computers working
on such applications.

We can consider SIMD a special case of parallelism in which all the
processors execute the same sequence of instructions. If we relax this
restriction so that different processors can execute different instructions,
we get MIMD. It is in this context that the idea of multiple processes
makes the most sense, since each processing unit can execute a different
process. MIMD is required for problems that are more like building a
house than like rowing a boat, problems where there is a variety of very
different tasks to be executed in parallel.

Distributed computing—where the processing units are in separate
computers on a network—is a kind of MIMD. Even when the processors
are in a single MIMD computer, the individual processors must be so-
phisticated enough to independently execute a sequence of instructions.
So each processor is really an almost complete computer, and MIMD
computers have more in common with computer networks than with
SIMD computers.

10.2.2. Control and Communication. For any type of paral-
lelism, there are issues of control and communication. How is it decided
what should be done and when? How does information, such as the result
of a computation, get from one processor to another? These questions
can be answered partly in terms of the computer hardware itself, partly
in terms of the program that the computer is running, and partly in
terms of the operating system (the basic software that is always present
on the computer and that manages its basic functions). In some sense,
of course, the program controls everything that goes on in the computer,
but it can only do this by using facilities provided by the hardware and
the operating system.

First, let’s look a little more closely at how a parallel computer might
be physically put together. A parallel computer has much in common
with a standard computer. Programs are executed by a circuit that
reads instructions from memory and carries them out. In a SIMD com-
puter, this is done by a single circuit that drives all the processors; in
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a MIMD computer, each processor has its own circuit. Two types of
memory are possible: shared memory that can be used by all the proces-
sors, and internal memory in the individual processors; both types might
be found in the same computer. Shared memory, as we have seen, pro-
vides one method of communication between processors, but it requires
careful management because of the possibility of simultaneous access by
several processors. Internal memory is generally simpler and faster, but
when it is used exclusively some other method of communication must
be provided. On the hardware level, communication is provided by a
connecting wire through which data can be transmitted.

There are many different ways that a bunch of processors can be
wired together to provide communication. The two most obvious are:
(1) Connect all the processors in a chain where each processor communi-
cates with two neighbors, or (2) Connect every possible pair of processors
directly. (See Figure 10.2.) In the first case, data must be relayed from
one processor to another along the chain of connections until it reaches
its destination. Except when the number of processors is very small,
this slows down communication unacceptably.5 The second method pro-
vides the fastest possible communication, since any processor can freely
communicate with any other at any time. Unfortunately, this method is
also impractical when the number of processors is large, because of the
extremely large number of wires required.

A compromise is to provide direct connections only between certain
pairs of processors. Processors that are not connected directly can still
communicate, but the data must be relayed through a series of processors
along a chain of direct connections. One neat way of organizing the net-
work of connections is called a hypercube.6 In a hypercube, the number

5 A similar simple solution would be to connect all the processors to the
same wire, so that any processor can communicate with any other along this
wire. This connection method is called a “bus.” (See Chapter 5.) This method
is also unacceptably slow for large numbers of processors because the bus is a
shared resource: A processor that wants to transmit data must gain exclusive
use of the wire, and all the other processors must wait until it has finished its
transmission before they can do any communication. Note that this is similar
to the problem of shared data, which was discussed above. Because of its
simplicity, this communication method is used on many computer networks,
such as the Ethernet and LocalTalk networks that are mentioned below.

6 The structure of a connected network of processors or computers is called
its topology, a term borrowed from mathematics. Thus, you will see the hy-
percube referred to as a “network topology.” The term “hypercube” itself is
also borrowed from mathematics. In a hypercube with eight processors, the
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of processors must be a power of two, that is, 2n for some number n. A
small hypercube might contain eight or sixteen processors, but there are
hypercube computers with as many as 65,536—that is, 216—processors.
In a hypercube, there is a simple rule that decides which pairs of proces-
sors are connected. The processors are numbered 0, 1, 2, 3 . . . , and the
numbers are written out in the binary number system. Two processors
are connected if their binary numbers differ in exactly one bit. For ex-
ample, there is a connection between the processors numbered 10102 and
11102, since the only difference between the two numbers is the second
bit from the left. Even though not all processors are directly connected
in a hypercube, there is always a reasonably short chain of connections
leading from one processor to any other. In fact, as you can easily check,
in a hypercube with 2n processors, the longest chain that is ever needed
will contain only n processors. A hypercube with eight processors is
illustrated in Figure 10.2.

It might seem that in order to control all this hardware, the operating
system for a parallel computer would have to be much more complicated
than one for a standard computer. And highly specialized computers
might indeed require highly specialized operating systems. The fact is,
though, that much of the support for parallel computing, at least of the
MIMD variety, was built into operating systems before parallel comput-
ers were ever used. Recall that timesharing was invented to allow several
users to use a computer at the same time. Each user has an associated
process, and the computer gives each user a share of its time by switch-
ing rapidly from one process to another. It is the operating system that
has the job of creating a process for each user who “logs on” to the com-
puter, for terminating a user’s process when that user “logs off,” and for
scheduling all the processes so that each gets a fair share of execution
time. The operating system also contains facilities for managing access
to resources that are shared by all the users, such as the computer’s main
memory and output devices such as printers.

A simple extension of the idea of timesharing for multiple users is to
allow a single user to have more than one process. A user might create—
that is, give a command to the operating system to create—a process

connecting wires can be thought of as the edges of an ordinary cube, as shown
in Figure 10.2. For larger networks, the connections correspond to edges in
cube-like objects that exist in “higher-dimensional spaces.” But let’s leave the
metaphysics of extra dimensions to a math class. What we are interested in
here is just the pattern of connections.
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Figure 10.2. Various ways of connecting eight processors so that they
can all communicate. The processors are represented by small dots.
On the top left, a single chain of connections includes all the proces-
sors. On the top right, there is a direct connection between every possi-
ble pair of processors. The bottom left shows a “hypercube.” The pro-
cessors in the hypercube are labeled with binary numbers from 0002 to
1112; two processors are connected if their binary numbers are the same
except for exactly one bit. The picture on the bottom right is the same
hypercube, with the nodes repositioned to show how the processors can
be thought of as forming a cube.

to handle a task such as printing a document while the user continues
to work on something else. Or a user might run a program that creates
several processes to handle different tasks. All this is so convenient that
the capability to support multiple processes is now commonly found in
operating systems meant for a single user.

The point, of course, is that it is not a great step from multiple pro-
cesses sharing a single processing unit to multiple processes running on
multiple processors. Some things do become more difficult; in partic-
ular, when several processes are really running at the same time, the
management of shared resources such as memory requires greater care.
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But the problems of creating, terminating, and scheduling processes for
execution are not greatly changed. Even timesharing remains as an issue
for the following simple reason: A multiprocessing computer has only a
fixed number of processors. If more processes are created than there are
processors available to execute them, then timesharing can be used to
divide processing time fairly among them.

Many newer operating systems are designed to work with any number
of processors, scheduling processes for execution on whatever processors
are available. (See, for example, [Custer].) Adding more processors to a
computer running such an operating system will speed it up by allowing
more things to be done in parallel, but will not otherwise affect the way
the computer is programmed or used. This is one strategy in the quest
to produce ever-faster computers.

10.3. Computer Networks

The days of the isolated computer seem to be numbered. A computer
today is likely to be just one of many nodes on a network. This is
especially true for computers in business, educational, and governmental
organizations. But it is increasingly true even for home computers, if
only for the few hours a week that a home computer might be connected
by telephone to a network.

It is true that networks do allow computers to cooperatively solve
problems through distributed computing. But for most people, networks
exist to allow them, not their computers, to communicate. A networked
computer can provide some of the same functions as telephones, tele-
vision, libraries, and the post office—and in the future it might well
replace or merge with these services. This emergence of the computer as
a communication tool is one of the surprises of the information age.

10.3.1. Protocols and Internets. Making a working computer
network requires more than just laying down a wire and connecting some
computers to it. First of all, there has to be an agreement about exactly
how data will be transmitted. Such an agreement is called a protocol.
A protocol is a specification of procedures to be followed for communi-
cation, such as the way that transmitted data will be represented or the
method for specifying which machine on a network is to receive the data.

When computers communicate over a network, there are usually not
just one but many protocols involved. Networks are complex things, and
that complexity is handled—as usual—by multiple levels of structure.
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Each level can have its own protocol, and protocols on higher levels
build upon those on lower levels. From this point of view, a protocol is an
interface to a black box. The protocol specifies the functions that must be
implemented by the black box, but the details of that implementation are
irrelevant from the point of view of the higher levels that use the protocol.

As an example, we consider some of the layers of protocols that are
used in a typical network operation: transferring a data file from one
computer to another. Let’s assume that a person using one computer
wants to copy a file from another computer, and that the method avail-
able for doing so is the high-level protocol called FTP, or File Transfer
Protocol. FTP includes methods for opening a connection between two
computers, for getting a list of files on the second machine, and for copy-
ing files from either machine to the other. Keep in mind that all these
operations are implemented using lower-level protocols. But all that an
FTP user sees is the set of commands needed to do file transfers.

FTP could be used on any network, provided that software is avail-
able that implements it on that network. But it is most closely associated
with a network protocol called TCP/IP. TCP/IP is actually two pro-
tocols: the Transfer Control Protocol and the Internet Protocol. TCP
works on a higher level than IP, and could in fact be used with a different
low-level protocol. It is the job of TCP to get a collection of bits from
one computer to another computer—more exactly, from a program run-
ning on one computer to a program running on the second. TCP knows
nothing about the meaning of those bits; it is the job of the programs
to interpret them. TCP also knows nothing about actually moving the
data from machine to machine; that is the job of IP. The job of TCP is
to supervise the transmission of a chunk of data and to make sure that it
is received without error. (IP makes what is called a “best attempt” to
deliver the data without error to its destination, but it is not guaranteed
to succeed. TCP must detect any problems and fix them, for example,
by retransmission.)

In our example, an FTP program takes a file (or a command or a list
of file names) and delivers it as a sequence of bits to TCP. TCP then
uses IP to transmit the bits. Since IP deals with “data packets” of a
limited size, TCP will probably have to break the file into segments and
have IP transmit the segments separately. The segments are received by
IP software running on the second computer; they are passed on to TCP,
which reassembles them into a single chunk of data and passes it on to
FTP software which, finally, interprets it as a file being transmitted from
the first computer.
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Figure 10.3. Part of an internet—that is, a network formed by con-
necting two or more different kinds of networks together. Several com-
puters are shown connected to an Ethernet network and a LocalTalk
network, and the two networks are joined by a gateway. At the upper
left is an expanded view of a computer, showing the interface that phys-
ically connects the computer to the net and several layers of software
that might lie between the physical network and a person using the com-
puter.

This is already a complicated story, but it doesn’t stop there. IP is
not at the bottom level of complexity. IP has to use some kind of actual
physical link, such as a wire, to transmit the data. There are at least
two more levels here: On the bottommost level are the physical elec-
tric signals that represent the data and a physical transport protocol
that specifies how such signals are to be sent; the physical transport
protocol is implemented in a hardware interface device that connects a
computer to a network. Finally, between IP and the physical hardware
is at least one more level of software, a “device driver” that is used by
IP to communicate with and control the network interface device.

On the physical level, there are a number of different types of net-
work, each using a different protocol for data transmission. For example,
Ethernet is one popular type of physical network. On an Ethernet net-
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work, several computers and other devices are connected to an Ethernet
cable. Any computer on the cable can send data to any other, but only
one computer can transmit at any given time. Because of this limitation,
together with the fact that data can be reliably transmitted only over
fairly short Ethernet cables, a single Ethernet network has to be fairly
small—a few dozen machines at most. There are other types of net-
works, such as the LocalTalk networks that are often used by Macintosh
computers, but all are limited to a fairly small number of machines.

Fortunately, it is possible to connect a number of small networks
together to form a larger network. For example, two Ethernet networks
can be connected by a router. The router has a connection to each
network. When a computer on one network wants to send data to a
computer on the other network, it sends the data to the router, which
uses its connection to the second network to forward the data on to its
specified destination.

It is often necessary to establish communication between two com-
puters that are on completely different types of networks. It is possible
to connect networks of different types with a gateway. A gateway be-
tween two networks has a separate connection to each network, and it
runs software that allows it to understand the protocols used on both
networks and to translate between them. This allows data to flow in
both directions between the networks. The result of hooking up two or
more networks with gateways is called an internet. The Internet Pro-
tocol, IP, is designed to get data from place to place across an internet,
through as many routers and gateways as necessary. It is so effective
at this that it can route data throughout the Internet (capital “I”), a
world-wide TCP/IP internet that connects millions of computers on tens
of thousands of individual networks.

A fragment of an internet (perhaps of the Internet?) is shown in
Figure 10.3. This figure shows two networks, connected by a gateway.
Any two computers on this internet can communicate, for example, to
transfer files using FTP.

Each computer on an IP-based internet has an IP address, which is
just a thirty-two bit number that must be different for every device on
the internet. Every data packet handled by IP includes the address of the
machine to which it is being sent. A computer that sends a data packet
needs to know only the IP address of the destination. It does not need to
know where the destination machine actually is physically—whether in
the next room or in Paris—and it doesn’t need to know the complicated
path that the data packet must follow through the net to get to its



314 Chapter 10. Cooperating Computers

destination. All that is handled by IP. All in all, IP is a great example of
a “black box” that hides a lot of implementation detail behind a fairly
simple interface. The same can be said about most of the hardware and
software components that make the complexity of computer networks
possible.

10.3.2. Distributed Computing. Networks provide the basis for
distributed computing, in which processes running on several machines
on a network cooperate in performing some task. The network is used as
a black box for getting bits from one place to another, just as described
above. But in this case, the bits sent from process to process represent
the communication necessary for parallel processing.

In a sense, anything that involves two or more computers on a net-
work is a type of distributed computing. For example, in an FTP file
transfer, two processes—FTP software running on the two computers
involved—cooperate to perform a task—copying a file from one com-
puter to the other. The communication in this case consists of, first, a
request for the file and, second, the file that is sent in response.

A similar model of communication can be used in more interesting
examples of distributed processing: A process running on one machine
sends some sort of request to a process on another machine and, possibly,
gets back some sort of reply. This type of communication is called mes-
sage passing. A message consists of a request to perform some task,
along with whatever data is necessary for the task. When a process re-
ceives a message, it responds by executing the appropriate procedure. If
that procedure generates some response, that response is sent back to
the process that sent the original message.7 Note that the process that
sends the message does not necessarily have to wait, doing nothing, for
a response; for real parallelism, it should go on working while the second
process is handling the message.

The idea of message passing leads naturally to a form of distributed
processing in which a “master” program on one machine sends messages
to processes on other computers, asking them to perform various tasks.

7 Distributed computing often uses a method called remote procedure call
for communication. This is essentially the same as message passing. A process
running on one machine calls a procedure (that is, a subroutine), but that
procedure is actually executed on another computer. The parameters of the
procedure can be used to transfer any data needed by the procedure and to
return any result produced. This differs from message passing only in point of
view: We might just as well say that one machine sends another the message,
“Please execute such-and-such a procedure.”
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All these other processes just sit around waiting for incoming messages
and responding to them as they come in. If a large computation can be
broken down into independent tasks, the master program can hand off
pieces of the computation to be done in parallel on other machines. For
example, there is a method for computing realistic computer graphics
images in which the color of each pixel in the image is computed sepa-
rately. A program that wants to compute an image in this way can ask
other machines on the network to work on different sets of pixels, and
can then assemble the results returned by those machines into a com-
plete picture. In fact, there are commercial computer graphics programs
that work in just this way.

In a similar sort of application, we might imagine a small desktop
computer connected to the same network as a supercomputer. The desk-
top computer might be able to handle most of its user’s commands itself,
but if the user tells it to perform some massive computation, it might
send a message to the supercomputer asking it to perform the computa-
tion instead. The user might get back an answer in a matter of seconds
instead of the days it would have taken the desktop computer to do the
computation on its own. The resources of the supercomputer can be
shared in this way by all the smaller computers on the network.

As a final example of distributed computing, I should mention dis-
tributed databases. A database is a collection of data, together with
procedures for such operations as adding, deleting, and modifying data
and searching through the data for specific information. In a distributed
data base, data is spread over many computers on a network. For exam-
ple, a bank might have several branch offices, and a network to connect
the computers at the various branches. The bank could keep all its data
on one large central computer, but if there are problems with that com-
puter or with the network, all the branches will be cut off from the data
they need to operate. If the bank uses a distributed database instead,
each branch can keep its own data—such as information about the ac-
counts of customers of that branch—on its own computer. The data,
then, is closest to where it is needed most often and will be available
unless that particular computer stops working. Yet, because of the net-
work, the data can (if everything is working) be accessed from the other
branches when it is needed.

To implement a distributed database, we might run a process on
each computer to control the data on that computer. When a process
needs to access data on another machine, it can do so by sending a
message to the process on that machine. These processes might respond
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to messages such as, “Tell me Joe Smith’s account balance,” “Send me a
list of customers with more than $10,000 in their accounts,” and “Record
a withdrawal of $100 from Mary Jones’ account.”

10.3.3. The Internet. A bank’s distributed database might be
spread out over dozens of machines in several different cities or even
in different states, and it would probably include many different kinds
of financial information. This would probably be considered a fairly
complex system. What, then, should we think of the Internet, with its
millions of machines containing information on just about any topic you
could name, and with very little overall control to keep things organized?

The Internet can, in theory, be used for distributed computing of any
type, such as sending out pieces of a large computation to be done on
a number of different machines. For example, in one research project,
computers all over the Internet cooperated to help find the factors of a
very large number.8 But for most people, the Internet provides commu-
nication and information, both on a large scale. Here are some of the
services you might find9 on a computer connected to the Internet:

•Electronic mail, usually called e-mail, lets a user on one computer
send a message to a specific user on another machine. The message will
be waiting to be read the next time the recipient uses that machine.

•USENET News is a collection of several thousand “newsgroups,”
each dedicated to a different topic. The term “news” is misleading since
a newsgroup is really a kind of bulletin board, where users can post
messages to be read by anyone else on the Net who chooses to do so.

•Telnet allows a person using one computer to connect, through that
computer, to another computer elsewhere on the Net. From my computer
in New York State, for example, I can telnet to a computer at the Library
of Congress in Washington DC, and then use that computer in exactly
the same way as if I were accessing it directly. Ordinarily, before you
can telnet to a computer, you need an account on that computer and a

8 This might sound boring to nonmathematician, but factoring large num-
bers happens to be the way to break certain codes that are used to protect
sensitive data. The people who use those codes are very interested in just how
hard they are to break.

9 “Might find,” not “will find,” because a service is available only if all the
necessary software is available. This includes a program for you, as a user, to
run. In addition, other software might be required to support communication
protocols used by that program; without this support, the program will be
useless.
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password to identify yourself. But many places, such as the Library of
Congress, have created public accounts that can be accessed by anyone.

•FTP, the file transfer protocol, was discussed above. Anonymous
FTP is a common way of making information publicly available on the
Internet. Like telnet, FTP ordinarily requires an account and a pass-
word. In anonymous FTP, files are made available in an account that
anyone can access.

•WWW, the WorldWideWeb, is one of the newest and fastest grow-
ing information services on the Net. The Web consists of files on com-
puters throughout the world. You can view these files with a “Web
browser,” a program that knows how to access files in the Web and dis-
play them on your screen. What makes the Web interesting is that a file
can contain links to other files in the Web. With a Web browser, you
can follow links from file to file until you find exactly the information
that you want (or until you get thoroughly, but perhaps happily, lost).

The Internet has traditionally been difficult to use. New services such
as WWW, and better interface software for old services like FTP, have
begun to change that. And in the ocean of ASCII text that comprises
most of the data on the Net, there are more and more islands of other
types of information—such as pictures, sounds, and video—that require
more storage space, more computational resources for processing, and
faster network communication for transmission from place to place. So
the Internet grows and changes. New computers and users come on line.
Old, slower communication links are upgraded to fast links capable of
carrying sound and video. New tools are introduced to make the Net
easier for ordinary people to use.

We are seeing, perhaps, the beginnings of Cyberspace, the ultimate
Net that would be a kind of alternate reality made of information—
accessible through computers and built on layer upon layer of network
protocols.

Chapter Summary

Several people working together on a large task can usually complete
it more quickly than one person working alone. The same is true for
computers. In parallel processing, several processing units work together
on a problem. The processors might be part of a single multiprocessing
computer, or they might be in separate computers on a network. The
latter case is known as distributed processing.
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Parallel processing is not appropriate for every problem. In some
problems, each step depends on all the previous steps, and the only way
to solve the problem is to perform all the steps in sequence. For many
problems, however, there are subtasks that can be performed in parallel,
and it is often easiest to program solutions to such problems in a language
that supports parallel programming abstractions. Such language support
the creations of multiple processes, and they provide some method of
communication between processes, such as shared variables and message
passing.

Processing units communicate by sending electric signals over wires.
In a multiprocessing computer, you will probably find some elegant pat-
tern of connections among the processors, such as the hypercube topology.
Computer networks tend to be messier, often consisting of smaller net-
works connected by routers and gateways. Communication over these
potentially messy networks involves multiple layers of protocols. High-
level protocols, such as FTP, are used by people to perform meaningful
communication such as copying a data file from one computer to an-
other. High-level protocols use lower-level protocols such as TCP and
IP, whose job it is to get bits from one place to another on a network.

The messiest network of them all—gloriously messy, you might say—
is the Internet, a world-wide TCP/IP network. The Internet is a demo-
cratic sort of place, where anyone who wants to post information on the
Net can have a voice. It is very different from broadcast services such as
newspapers and television, where a central source sends out information
to a large number of mostly passive recipients. There is a great debate
going on right now over the nature of the universal information network
that will probably arise in the near future. The question is: Will it be
democratic and participatory in the spirit of the Internet, or will it just
mean five hundred television channels in place of the forty or so we have
now?

Questions

1. In Chapter 4, it was claimed that—except for considerations of
memory and speed—all computers are equivalent in the problems they
can solve. Does this apply to parallel processing? That is, are there
problems that can be solved by multiprocessing computers that cannot
be solved by traditional computers? Justify your answer.

2. Subsection 10.1.1 contained an example of three turtles adding
1, 2, and 3 to a variable sum, in parallel. In the absence of a grab
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statement, it was claimed, the final value of sum could be any number
between 1 and 6. It was explained how the final values 1, 2, and 3
could be obtained. Explain in detail how 4, 5, and 6 could be obtained
as answers. While you are at it, explain in more detail the banking
example from the end of Subsection 10.1.2, where it was claimed that,
“Without mutual exclusion, it might happen that only $100 is effectively
subtracted from your account, instead of the correct $200.”

3. Distributed databases, implemented using message passing, were
discussed at the end of Subsection 10.3.2. How is the mutual exclusion
problem in Question 2 solved in such a distributed database? That is,
what prevents two simultaneous $100 withdrawals from being incorrectly
recorded?

4. The program in Figure 6.10 uses a loop to draw a sequence of
nested squares. Write a program that uses parallel processing to draw
the same picture. Each square should be drawn by a separate turtle.

5. The program in Figure 6.11 counts the number of steps it takes for
a certain sequence, starting from an integer N , to reach 1. Consider the
question, “What is the largest number of steps in the sequence for any
starting number N between 1 and 100?” This question can be answered
as follows: Declare a variable max, and set it equal to zero. Then,
for each number N between 1 and 100, compute the sequence starting
from N , and let StepCount be the number of steps in that sequence.
If StepCount is greater than the current value of max, then change the
value ofmax to StepCount. After all the numbersN have been processed,
the value of max will be the number of steps in the longest sequence.
Write an xTurtle program that uses parallel processing to implement
this procedure. Part of your program can be copied from Figure 6.11.
In order to work correctly, the program will need a grab statement.

6. In this chapter, message passing was discussed as a method of
communication in distributed computing. The idea of messages also
arose in Chapter 8, where it came up in connection with object-oriented
programming. Review Subsection 8.3.1 and then discuss the possible
relationship between object-oriented programming and distributed pro-
cessing.
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Chapter 11

Graphics

COMPUTERS HAVE ALWAYS been good at numbers and words, numbers
because they are built into the very structure of the machine, and words
because letters can be so easily coded into numbers.

Images are another story. Although a picture can be easily repre-
sented as a long sequence of numbers giving the color of each pixel,
those numbers don’t represent the things in the picture. A computer
can use the numbers to show the picture on its screen. But it can’t per-
form operations such as “Delete the tree in the middle of the picture” in
the same way that it could, for example, easily “Delete the third word
in the sentence.”

A human painter would be able to paint the tree out of the picture.
There are painting programs that allow a computer user to interact
with an image on the screen in much the same way that a painter in-
teracts with a canvas. The computer plays a passive role, and the user
does most of the work. Such programs are useful, but they are only one
small aspect of computer graphics, which deals with all aspects of the
composition and manipulation of images on a computer.

In a more sophisticated computer graphics program, the computer
maintains a symbolic representation, or data structure, of the objects
in a scene. The image that the computer displays is still just a bunch
of colored pixels, but the image is only a way of viewing the symbolic
representation. If the scene changes, and the representation is modified,
then a new image can be computed and displayed.

321
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With this sort of program, it is easy to remove a tree: Just remove
the tree from the data structure and compute a new image. It is also
easy to modify the image in other ways: by adding or moving an object,
by viewing the image from a different point of view, or by changing at-
tributes of objects, such as color and size. From here, it is a simple step
to computer animation. Animated films are created by human artists
by drawing each frame of the film by hand. In computer animation, the
sequence of images is produced by a computer, with small changes in the
scene from one image to the next.

In general, then, there are two stages in the production of computer
graphics images. In the first stage, a representation is constructed of the
scene which is to be displayed. The representation is sometimes called
a model, and the process of creating it is known as modeling. The
model is really a data structure, which contains information about the
objects in the scene rather than the pixels on the computer’s screen.
In the second stage, the actual visual image of the scene is produced
by the computer, based on the model that has been constructed. This
process of computing an image from a symbolic representation is called
rendering.

The quality of graphics and animations produced on computers has
increased from simple line drawings in the 1960s to highly complex and
realistic-looking images today. This can be attributed partly to increased
computing power but mainly to intensive research into methods for pro-
ducing such images. Later in this chapter, we will look at some of the
newer techniques that this research has produced. But we will start with
the basics.1

11.1. Mathematical Foundations

Most of the fundamental techniques of computer graphics are based in
mathematics, especially in geometry. This foundation is often hidden
from the users of computer graphics programs, but a real understanding
of what those programs do requires some familiarity with the mathemat-
ical ideas on which they are based.

We will concentrate on the type of computer graphics where the goal
is to produce an image of a scene containing a number of objects. The

1 The material of this chapter is covered in greater detail in almost any
textbook on computer graphics, such as the classic [Foley, et al.].
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objects might be abstract geometric shapes such as spheres and cubes,
or they might be real things like trees or chairs. But in fact, trees and
chairs are too complicated for typical graphics programs to deal with di-
rectly. They must be broken down into simpler components, such as the
trunk of a tree or the leg of a chair. Where does this decomposition end?
With abstract geometric shapes! In many programs, for example, scenes
must be composed (at least in the computer’s internal representation)
entirely of polygons.2 Other programs might allow curved surfaces such
as spheres. But in any case, look deeply enough and you will find ge-
ometry. In fact, the process of modeling a scene in a computer graphics
program is sometimes referred to as “building a geometry.”

In this section, we look at some of the geometric techniques for mod-
eling scenes. We want to be able to deal with fairly complex scenes, and
“deal with” here means not just rendering the scene but also building it
in the first place and modifying it when necessary. The approach we use
follows our general method for dealing with complexity, that is, building
complex systems from simpler components that are used as black boxes,
without regard to the details of their internal construction.

Suppose, for example, that a scene contains a chair. There are two
things here that we should keep separate: the chair itself and the role
that the chair plays in the scene. We start by building a description of
the chair. The description is a model of a scene consisting of a single
chair in some standard position and location. Once this chair-scene is in
hand, we can use it as a component in a more complex scene by specifying
things like the location, orientation, and size of the chair in the scene.

There are several advantages to this approach. Moving the chair is
just a matter of specifying a new location for the chair-scene, rather than
building a new chair from scratch in a different position. If the scene
contains more than one chair, we can simply reuse the same basic chair-
scene several times. And we get the conceptual advantages of having
multiple levels of complexity: The chair itself is not a simple object. It
consists of simpler components, such as a seat, a back, and four legs.
These components might in turn be composed of polygons and simple
curved surfaces. So, from simple components, we can build complex
scenes without being overwhelmed by the details.

The basic operation here is to take a component—either a simple geo-
metric shape or a model that has already been constructed—and specify

2 A polygon is a flat geometric shape whose boundary is made up of straight
line segments. Triangles and rectangles are examples.
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its size, position, and orientation in a scene. There is a surprise here:
Much of the emphasis in computer graphics is not on drawing things
but on operations such as moving them, rotating them, and changing
their size. These are mathematical operations which are usually called
transformations or geometric transformations.

11.1.1. Transformations in Two Dimensions. We start with
two dimensions, that is, with flat figures that all lie in the same plane.
The ideas we encounter in two dimensions generalize easily to the more
realistic three-dimensional case. If we think of the plane as being the
computer’s screen, then each point in the plane can be assigned an x-
coordinate, giving its horizontal position, and a y-coordinate, giving its
vertical position. These numbers form a coordinate system on the
plane. The point with coordinates (0,0) is called the origin of the
coordinate system. Usually, we will assume that the origin is at the
center of the screen, although it wouldn’t have to be. We used the same
sort of coordinates in Chapter 6 for the xTurtle programming language.

When we want to model an object, we should think of it as being
drawn in some conveniently chosen standard position. For example, the
origin might be right at the center of the object. Or, if the object is
a square, the origin might be at the lower-left corner. The object then
can be modified to fit into a scene by applying transformations to it.
Transformations that can be applied in two dimensions include scaling,
translation, and rotation. Some examples are shown in Figure 11.1.

Scaling refers to a change in size. For example, scaling a one-by-
three rectangle by a factor of two will result in a two-by-six rectangle.
Mathematically, a figure in the plane can be scaled by a factor of s by
multiplying each x-coordinate and each y-coordinate in the figure by the
number s. So scaling can be identified with the equations:

xnew = s ∗ xold

ynew = s ∗ yold
where (xold, yold) indicates the coordinates of a point in the figure before
the transformation is applied, and (xnew, ynew) indicates the coordinates
of the corresponding point in the transformed figure. There is also a
more general version of scaling in which a figure is scaled horizontally
and vertically by different amounts. Scaling by a factor of two in the
horizontal direction and by a factor of one-half in the vertical direction
would transform a two-by-two square into a four-by-one rectangle. The
equations for this transformation would be xnew = 2 ∗ xold and ynew =
(1/2) ∗ yold.
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Original Scene Scene after scaling by

a factor of 2

Scene after rotation through

an angle of 45 degrees

Scene after translation two units

horizontally and one vertically

Figure 11.1. A simple two-dimensional scene, and the effect that three
different transformations have on that scene. The scene consists of a
triangle, a square, and a circle. The coordinate system is shown as a
grid of lines.

Translation refers to change in position. A translation by a units
horizontally and b units vertically is accomplished by adding a to the
x-coordinate and b to the y-coordinate of each point. This translation
can be identified with the equations:

xnew = xold + a

ynew = yold + b

For example, a translation by 3 units horizontally and 2 units vertically
simply displaces a figure three units to the right and 2 units up.

Rotation refers to changing the orientation of a figure by pivoting
it about the origin. The amount of rotation is specified as the angle
through which the figure pivots. It turns out that a rotation through θ
degrees can also be identified with a pair of equations:
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xnew = cos(θ) ∗ xold + sin(θ) ∗ yold
ynew = cos(θ) ∗ yold − sin(θ) ∗ xold

You don’t need to know anything about the mathematical functions sin
and cos, except that sin(θ) and cos(θ) are certain numbers that work.
That is, applying these equations to all the points in a figure will rotate
that figure by θ degrees around the origin. For example, if θ is 90 degrees,
then cos(θ) is 0 and sin(θ) is 1. In this case, the equations for the
transformation are xnew = yold and ynew = −xold.

These are the basic transformations used in computer graphics. It
is possible to apply a sequence of operations to an object, one after the
other, to achieve the effect we want. We might start with a square cen-
tered at the origin, change its size with a scaling operation, then change
its orientation with a rotation, and finally move it to a new position
with a translation. The result of applying a sequence of transformations
is also considered to be a transformation, and it has its own equations
that can be computed easily from the equations of the transformations
that go to make it up. Any transformation created in this way will have
equations of the form:

xnew = a ∗ xold + b ∗ yold + c

ynew = d ∗ xold + e ∗ yold + f

for some set of numbers a, b, c, d, e, and f . Transformations of this
form are called affine transformations. They play a central role in
computer graphics. Figure 11.2 gives an example.

The point here is that an entire sequence of transformations can be
accomplished in a single step, by applying the equations for the combined
transformation. The operation of placing an object into a scene can
always be computed using a single transformation, no matter how many
transformations were originally used to specify its placement.

This is especially important when complex scenes are built up in
several stages from simple components. Consider one of the legs on a
chair that is itself just one of the objects in a complicated picture. (In
this example, I am returning for the moment to three-dimensional space.)
When the chair is constructed in its standard position, a transformation
is used to specify the placement of the leg in the model of the chair. When
the chair is used as part of a scene, another translation is applied to the
chair as a whole. What about the leg, considered as a part of this final
scene? Its placement is specified by a sequence of two transformations:
one which places a leg into position on the chair, and a second that moves
the chair (carrying the leg along with it, of course) into place. When the
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Object in starting position, with

pivot point marked by a black dot
First, translate the pivot

point to the origin

Then, apply a roation of 60

degrees about the origin

Finally, translate the pivot point

back to its starting position

Figure 11.2. A sequence of three transformations can be used to ro-
tate an object about the point (−2,−1) instead of about (0, 0). The
combined transformation is given by a single pair of equations that can
be computed from the equations of the component transformations.

computer actually draws the leg, it can combine these transformations
and compute the placement of the leg in a single step. Even if the chair
is part of a dinette set which is part of a kitchen which is part of a house,
the leg still only requires one transformation!

11.1.2. Animation. Transformations also turn out to be central in
computer animation. A transformation changes the position, orientation,
or size of an object all at once. To get an animation, all we have to do
is change the object a little at a time and make an image of each step.
Instead of moving an object three units to the right, we move it one-tenth
unit, then another one-tenth, then another. . . for thirty steps. When the
images are played back in rapid succession, the eye will perceive an object
in continuous motion.
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This step-by-step motion is easily accomplished mathematically. To
make things simple, we assume that the changes take place at a constant
rate (even though it might be more realistic for things to start slowly,
speed up, and then slow down to a stop at the end). The placement of
the object at each step is given as a transformation from its standard
position. Let’s suppose that we are given a transformation specifying its
initial placement and another transformation specifying its final place-
ment. Then, at every step in between, the placement of the object is
given by an “interpolation,” or weighted average, of the initial and final
transformations.

Suppose that an object starts out rotated 30 degrees from its standard
position and ends up rotated 100 degrees. Halfway through the process,
its rotation is given by the average, 1

2
· 30 + 1

2
· 100 degrees. One-tenth

of the way along, we would use the weighted average, 9

10
· 30 + 1

10
· 100

degrees, consisting of “nine parts out of ten initial position plus one part
out of ten final position.” A similar formula, (1− t) · 30 + t · 100, applies
to any fraction t between zero and one.

The same technique can be used to show an object in motion or
changing in size. Combined motions, such as an object that rotates as it
moves to the right, are no problem: We simply apply weighted averages
of each of the component transformations. We can even deal neatly with
animations of complex, structured scenes. Consider a bicycle moving
along a road. The wheels of the bicycle are rotating and are also taking
part in the overall motion of the bicycle. We can construct this scene
by first creating a model of a rotating wheel; in this model, the wheel
just sits in standard position, rotating about its center. Next, we build
a model of the bicycle, incorporating a few rotating wheels. Finally, we
apply a translation animation to the bicycle to set it in motion—the
wheels will be carried along with it automatically!

11.1.3. Three-Dimensional Viewing. In two dimensions, the
position of a point is described by two numbers. To specify a point in
three-dimensional space, we need one additional number. So, we just
add a z-coordinate to the x- and y-coordinates used on a plane. Again
thinking of the computer’s screen as the plane, you can think of z as
representing distance in front of the screen (or behind the screen if z is
negative).

Translation and scaling work as you would expect in three dimen-
sions. Three equations are required to specify a transformation instead
of one, but the form of the equations is familiar. The equations for scaling
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Projection Plane

(computer screen)

Two-dimensional image of box

Three-dimensional box

Viewpoint

"Lines of sight" from viewpoint,

through object, to projection plane

Figure 11.3. Projecting a three-dimensional object onto a plane. Note
that the cube is distorted by the projection. The side of the cube clos-
est to the viewpoint is projected onto a larger square than the far side
of the cube. This distortion is called “perspective,” and it is one of the
ways by which images of three-dimensional scenes are made to look re-
alistic.

by a factor of s, for example, become: xnew = s ∗ xold, ynew = s ∗ yold,
and znew = s ∗ zold. Rotation in three dimensions comes with a slight
twist: When a solid object, such as the earth or a spinning top, rotates,
it has an axis of rotation, a line that stays fixed while the object
rotates around it. When a figure rotates in two dimensions, it rotates
around a single fixed point. The repertoire of three-dimensional transfor-
mations includes rotations about the x-axis (the horizontal line running
across the screen through the origin), or about the y-axis (the vertical
line through the origin), or about the z-axis (a line pointing from the
origin directly out of the screen). Rotations about other lines are possi-
ble, but they can be built up out of these three basic rotations plus some
translations.

Complex scenes and animations can be handled in exactly the same
way in three dimensions as in two—there are just a few more numbers
to play with. There is one big area of difference, though: the matter
of getting an image of the scene onto the computer’s screen. It’s easy
to draw a two-dimensional scene on a two-dimensional screen. A three-
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dimensional scene, on the other hand, has to be projected onto the
screen.3 See Figure 11.3.

The projected image is essentially what would be seen by a camera
located at some point in space. That point is called the viewpoint or
the center of projection. In order to determine what image would
actually be recorded by the camera, we must also specify what direction
the camera is pointing and how the camera is oriented (since the camera
will record a different image if it is tilted or turned upside-down).

It is useful to think of the camera that is viewing the scene as part
of our model of the scene. Moving the camera, tilting it, or pointing
it in a different direction will give a different image. We can even have
animations in which the camera moves, imitating a movie where the
camera pans in for a close-up or a film shot from the window of a moving
airplane.

In this section, you have learned enough about computer graphics and
animations to appreciate the geometry involved. The next time you see
an advertisement with three-dimensional letters flying across the screen,
you can imagine how those letters were assembled from polygons, how
they were translated and rotated into position, and how they were set
into motion by applying a sequence of transformations or by floating an
imaginary camera through a mathematical model of the scene.

This is, however, only part of the story. Once the geometry of a
model has been set up, there is still the matter of making the image
produced from it look realistic. This is the topic of the next section.

11.2. Realistic Images

The abstract geometric framework of a scene can be visualized as a
wireframe model, a simple representation which shows only the edges
of the polygons in the model. Wireframe models show the shapes and
positions of objects in a scene. They can be computed and drawn very
quickly on a computer screen, and most computer graphics programs
allow the user to preview graphics images and animations in this form.

3 Projection in computer graphics is an imitation of what happens when you
look at an object: The object is projected onto the two-dimensional retinas in
your eyes. In effect, each of your eyes registers a two-dimensional image, and
your brain reconstructs an impression of a three-dimensional world from those
images.
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For a realistic image, though, a wireframe model must be fleshed out
with things like color, surface textures, and lighting effects.

For such images, we need to add more information to the model.
When the images are rendered, a lot of computation is required to take
all this information into account. It is not unusual for a computer to
take several hours to render a single high-quality image, or several days
for a few seconds of animation.

11.2.1. Object Attributes. Suppose we have a scene consisting
of a single cube. The geometric information in the model tells us how
large the cube is, how it is oriented in space, and from what point it is
being viewed. This is enough to make a simple line drawing of the edges
of the cube, but for a realistic image we need need information about
the properties of the cube that determine its visual appearance. Such
attributes of objects are stored, along with the geometric information,
as part of the model of a scene.

In the simplest case, an object has a single, uniform color. Even this
is not as simple as it sounds, because color turns out to be subtle thing.
When light strikes an object, it can be either reflected or absorbed—it is
the reflected light that we see when we look at the object. Light comes
in various colors, ordinary white light being a combination of all colors.
An object will be seen as red, for example, if it tends to reflect red light
and absorb light of other colors. As it turns out, we can get an adequate
representation of the color of an object by specifying just three numbers:
the percentage of red light that it reflects, the percentage of green light,
and the percentage of blue light. (This explains why, if you magnify the
screen of a color television, you will see that it is made of red, blue, and
green dots.)

This is still not enough to distinguish between the shiny red of a new
car and the dull red of an old brick. This difference can be modeled
by distinguishing between two different types of reflection: specular
reflection and diffuse reflection. In specular reflection, a ray of light
bounces off an object just as a thrown ball bounces off a wall. Diffuse
reflection is more like a water balloon, which bursts on the wall and
splatters in all directions. The diffuse reflection from an object is visible
from all directions, but a specularly reflected light ray is visible only
from a certain angle.

When you are driving and are blinded by the sun glinting off a red
sportscar in front of you, it is because you are seeing the specular reflec-
tion of the sun’s rays. You can still see the rest of the sportscar—the
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parts that are not in the right position to reflect the sun’s rays directly
to your eyes—because the car also reflects some light diffusely. A mir-
ror reflects essentially all of the light that hits it specularly. (The word
“specular” comes from the Latin word for mirror.) A red brick reflects
very little light specularly; it reflects some incoming red light diffusely,
and it absorbs the rest of the light that hits it. A red car reflects some
red light diffusely, but it also reflects a lot of the incoming light specu-
larly.

We see, then, that we need six numbers to describe the color of
an object: the percentages of red, green, and blue light that it reflects
specularly and diffusely. It might be, of course, that different parts of
an object are different colors, so that we should allow models in which
each polygon in the model has its own associated color data.

Such models are adequate for many purposes, but they tend to pro-
duce images with a plastic or metallic look—in fact the classic look of
computer graphics and animation. Real objects often have distinctive
surface textures which arise from variation in color, such as the patterns
seen in woodgrain or granite (or for that matter in a photograph of the
Statue of Liberty). In computer graphics, texture can be achieved by ap-
plying a texture map to a surface. A texture map is simply an image
of any kind, represented as a grid of pixel colors. A woodgrain texture
map, for example, could be obtained by “scanning” a photograph of an
actual piece of wood into the computer. This could be considered cheat-
ing, since we are making realistic computer graphics images by using
images of real objects, but the process of applying the map—stretching
it, rotating it, transforming it to fit onto the surface—still requires a lot
of computer processing.

Textures can also arise from small variations from perfect smoothness,
such as the bumps on the skin of an orange or the weave of threads in
a piece of cloth. This type of texture can be simulated by a bump
function, which specifies small changes in the orientation of a surface
from point to point.

One further object attribute that we might add to our repertoire
is transparency. Instead of being reflected or absorbed, it is possible
for light hitting an object to be transmitted through it. A sheet of
glass transmits most of the light that hits it, although some of the light
is reflected specularly. Dirty glass would have some diffuse reflection as
well, and colored glass would transmit different colors of light to different
degrees. Besides all this, there is the fact that a ray of light changes
direction when it passes from one medium, such as air, into another,
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such as glass. This bending of light rays should be taken into account
when an image is rendered.

11.2.2. Lighting. Adding attributes such as color, texture, and
transparency to the geometric model of an object produces a realistic
description of the object itself, but does not determine how the object
will actually appear in an image. For that, we need to know about
the environment in which the object appears, starting with the lighting
conditions. An object looks different when direct sunlight is falling on
it than it does on a dim, cloudy day. It would look different again if it
were illuminated with a red spotlight.

The model of a scene will have to include information about any light
sources. The easiest types of light sources to deal with are point sources
and directional sources. In a point source, all the light radiates out
from a single point; this is a reasonable model of a small light bulb. A
directional source is one that, like the sun, is so far away that all the
light rays from it are effectively parallel. Extended light sources, such
as a long fluorescent light, are generally dealt with only by advanced
rendering techniques such as those discussed at the end of this section.

Besides position or direction, we need to know the intensity, or bright-
ness, of each light source. We allow for the possibility of colored lights
by specifying a separate intensity for red, for green, and for blue.

Finally, a model should include ambient light—once again given
as separate intensities for red, green, and blue—which represents some
general level of light that comes from no particular source and that illu-
minates everything in the scene uniformly. Ambient lighting can be used
to approximate the light of a cloudy day. It can also be thought of as
including light that has reflected and re-reflected from so many surfaces
that it has become impossible to keep track of its original source. Note
that without ambient light, shadows would be absolutely black.

11.2.3. Rendering. So far, we have been talking only about con-
structing a model of a scene. In practice, this construction is generally
done by a person with the aid of a computer program. That program
provides the user with a method for defining and positioning objects,
setting their color, specifying what texture maps are to be applied, and
so forth. The method can be as simple as a specialized language for
describing scenes, or as fancy as a graphical user interface in which the
user can build and manipulate the objects on screen. In any case, once
the scene is set up, it is up to the computer to render an image of it, as
it would be seen by a viewer at some specified viewpoint.
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Figure 11.4. The figure at left is supposed to show three rectangles
arranged in space (not flat on the page) so that the first covers part of
the second, the second part of the third, and the third part of the first.
On the right, two of the rectangles have been subdivided, producing a
total of five polygons. These five polygon can be drawn from “back to
front” in the order indicated.

Let’s assume that the model is one in which everything is built up,
ultimately, from polygons.4 Rendering the image is not a simple matter
of drawing all the polygons. First of all, only some of the polygons are
visible from the viewpoint. Some are wholly or partly obscured from
view by other objects, while others are not visible simply because they
are on the back sides of objects as seen from the viewpoint. These unseen
parts of objects are called hidden surfaces. The problem is to make
sure that the hidden surfaces are not, in fact, shown in the rendered
image.

Polygons on the back sides of objects are not a real problem, since
it is possible to keep track of which way each polygon is facing and to
avoid drawing those that face away from the viewpoint. The painter’s
algorithm is one way of handling the surfaces that are hidden from view
by other objects. A painter might paint a mountain in the background
and a house in front of it; when the house is painted, it simply covers
up the part of the mountain that is hidden behind it. It doesn’t matter
that the hidden part of the mountain was drawn—except for the waste
of paint and effort—because it doesn’t appear in the final image.

When applied to computer graphics, the painter’s algorithm says
to draw the polygons from back to front, starting with those farthest
away from the viewpoint and working gradually forward from there.
Unfortunately, some strange things can happen because the polygons

4 A curved surface can be approximated by a large number of small polygons.
Some computer graphics models can include curved surfaces of certain types,
but the basic ideas are still the same as those I cover here.
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can be tilted into any orientation in space. For example, it is possible
for a scene to contain three polygons where the first covers part of the
second, the second covers part of the third, and the third in turn covers
part of the first. (See Figure 11.4.) There is no place to start the painter’s
algorithm in this case, since no one of the polygons can be said to be
in back of the other two. Fortunately, there is a simple fix. It is always
possible to divide some of the polygons in a scene into smaller polygons
to make the painter’s algorithm apply.5

It is sort of wasteful to do all the rendering computations for a poly-
gon that is just going to be painted over by another polygon that lies
in front of it in the scene. It is possible to determine which polygons
are actually visible from the viewpoint, and to render only those. (This
determination can be done by applying the painter’s algorithm mathe-
matically, without actually rendering the polygons.) Polygons that are
partly visible and partly hidden can be further subdivided so that only
the visible parts will be rendered.

This method of dealing with hidden surfaces can also be used to deal
with shadows in an image. A light source does not illuminate everything
in a scene, because some objects lie in the shadows cast by other objects.
But the objects that are illuminated are precisely those that would be
visible to a viewer at the position of the light source. Everything else
is in shadow. So, solving the “shadow problem” for a light source turns
out to be the same as solving the hidden surface problem from the point
of view of the light source.

So finally the time comes to actually render the polygons that will
make up the image. Let’s concentrate on some one particular polygon.
Our problem is to compute a color for each of the pixels that make up the

5 There is a procedure for deciding how to subdivide polygons. Pick any
polygon. That polygon lies in some plane—an infinite sheet dividing space in
two. The painter’s algorithm says that we should draw everything that is behind
the sheet, then draw the polygon that lies on the sheet, then draw everything
that is in front of the sheet. A problem arises when some polygon is cut by
the sheet, and lies partly in front of it and partly behind it. The solution is
obvious: whenever this happens, divide the polygon into two pieces, the part
lying in front of the sheet and the part lying behind. Now, doing this for one
particular sheet does not completely solve the original problem of drawing the
scene, but it does divide the problem into two smaller problems: drawing the
part of the scene that lies behind the sheet, and drawing the part in front of the
sheet. If necessary, we can attack each of these smaller problems in the same
way, by choosing a polygon and using it to further divide the scene. (This is,
in fact, a recursive procedure. See Section 7.3.)



336 Chapter 11. Graphics

image of the polygon. We know which light sources, if any, illuminate it,
and we know the general level of ambient lighting in the scene. We have
information about the color of the polygon—more exactly about its dif-
fuse and specular reflection of light of various colors. (Or, alternatively,
we have a texture to be mapped onto the polygon, effectively a different
color at each point.) To this we can add one further item of information:
the orientation of the polygon in space. This is needed to compute the
amount of light that is reflected specularly in the direction of the viewer.

From all this information about light sources and the reflective prop-
erties of the polygon, we can compute a color for each pixel. The colors
of different pixels can be different for two reasons. First of all, the inten-
sity of illumination from a light source depends on distance from that
light source, and different parts of a polygon will generally be at differ-
ent distances from a given light source. Second, specular reflection of
a light source is seen only near those points where the angles between
viewpoint, surface, and light source are just right.

The exact color at a given point on the polygon can be computed
as the sum of the light reflected diffusely from that point, plus the light
reflected specularly from that point in the direction of the viewpoint.
And the amount of reflected light depends on the incoming light (ambient
lighting plus light from any light source that illuminates the polygon),
together with the intrinsic attributes of the polygon that determine how
much of the incoming light is reflected. Whew!

Because it takes a lot of computation to do these calculations for each
pixel, a compromise is often made between rendering time and quality
of image. A low-quality image can be rendered fairly quickly if the
same color is used for every pixel in the polygon. The color to be used
can be computed, for example, by computing the true color of just one
sample point in the middle of the polygon. This method is referred to
as constant shading.

A step up in quality is obtained by computing the true color at each of
the vertices of the polygon, and then computing colors at other points in
the polygon as weighted averages of the vertex colors. Using this method,
known as Gouraud shading, the computer has to calculate a different
average for each pixel in the polygon, but this computation still takes a
lot less time than the complicated calculation needed to determine the
true color. Often, the flat polygons in a model are only approximations
for curved surfaces. Gouraud shading does not deal very well with this
curvature. Another polygon shading method, Phong shading, uses a
more sophisticated averaging of vertex information to take surface cur-
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vature into account—but, of course, this is done at the cost of still more
computation time.

And so, after all the polygons have been rendered, we have an im-
age. You should have noticed that at each step along the way there was
approximation and compromise. Few objects are really made of geomet-
rically flat polygons. Light is not really made up of just three colors.
Light sources are not really points. Diffuse and specular reflection are
not so neatly separated in reality as they are in our model. In spite of
all this, the methods discussed here can produce fairly realistic images
of certain types of scenes.

Furthermore, we should consider that realism is not always a goal of
computer graphics. When an image is created of a building that does
not yet exist, a crude plastic-looking rendering is good enough to convey
the structure of the building and to help spot any problems. When a
chemist makes an animation of two molecules undergoing a chemical
reaction, visual realism is not an issue—realistically, molecules are too
small to see! And for the artist, of course, computer graphics is a medium
that, like any medium, has its own look with whatever advantages and
disadvantages that implies.

11.2.4. Ray Trancing and Radiosity. Rendering of the type
discussed in the previous section can be thought of as the “classic” ap-
proach to computer graphics. After some preprocessing to deal with
hidden surfaces and shadows, polygons are rendered into the image one
by one. Two other rendering methods, ray tracing and radiosity, take
a more global approach and can often produce higher quality images (at
the cost of greatly increased computation time).

Standard rendering uses a fairly simple model of the way light be-
haves. It assumes a background of uniform ambient illumination, plus
light from point and directional sources. Light from these sources is es-
sentially tracked until it hits an object; whatever fraction of it is reflected
from the object is assumed to become part of the ambient illumination.
Both radiosity and ray-tracing are, at least partly, attempts to track
that light through multiple reflections—with radiosity concentrating on
diffuse reflection and ray-tracing on specular reflection. In addition, each
method can deal with aspects of reality that are handled poorly or not
at all by classic rendering. Ray-tracing has no problem with transparent
objects or with the reflection of one object in another. Radiosity can deal
with extended light sources, such as long fluorescent lights and brightly
illuminated windows. It is even possible to use a combination of the two
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techniques to get the advantages of both; some of the highest quality
computer graphics images have been produced in this way.

To understand ray-tracing, you should imagine a set of objects lying
behind a transparent computer screen. Consider one of the pixels on the
screen. The problem is to determine what you will see at that pixel. In
ray-tracing, this is computed by following a ray of light backwards from
your eye, through the pixel, until it hits some object in the scene. This
tells you what object is visible at that pixel. Now the question is, what
color will be seen at that point?

To determine this, we continue tracing the light that hit your eye
backwards to the time before it left the object. Part of this light is
reflection of ambient light, and since that comes from all directions, we
just take it into account without worrying about where it came from.
Another part of the light is specular reflection, which comes only from
a specific direction. We trace a ray back in that direction to see where
it came from. The color of that incoming ray depends on what we find
at its source. If the object is transparent, another contribution is made
by a light ray transmitted through the object from its far side. Again,
we follow this transmitted ray back to its source to discover its color.
Finally, part of the light can come from light sources that illuminate the
object. To check on this part, we follow a ray from the object in the
direction of each light source. If that ray hits something before it gets
to the light source, then the object is in shadow; otherwise, we add in
the contribution from that source. The final color that is seen at a point
depends on all these incoming rays, together with the intrinsic attributes
of the objects.

Something interesting happens when we trace a specularly reflected
ray, or a ray transmitted through a transparent object. When we find
the source of that ray, we need to know its color. But this is the same
problem we started with: find the color of a light ray emitted from an
object in a particular direction. To find the color, we could apply the
same technique again, following the ray back even further in time. Of
course, we have to put some limit on how far back we are willing to look,
but it is this ability to track multiple reflections that gives ray-tracing
its power.

The main point of radiosity is to replace the mysterious ambient light
that we have used in our models with something more realistic. Whereas
ray-tracing starts with the pixels in an image, radiosity starts from the
objects in the scene. The objects in this case can include light sources,
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which are treated in exactly the same way as other objects. The term
“radiosity” refers to the rate at which light leaves a surface. It can be
thought of as the color that you would see when you look at the surface.
This can include light emitted by the surface, as well as light from other
sources that it reflects.

Think of a scene made up of a large number of small polygons, and
consider one of those polygons. Light radiation is constantly arriving at
and departing from the surface of the polygon. The amount departing
must be equal to the amount that arrives, minus the part of the incoming
radiation that is absorbed by the polygon, plus—if the polygon is part of
a light source—any radiation that is emitted by the polygon.6 This gives
a mathematical equation: “Outgoing radiation = Incoming radiation.”
We get one such equation for each polygon. The incoming radiation
can be written as a formula involving the outgoing radiation from all
the other polygons in the scene (as well as some factors that depend on
the geometry of the scene). Then the only unknown quantities in the
equations are the levels of outgoing radiation for all the polygons in the
scene. All we have to do is set up this huge set of equations and solve
them for these values! The answers that we get are the colors we need
when we render the objects.7 However, since radiosity does not take into
account the direction in which light is reflected from objects, it does not
deal well with specular reflection. For a scene in which specular reflection
is important, it can be added in by a second round of computation using
ray-tracing techniques.

∗ ∗ ∗

This chapter has not covered all of computer graphics, by any means,
but it does contain an overview of many of the fundamental ideas in the
field. Beyond these fundamentals lies a world of applications in which
computer graphics and animation play important roles.

Images and animations—computer generated or otherwise—can be
combined with sound and text to make multimedia presentations that
can be viewed on a computer. The idea is that some types of information

6 This is not always true. It is not true, for example, for the fraction of a
second after you turn on a light bulb in a room. However, unless the lighting
of the scene is changing very rapidly, it is at least approximately true.

7 In practice, only approximate solutions are found, and even for that the
amount of computation that has to be done is very large. Better approximations
essentially take into account more levels of reflection and re-reflection of light.



340 Chapter 11. Graphics

can be most effectively conveyed using a combination of media, instead
of through words alone.

Our impression of a three-dimensional world arises to a large extent
from the fact that we have two eyes, and each eye sees the world from a
slightly different viewpoint. A realistic three-dimensional effect can be
achieved with computer graphics by rendering two stereoscopic views
of a scene—one showing the scene from the viewpoint of the left eye
and one from the viewpoint of the right eye. The two images must be
viewed with some sort of apparatus that will present one image to each
eye of the viewer, such as a headset that holds a separate small computer
screen in front of each eye.

When we build a model for computer graphics, we create a mathe-
matical representation of some real or made up scene. We then choose a
viewpoint and render the scene as it would appear from that viewpoint.
Now, there is nothing to stop the viewpoint from being inside the scene.
Imagine a person wandering through the scene, looking around in differ-
ent directions. We could easily render a series of stereoscopic views that
show just what that person would see, and play those views back as an
animation on a headset. In fact, if we can compute fast enough, we can
render each view and show it on the headset at the same moment that
the person is seeing it. We could use some sort of sensor to determine
where the person is looking, so that we can get the view just right. And
then. . . why not let this person we are imagining wear the headset!

This is the basic idea behind virtual reality. In fact, of course, it is
the person who is real and the scene that is a mathematical simulation.
But we can track the movements of a real person, construct a continu-
ously changing image of the scene as it would be seen if it were real, and
display that image on a headset. The person experiences the scene as it
would appear if it were real (within the limitations of computer graphics,
of course). Virtual reality can include other senses besides vision, and
the long-term goal is to immerse the user in a complete virtual world,
indistinguishable from “real reality.” This would surely be the ultimate
user interface!

Chapter Summary

Computer graphics images are produced in two stages, modeling and
rendering. A model of a scene is a data structure containing geometric
information about the sizes, shapes, and positions of objects in the scene,
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and about attributes of the objects such as color and surface texture. In
the rendering phase, an image is computed that shows the scene as it
would appear from some chosen viewpoint.

The geometry of a model can be constructed from simple compo-
nents, such as polygons, using geometric transformations to specify the
placement of each component in the scene. The basic geometric transfor-
mations include scaling, translation, and rotation. Complex scenes can
be constructed using hierarchical models, in which objects built from
simple components can themselves be used as components in more com-
plex scenes. Computer animation can be created by applying a series of
small transformations and rendering an image of each step.

When an image of a three-dimensional scene is rendered, the com-
puter must take into account illumination from any light sources in the
model and from ambient light. It must ensure that hidden surfaces in
the model do not appear in the image. The painter’s algorithm is one
approach to the problem of hidden surfaces. A similar technique allows
the computer to take into account shadows cast by objects in the scene.

When the time comes to render a polygon, its appearance should be
determined pixel by pixel using all the information available. Since this
requires so much computation, approximate methods such as constant
shading, Gouraud shading, and Phong shading often are used instead.

The alternative rendering methods ray-tracing and radiosity are used
to produce very-high-quality computer graphics images. These methods
achieve greater realism by taking into account multiple levels of reflection
and re-reflection of light in a scene.

Questions

1. This question is about building a model of a two-dimensional
scene from basic components and geometric transformations. Suppose
that you have three types of basic components to work with: a line
segment extending from the point (− 1

2
, 0) to ( 1

2
, 0), a circle of diameter 1

with its center at the origin, and a one-by-one square centered at the
origin. For geometric transformations, you have rotation, scaling, and
translation. Given all this, how would you build a “wheel” like that
shown in Figure 11.5? (What are the basic components you would use?
What transformations would you use to arrange them into a model of
the wheel?) Once you have invented the wheel, how could you make the
simple wagon shown in Figure 11.5?
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Figure 11.5. A “wheel” and a “wagon” for use in Question 1. You
can assume that the wheel on the left has diameter 1 and that the two
identical wheels on the wagon have diameter 2. (From this, you can
approximate the sizes of the body and the handle of the wagon.)

2. Discuss the similarities between writing a computer program and
building a model of a complex scene for computer graphics. In particular,
compare the role of subroutines in programming to sub-scenes in model-
building. (A scene description language is a language used to give
formal specifications of scenes for use by computer graphics programs.
If you are feeling ambitious, try to devise a simple scene description
language that would allow you to specify scenes like those in Question 1.
Your language will probably be very much like a programming language
in some ways.)

3. When you apply a scaling transformation to an object centered
at the origin, it just gets bigger (or smaller). When the object is not at
the origin, it also moves farther from (or closer to) the origin. This effect
can be seen in Figure 11.1. Why does this happen? Suppose that some
object is centered at the point (3,5) and that you would like to increase
its size by a factor of 2, without moving its center. What sequence of
transformations could you use to do this? (Hint: See Figure 11.2, which
shows how rotation about a point other than the origin can be performed
by a sequence of basic transformations.)

4. I have said that objects in computer graphics images often look
plastic or metallic. What are the properties of plastic and metallic sur-
faces that allow them to be represented so well in computer graphics
images? And what is it—in terms of the object attributes discussed
in this chapter—that makes plastic and metal appear different in such
images?

5. Ray-tracing is a recursive procedure. Where does the recursion
come into it? (If necessary, review the definition of recursion in Sec-
tion 7.3.)
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Artificial Intelligence

SOMETIMES, SITTING IN FRONT of a computer, it is hard to avoid the
feeling that we—we humans—are no longer alone in the world. The
computer is responsive. It often seems to have goals and motivations.
It can use logic and solve problems. And at times, it seems deliberately
obstinate.

We know that this appearance is a kind of illusion. Deep down inside,
at the bottom of multiple layers of complexity, all that is going on inside
the computer is the purely mechanical, purely automatic manipulation
of bits. But we really know very little about what goes on deep down
inside ourselves. How can we be sure that we are really fundamentally
different from our machines?

I do not believe that today’s computers running today’s programs can
be called “intelligent” in the usual sense of the term. Although they are
complex, their complexity is well within our comprehension. We can see
the tricks on which the illusion is built, and we can pretty much locate
whatever cleverness our machines display in the humans who build and
program them.

But how much confidence should we have that this situation will
continue? As we learn more about the “tricks” used by the human mind,
and as we teach new tricks to newer, more complex machines, will there
come a time when the illusion of machine intelligence and the reality of
human intelligence become indistinguishable? If our creations awaken to
true intelligence, how will we even know?

343
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In 1950, Alan Turing, the inventor of Turing machines, published
an article called “Computing Machinery and Intelligence.” In it, he
proposed a way of testing machines for intelligence. This test has come
to be known as the Turing Test. Although it is not accepted by everyone,
no one has come up with any obviously better, general method for testing
a computer for intelligence.

Turing proposed a game to be played by a computer and a human,
with a second human as a judge. The judge and the two players are all
in separate rooms. Without knowing which player is which, the judge
communicates with the players by typing questions into a computer ter-
minal and getting back typewritten answers. After some time, the judge
is required to make a determination as to which of the players is a com-
puter and which is human. The task of the computer is to try to fool the
judge. If a computer, playing with a variety of opponents and judges,
manages to fool the judge as often as not, then the computer passes the
Turing Test.1

No limits are put on the questions the judge can ask, or on the
strategies that the players can employ. To fool the judge, the computer
would need wide-ranging knowledge about the world and about human
interaction. It would have to understand the incredible intricacies of
human language, with its ambiguities, metaphors, puns, sarcasm, and
poetry. It would have to dissemble about its own ability to calculate
faster than any human could.

Words like “knowledge,” “understand,” and “dissemble” would not
ordinarily be used to describe a machine (except as metaphor!), but
they would be hard to avoid in the case of a machine that could pass
itself off as human. You might argue that the computer, whatever the
appearance, is still a machine executing a program, with no more choice
or feeling than a rock rolling down a hill—and no more alive or intelligent.
But could you really stay convinced of that if the computer displayed
all the resourcefulness, wit, and empathy of a good friend or respected
teacher?

1 This is the test as it is most often stated, but it is not exactly what Turing
proposed. Turing first described a game played by a man and a woman. The
man would pretend to be a woman, and the judge would try to determine which
was which. The game between a machine and a human is then a variation of
the man/woman game. Turing would say that the machine is intelligent if it
could win playing against a human as often as a man could win playing against
a woman. However, interestingly, Turing did not prejudge how often that would
be.
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For the moment, the idea of such a machine is fantasy, and there is no
real evidence that standard bit-pushing, instruction-following computers
will ever achieve such intelligence. The research that goes under the
name “artificial intelligence” has, for the most part, more immediate
and limited goals. But always present in the background, most often
unspoken and sometimes even denied, is the quest to create thinking
machines that will equal or exceed our own intellectual abilities.

12.1. Good Old-fashioned Artificial Intelligence

One common definition of artificial intelligence, or AI, says that it
is the attempt to program computers to perform tasks that, when per-
formed by humans, would generally be acknowledged to require intel-
ligence. This definition captures only one aspect of a term whose full
meaning draws on all the many connotations of the words “artificial”
and “intelligence,” as well as a long history of artificial creatures in
mythology and literature,2 but it does have several advantages. First of
all, it does not prejudge whether the computer will be a true, man-made
(one meaning of “artificial”) intelligence or merely a simulation (another
meaning). Second, it allows us to talk about degrees of intelligence; a
computer that is only somewhat intelligent or that captures only some
small aspect of human intelligence would nevertheless qualify as AI.

Finally, this definition focuses attention on standard computers and
computer programs, which have played the dominant role in the history
of AI. As we will see later, some other approaches to machine intelligence
are becoming important, but in this section I will restrict attention to tra-
ditional, mainstream AI research—what the philosopher John Haugland
has called Good Old-Fashioned Artificial Intelligence, or GOFAI.

Artificial intelligence was given its name by John McCarthy—the
inventor of the programming language LISP—at a conference held at
Dartmouth College in the summer of 1956. A number of researchers
had already recognized the ability of computers to do more than crunch
numbers and had begun to work on ways to program them to display

2 Such as the Pygmalion myth, the story of the Golem, and the novel
Frankenstein. See the first chapter of [McCorduck]. By the way, the sub-
tlety of meaning and the multiplicity of connotation of almost any term in a
language like English indicates the difficulty of programming a computer to
pass the Turing Test, and explains why Turing chose language use as a test for
general intelligence.
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intelligence. The Dartmouth conference brought together many of these
early researchers, and it marked the beginning of AI as a recognized
scientific field.

Since its inception at the Dartmouth conference, AI has gone through
several periods of great optimism as new techniques were discovered and
programs displaying new types of intelligent behavior were created. In
each case, though, the limitations of the new techniques soon became ap-
parent and the optimism faded. Some critics of the AI enterprise claim
that the fundamental assumptions of the field are flawed and that there
will never be any breakthrough to true artificial intelligence. AI support-
ers, on the other hand, point out that in spite of the setbacks, significant
progress has been made. I will describe some of that progress in this
section and leave a discussion of the criticisms of AI to the following
section.3

12.1.1. The Physical Symbol System Hypothesis. The basic
claim of GOFAI can be simply stated: Intelligence is based on the very
sort of activity that goes on inside a computer. That activity, which
is usually called computation, is to be seen in this context as symbol
manipulation. (See the beginning of Chapter 1.)

In this view, intelligence has two aspects: a data structure built out of
symbols that are in themselves meaningless, and rules for manipulating
that structure in a definite, mechanical way. The symbol structure and
the rules for manipulating it form a symbol system. If we add to
this a physical object such as a computer (or a brain) that can store
the symbols and perform the manipulations, we get a physical symbol
system. The claim that intelligence is just a physical symbol system
is called the physical symbol system hypothesis. According to this
hypothesis, knowledge is represented as a symbol structure, thinking is
just the mechanical manipulation of those symbols, and AI is the quest
to build a symbol system as complex and subtle as that represented in
the human brain.

Whether or not the full range of human intelligence, including such
paramount features as creativity and consciousness, can really be ex-
plained in terms of symbol manipulation, it is at least clear that it plays
an important role. The words of our language are, after all, symbols—
meaningless in themselves but carrying a heavy freight of meaning be-

3 The history of AI, including minimally technical accounts of major achieve-
ments, is covered in [Crevier], [McCorduck], and [Kurtzweil]. A much fuller,
but quite technical, survey of traditional AI is given in [Barr and Feigenbaum].
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cause of the way they are conventionally used. The sentences we speak or
write are symbol structures constructed according to the rules of gram-
mar in order to communicate knowledge and ideas. Perhaps the knowl-
edge and ideas that we express in language are already present as symbol
structures stored in some physical form in the brain. As I write this sen-
tence, perhaps I am duplicating a fragment of my own internal symbol
structure in the form of language; as you read it, perhaps that frag-
ment is being recreated in your brain; as you think about what you have
read, perhaps symbol structures are being compared and new structures
created.

We should, then, investigate just how much can be accomplished by
symbol manipulation, and how. It is precisely that investigation that
constitutes the history of GOFAI.

12.1.2. Search and Problem Solving. A major aspect of intel-
ligence is problem solving. Problems can be abstract, such as selecting
a good move in a chess game or finding a proof for a mathematical the-
orem. Or, they can be more practical, such as deciding what to cook for
dinner or getting the most benefit from a three-hour study session for a
computer science test. Often, problem solving can be seen as searching
through all available courses of action, looking for one that solves the
problem.

Consider first an example that seems to have little to do with comput-
ers: deciding what to cook for dinner. This can be rephrased as searching
for a selection of dishes that meets some criteria. For example, you might
require that each dish can be made from foods already available in your
kitchen, that they contain certain levels of calories and nutrients, and
that you haven’t eaten the same thing recently. Now, a computer could
be provided with a list of all the foods in your kitchen, recipes for a large
number of dishes, and so forth. It could then be programmed to select
a dinner menu that meets all the specified criteria.

One straightforward way of programming the computer to do this
would be to have it generate every possible dinner menu, one after the
other, and test each one to see whether it meets the criteria. As soon as
it finds one that does, the problem is solved. This method of searching
through every possibility is called brute force search. For many prob-
lems, there is a relatively simple brute force search procedure that will
find a solution. The problem is that for almost any interesting problem,
the number of possibilities that must be checked is so vast that search-
ing through them all would take an unreasonable amount of time (such
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as longer than the age of the universe), even for an incredibly powerful
computer. In practice, then, it must be possible to limit the search to a
smaller number of possibilities, if there is to be a reasonable chance of
actually finding a solution.

In our dinner example, there are certainly ways to proceed that do
not involve looking at every possibility. For example: Choose some food
that is available in the kitchen, and look up recipes that use that food
as an ingredient. Or select a successful meal from some time in the
past and check whether ingredients are available to recreate it; if not,
try making substitutions using similar ingredients that are available. A
human solving the problem undoubtably uses “rules of thumb” like these.
Technically, such rules of thumb are called heuristics. In a heuristic
search, heuristics are used to limit the number of possibilities that must
be considered or to guide the search towards those possibilities that are
more likely to represent a solution to the problem at hand.

An average person trying to imagine an intelligent computer is more
likely to imagine it playing chess than selecting a dinner menu. Playing
chess well seems to require a good deal of intelligence, and AI researchers
have been programming computers to play games such as chess from the
very beginning. Such programs are based on a type of heuristic search.

The problem for a chess-playing program can be stated as follows:
given the position of all the pieces on the board, select the best possible
move. Now, there can be only a small number of legal moves, so the
computer just has to evaluate each move and select the best. “Evaluating
moves,” though, is not so easy. It is certainly possible to make up a set
of heuristic rules that computes a numeric value for each possible move.
Simple rules might, for example, count each side’s pieces and check which
pieces are under attack. The computer would then simply choose the
move with the highest numeric value.

However, it should be clear that the computer could improve its play
by looking ahead to see how its opponent might reply to each of its
possible moves. That is, for each of its own moves, the computer should
determine the best possible countermove that its opponent can make and
evaluate the state of the game after that countermove; to find the best
countermove, it must search through all the possibilities. But surely, to
evaluate any given countermove, it should look at each of its own legal
counter -countermoves to determine what its best move will be in each
case—and so on until the computer has looked ahead all the way to the
end of the game!
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So, to find the perfect strategy, the computer must, in effect, search
through the set of all possible chess games that start from the current
board position, to find one in which each player makes the best possible
move on each turn. For a trivial game like tic-tac-toe, the number of
possible games is so small that it is possible to examine them all by
brute force search. In chess, the number of games is huge, and brute force
search is literally impossible. Instead, the computer looks ahead only a
certain number of moves and countermoves; at the limit of this look-
ahead, it bases its evaluation of each possible move on simple heuristic
rules rather than further look-ahead. To make better use of the time
available for calculation, it might use other heuristic rules to decide that
certain moves are more promising than others; it would then look further
ahead while evaluating those rules than it does for less promising moves.
Chess-playing computers that work in this way can defeat most human
players, but the ultimate goal of a computer as world chess champion is
still out of reach.

It is fair to ask where all these heuristic rules are supposed to come
from. In general, they are hand-crafted by a programmer based on knowl-
edge and intuition about the problem to be solved. Ideally, though, an
intelligent computer would be able to learn new rules, based on expe-
rience. Not surprisingly, machine learning has proved to be one of
the most difficult problems in AI. But some progress has been made. In
fact, one of the first game-playing programs, a checkers program writ-
ten by Arthur Samuel in the late 1950s, was able to learn in a limited
way. Samuel’s program was provided with a number of heuristic rules
for evaluating moves. The weight given to each rule in the evaluation
was adjustable. After each game it played, the program would adjust
the weights based on its analysis of its performance in that game. As it
played game after game, the program’s performance gradually improved
until soon it could regularly beat its creator.

Samuel’s checkers program was one of several early successes in AI
that led some researchers to predict that computers would soon achieve
human-level intelligence. One of the most influential of these programs
was the immodestly named GPS (General Problem Solver), written by
Alan Newell and Herbert Simon. GPS was based on an analysis of human
problem-solving methods, and it marked the beginning of Newell and
Simon’s efforts to model human cognition.4

4 Cognition means, roughly, the process of thinking, whether conscious or
subconscious. A branch of psychology known as cognitive science tries to
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Given descriptions of an initial situation, a desired “goal” situation,
and a set of operations for making changes, GPS would search for a
sequence of operations that could be applied to transform the initial
situation into the goal situation. Such a sequence of operations would
constitute a plan for achieving the goal. In searching for a plan, GPS
used a very general heuristic called means-ends analysis, which in-
volved finding the differences between a given situation and the goal and
looking for an operation that reduces those differences. Applying such
an operation would produce a new situation, closer to the goal; GPS
could then apply the same heuristic to the new situation to find the next
operation in the plan. Often, of course, it would find a situation in which
no available operations would be useful; in that case, it would backtrack
to some previous situation and try to find a different operation to apply
in that situation.

12.1.3. Microworlds and Robots. Now, it is important to
keep in mind what programs like GPS are really doing: purely mechan-
ical manipulation of data structures. True, those data structures might
be thought of as representing knowledge about some real or made-up
world, and the manipulation of those data structures might correspond
to thinking about that world. But it is not clear how much the terms
“knowledge” and “thinking” here have in common with human knowing
and thinking. Furthermore, the amount of knowing and thinking going
on is rather small.5

Consider the following list of facts, written in a format appropriate
for use with the programming language LISP; think of this as representing
part of the knowledge of some program:

(box (size 7) (on table) (color red))
(box (size 3) (on floor) (color blue))
(table (size 50) (on floor))
(ball (size 4) (on floor) (color red))

Here, the first line can be interpreted as saying that there is a red box
whose size is seven (inches, perhaps) on the table. The remaining lines

explain cognition as a form of computation. Cognitive science is closely related
to the branch of artificial intelligence that tries to imitate human cognition.
There is, of course, another branch of AI that merely seeks to produce intelligent
behavior by any available means; for example, the methods used by the chess-
playing programs described above bear little relation to methods used by human
chess players.

5 Certainly true for GPS and arguably for any existing program, but see
Subsection 12.1.4 below.
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can be interpreted similarly. The computer might use such facts to an-
swer such questions as, “Where is the red box?” or to respond to com-
mands such as, “Put the ball into the box on the table.”

Now, symbols like “box” or “red” do not in themselves have any
meaning for the computer. Look at it this way: It would make no
difference to the computer if the above list of facts were written as

(G17 (G42 7) (G2017 G18) (G69 G101))
(G17 (G42 3) (G2017 G105) (G69 G107))
(G18 (G42 50) (G2017 G105))
(G19 (G42 4) (G2017 G105) (G69 G101))

In this form, this list looks a lot less like knowledge and a lot more like
a symbol structure! What meaning there is comes from the structure—
the fact that “size” or “G42” is used as the second item in each list,
for example—and from relationships built into the program, such as the
one associating the symbol “box” or “G17” and the English word spelled
with the letters B-O-X. Unfortunately, all the meaning tied up into the
English word is unavailable to the program, unless that meaning can
somehow be explicitly coded into additional symbol structures.

Obviously, full understanding of the world would require very com-
plex structures. For practical purposes, AI researchers have generally
limited their programs to dealing with stripped-down, simplified arti-
ficial worlds known as microworlds.6 The most famous example of
a microworld was Blocks World, the focus of several projects under-
taken at the Massachusetts Institute of Technology under the direction
of Marvin Minsky (one of the organizers of the Dartmouth conference)
and Seymour Papert.

Blocks World consisted of toy blocks of different shapes, sizes, and
colors. Blocks could be moved around and stacked up, with certain
restrictions such as the fact that nothing can be stacked on top of a
pyramid-shaped block. Some projects used real blocks; for others, the
blocks were just represented by drawings on the computer’s screen or
symbol structures in the computer’s memory. If all the projects had
ever been combined into one large system, the result would have been a

6 The word “microworld” was used in the 60s and early 70s. A microworld
was seen as a starting point, capturing knowledge about some small aspect of
the world but capable of being gradually scaled-up to represent more and more
of the real world. Scaling turned out to be much harder than many people
expected and the word largely fell out of use. It is still true, however, that
existing AI programs deal with microworlds of one sort or another.
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“robot” adapted for life in Blocks World: That robot would be able to
observe a table full of blocks (by analyzing a television image), move the
blocks around and stack them up (with a mechanical arm), and carry
out commands and discuss what it was doing in (typewritten) English.
None of this is easy for a computer.

When a computer analyzes a television image, all it has to work with
is a long sequence of numbers representing the color of each pixel in
the image. From those numbers, the computer must extract knowledge
about objects and their positions in three-dimensional space. Blocks
were used in early computer vision experiments because of their simple
shapes and straight edges. Provided that the scene was carefully lit and
not too complex, the computer could extract information about edges
and their intersections from the pixel data and then use that edge and
intersection data to determine what it was looking at. It took several
research projects to produce computational methods for accomplishing
this much. Developing a computer-controlled mechanical arm that could
then manipulate the blocks was another, and much larger, project, but
eventually a system called Copy-Demo was produced that could look at
a structure built of blocks and duplicate it [Crevier, p. 94].

Natural-language communication between user and computer was
the subject of another Blocks World program known as SHRDLU, writ-
ten by Terry Winograd. (“Natural language” here refers to a human
language such as English, as opposed to the much simpler “artificial”
languages ordinarily used in computer programming.) SHRDLU could
have only limited conversations about blocks, and so was very far from
passing the Turing Test, but it was hoped at the time that it would be
a step in the right direction. What it could do was impressive.

If given an instruction such as, “Put the small red pyramid on the
blue block,” SHRDLU could use GPS-style problem solving to plan a
sequence of actions to carry out the command. This might include, for
example, removing an object from the top of the block to make room for
the pyramid. (These actions would be carried out not with real blocks
but with a simulation drawn on the computer’s screen.) SHRDLU could
answer questions about its actions. For example, it might respond to
“Why did you pick up the pyramid” with “so that I could put it on
the blue block.” It could even learn in a limited way. For example, if
instructed to “Build a steeple,” it would respond, “Sorry, I don’t know
the meaning of the word ‘steeple’.” But if it were told, “A ‘steeple’ is a
stack which contains two cubes and a pyramid,” SHRDLU would then be
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able to build such a steeple. ([Hofstadter, p. 586–593] is a long sample
conversation with SHRDLU.)

Computer vision, robotics, and natural language processing continue
to be major areas of AI research. Industrial assembly-line robots have
been developed which are essentially computer-controlled mechanical
arms, and some of them use vision systems similar to the one devel-
oped for Blocks World. Mobile robots have also been built, and research
continues with the goal of producing a robot that can independently
explore environments such as the surface of Mars or the interior of a
volcanic cone.

Natural language processing programs have been written to allow
users to interact with computers in English, provided the subject area
is sufficiently limited and simple (such as an airline reservation sys-
tem). Some progress has been made on computer translation of text
from one natural language to another, with programs that can produce
readable—though far from polished—translations of sufficiently straight-
forward prose. An important research goal in the area of natural lan-
guage processing is a program that can analyze and extract information
from English text. A program that completely solves this problem would
probably also be able to pass the Turing Test, but there is some hope
for useful partial solutions in the near term.

12.1.4. Expert Systems. Although SHRDLU could deal with
Blocks World with reasonable competence, it suffered from at least two
problems. One was the practical problem that it was difficult to extend
its abilities. This was because it was very complex, with both knowl-
edge and rules for manipulating that knowledge hand-crafted into the
program. The second problem was one of public relations: SHRDLU was,
after all, only playing with blocks; surely for AI to achieve real respect
it would have to come up with more obviously interesting applications.

Both these problems were addressed with the development of expert
systems. An expert system is a program that encodes many of the rules
that a human expert uses in some particular area of expertise.7 For ex-
ample, the first expert systems DENDRAL and MYCIN were developed in
the late 1960s and early 70s. They dealt, respectively, with analysis of
mass spectrograms of complex organic molecules and with diagnosis of
infectious blood diseases. (You don’t need to know what these are, but

7 The question of the degree to which human expertise is actually based on
applying rules is very controversial. I will discuss this controversy below.
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this gives you an idea of the specialization of expert systems.) By 1980,
research into expert systems had produced a major commercial success
with XCON, an expert system for configuring the computer systems man-
ufactured by Digital Equipment Corporation. Although the enthusiasm
of the early 80s—which was fueled by overly optimistic predictions that
expert systems could replace human experts in many fields—has faded
somewhat, expert systems continue to be a useful technology for many
practical applications.

The expert knowledge in an expert system is expressed in the form
of production rules. Each production rule contains a condition to be
tested and an action clause that will be executed when the condition is
true. The action clause represents a conclusion that can be drawn or an
action that should be taken when the condition holds. For example, an
expert system for playing poker might include rules like these, encoded,
of course, in a manner more suitable for a computer:

IF:
hand contains a card with card-value X
AND hand contains another card with card-value X

THEN:
record that hand contains a pair with card-value X.

IF:
hand contains a three-of-a-kind
AND hand contains a pair
AND the card-value of the pair is different from

the card-value of the three-of-a-kind
THEN:

record that hand is a full-house.

IF:
hand is a full-house
AND game-state is first-betting-round

THEN:
place big-bet.

Such rules are similar to if statements in an ordinary computer language,
but the flow of control in an expert system is very different from that in
a traditional program. In an expert system, the conditions in the various
production rules are not tested sequentially in some predetermined order;
instead, any rule can be activated at any time, as its condition becomes
true. This can be understood by analogy with a blackboard.
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Imagine a blackboard on which is written all the information available
to the expert system, and think of each production rule as an active agent
that constantly monitors this blackboard to see whether the condition
in the if part of the rule is true. When some rule sees that its condition
is true, the action clause of the rule is executed; this results in changing
the information written on the blackboard. As soon as the information
changes, other rules might be activated because their conditions have
just become true. This causes further changes to the information on the
board, which activates further rules, and so forth until some rule writes
the solution to the problem on the board. (In practice, of course, there
must be some overall control of the system, to decide, for example, what
happens when several rules are activated simultaneously.)

In many applications, the independence of the individual production
rules makes it easier to encode knowledge in an expert system, rather
than to construct a traditional program where everything depends on
a careful sequencing of instructions. Furthermore, it is easier to add
knowledge to the expert system, simply by adding new rules. Indeed,
the XCON expert system succeeded where several previous attempts to
apply traditional programming methods had failed due to the complexity
of the problem. And XCON was successfully expanded from an original
system containing 300 rules in 1980 to a 10,000-rule system in 1987
[Kurtzweil, p. 292].

12.1.5. The More Knowledge the Better. One problem with
expert systems and other AI programs is their brittleness. This refers to
that fact that programs that operate reasonably well in a limited domain
are easily “broken” as soon as they are applied to situations outside that
domain. This is not surprising for a chess-playing program; we would
probably not expect such a program to know how to play tic-tac-toe, let
alone discuss the joy of victory or the agony of defeat. However, when
a program like SHRDLU seems so happy playing with blocks, it can be
a disappointment to find that it knows nothing about sandboxes, balls,
or playmates.8 When a program like MYCIN can analyze the symptoms
of a patient with an infectious blood disease and recommend treatments

8 Earlier, I noted that SHRDLU would understand the definition “A ‘steeple’
is a stack which contains two cubes and a pyramid.” However, if told that “A
‘steeple’ is a pointed roof on a church,” it would merely respond with “Sorry,
I don’t know the meaning of the word ‘pointed’.” In fact, as someone pointed
out in a reference I can no longer find, SHRDLU is quite capable of responding
to “Sorry, I thought you were smarter than you are” with “Sorry, I don’t know
the meaning of the word ‘Sorry’.”
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as effectively as a human doctor, it might be surprising when it tries to
interpret the symptoms of a patient who has a cold, or is pregnant or
even dead, as if that patient were suffering from some infectious blood
disease.

This is a problem we have seen before: In order to display general
intelligence—not merely limited competence in a microworld—a program
must have access to something approaching the full range of human
knowledge. And it is not enough just to give the computer a list of facts.
Those facts must be linked together into a symbol structure that encodes
all the associations and relationships among the facts, and the program
must somehow be able to make effective use of what would surely be a
huge mass of data.

Early AI researchers, with their emphasis on problem-solving, did not
seem to realize the importance and difficulty of this issue of knowledge
representation. However, it has come to be the central issue in tra-
ditional AI. One person who has faced the full extent of the problem is
Douglas Lenat, who is leading a multi-year project with the aim of build-
ing a symbol structure containing enough knowledge, in a usable form, to
support something like general intelligence. The project is called CYC,
short for “encyclopedia,” but the goal is not simply to store all the facts
from an encyclopedia into a computer. The real problem, as Lenat puts
it, is to represent all the facts that are not in any encyclopedia because
they are just common sense—things that are too obvious to mention to
any person, such as the fact that when people walk they move their legs,
or that Napoleon had a mother. CYC also includes programs that ma-
nipulate its huge, linked data structure and make it easier for humans to
add new facts. Ultimately, Lenat hopes, the human role will be reduced
or eliminated as CYC becomes capable of learning—that is, extracting
new facts—from the ordinary English found in books and newspaper.

CYC is an ambitious project, and it might well represent the last hope
for good old-fashioned artificial intelligence, the ultimate test of the idea
that true human-level intelligence can be embodied in a physical symbol
system. This, as we will see in the next section, is an idea that has been
hotly debated from the start.

12.2. The Philosophical Debate

In the 1950 paper in which he proposes that machines might be made to
exhibit artificial intelligence, Alan Turing also takes note of nine possible
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objections to the idea and attempts to refute them. Some of them he
does not take very seriously, such as what he calls the “Heads in the
Sand” Objection, that “The consequences of machines thinking would
be too dreadful. Let us hope and believe they cannot do so.” To this,
his reply is, “I do not think that this argument is sufficiently substantial
to require refutation. Consolation would be more appropriate.” But
among the other objections he lists are some that have been central in a
long-running and still ongoing debate about whether thinking machines
are even possible.

There are many positions in this debate, ranging from those who
think that superhuman intelligent machines are inevitable in the near
future, to those who believe that no machine could ever be truly said to
think. There are those who accept the possibility of a man-made intel-
ligence but deny that that intelligence could be based on programmed
symbol manipulation. Some accept the Turing Test as the best way to
assess intelligence, while others argue that the test is invalid. Those who
think it invalid break further into two camps, one claiming that the test
is too strong—because an intelligent machine would be so alien that it
would not be able to think enough like a human to pass the test—and
the other camp claiming that it is too weak—because a machine that
passed the Turing Test would be merely simulating intelligence rather
than displaying the real thing.

With such a variety of “expert” opinion, it can be difficult for an
outsider to make any judgment about what to believe. My own best
guess, for what it’s worth, is that the pure symbol-manipulation ap-
proach of traditional AI is unlikely to lead to true intelligence (although
a final judgment will have to wait for the completion of Lenat’s CYC
project). My impression is that a majority of workers in the field have
come to accept this. Even if this is true, of course, it does not mean that
traditional AI has no future. It has already proved its worth in prac-
tical applications, such as expert systems, that fall far short of general
intelligence.

Nor would it mean that the dream of creating intelligence is dead.
There are other approaches to AI besides symbol manipulation, and
several of these are currently generating a great deal of excitement. Some
of these alternative approaches are introduced in the next section. The
remainder of this section surveys in more detail some of the arguments
that have been used against traditional AI.



358 Chapter 12. Artificial Intelligence

12.2.1. The Limits of Logic. Turing’s own work on computation-
ally unsolvable problems (see Chapter 4) is one of several mathematical
results that have been used to argue against AI. Turing showed that
there are problems that cannot be solved by running a program. Since
running programs is all that computers do, there are problems that are
forever beyond the ability of computers to solve. On the other hand,
so the argument goes, when people are faced with problems, they are
not limited to blindly following programs. People are creative; they can
come up with novel approaches to problems and therefore can do things
that no programmed computer can. The problem with this argument,
as Turing was quick to point out, is that it is based on an unproven
assumption that people are not subject to the same sorts of limits as
computers.

The built-in limitations of symbol manipulation were first demon-
strated in a theorem proved by the mathematician Kurt Gödel in 1931.9

Mathematicians like to make lists of assumptions, which they call ax-
ioms, and then use those axioms and the rules of logic to prove other
statements, which they call theorems. The axioms and theorems are
made up of symbols, and these are to be mechanically manipulated ac-
cording to definite logical rules. This is a kind of computation, and
indeed once a set of axioms has been selected, it is possible to program
a computer to generate all the theorems that can be proved from those
axioms.

Before Gödel came along, it was hoped that a single, finite set of
axioms could be found that could be used to prove all mathematical
truths. Gödel showed that this hope can never be realized by proving
that any sufficiently complex, consistent mathematical theory is incom-
plete, that is, it includes true statements that cannot be proved within
the system. The level of complexity required to prove incompleteness
is rather modest: Gödel’s Theorem applies to any system that includes
ordinary integer arithmetic.

Now, this result seems to apply only to mathematical systems, but as
noted above, any such system can be programmed as a physical symbol
system in a computer. Conversely, the working of a computer can be
described in terms of logical rules applied to binary numbers, and with
a little effort can be expressed in terms of a “mathematical system”
to which Gödel’s Theorem applies. So, the theorem can be applied to

9 Two useful overviews of the debate about Gödel’s Theorem and AI, from
opposite sides, can be found in [Hofstadter] and [Penrose].
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computers and therefore to any artificial intelligence based on mechanical
symbol manipulation. It proves a certain type of limitation on any such
intelligence.

For people who want to use Gödel’s Theorem to argue against AI, the
main point is that a human mathematician, Gödel for example, standing
outside a mathematical system can analyze it and find specific, true
statements that cannot be proved within the system. It looks as though
human intelligence is innately superior to any physical symbol system;
the human mind can find limitations in any such system and go beyond
those limitations.

The problem with this argument is that it is still subject to Turing’s
counterargument, as given above: There is no proof that human intelli-
gence is not subject to the same sort of limitations imposed by Gödel’s
Theorem. If in fact the human mind is a physical symbol system, then
there is no way for that mind ever to step outside itself. Any analysis
that the mind does of itself is inside the system, and subject to its lim-
itations; those limitations would simply be invisible to the mind. That
such a mind could analyze other systems would be no more surprising
than the fact that one computer program can analyze another.10

In the end, neither side in this argument is likely to be convinced by
the other, since the evidence is not strong enough to change opinions
based on deeply held beliefs about human nature and the nature of
intelligence. This accounts, no doubt, for the passion with which the
debate has often been waged.

12.2.2. Always Already in a Situation. Perhaps the most
acrimonious segment of this debate has been that between philosopher
Hubert Dreyfus and the AI community. Dreyfus was one of the first
to attack the whole AI enterprise, in a paper called “Alchemy and AI,”
later expanded and published in 1972 as the bookWhat Computers Can’t
Do. In it, he claims that the whole symbolic approach to AI is flawed,
that AI researchers are naive for ever believing it could work, and that
if they would just pay attention to the wisdom of Dreyfus’ brand of
philosophy they would see the error of their ways. Although his actual
language wasn’t quite so blunt, Dreyfus’ attitude was clear and won him
no friends in the AI community, which generally considered his brand

10 Think back to the proof of the unsolvability of the Halting Problem in
Chapter 4, which at its heart is based on the inability of a program to analyze
itself. By the way, this hints at the deep connections between Gödel’s results
and Turing’s.
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of philosophy to be a “ball of fluff.” (This is reported in [McCorduck],
which devotes an interesting chapter to the Dreyfus controversy.)

In fact, Dreyfus was attacking not just AI but what he identified
as the Western philosophical tradition, which provided a background of
beliefs that made it possible to think that intelligence could be reduced to
calculation. Already in the sixteenth century, the philosopher Thomas
Hobbes believed that “Reason is nothing but reckoning,” and in the
next century, Gottfried Leibnitz, who built an early calculating machine,
sought to develop a system of calculation that could be used to settle
all questions of truth. Once such a system were found, Leibnitz said, “If
someone would doubt my results, I would say to him: ‘Let us calculate,
Sir,’ and thus by taking pen and ink we would settle the issue” [Dreyfus,
p. 69]. When George Boole invented Boolean algebra in the nineteenth
century, he was continuing this quest to reduce reason to calculation. It
is no wonder that when general-purpose computing machines based on
Boolean algebra were invented, it was expected that they would soon be
able to equal and surpass human reasoning ability.

Dreyfus is from a very different philosophic tradition called phe-
nomenology, which views a person as an integral part of a natural
world, shaped by evolution and experience to interact with that world
with an unselfconscious competence that has nothing to do with calcu-
lation.

In the Western tradition—that is, the scientific tradition—the world
itself is seen as kind of physical symbol system, consisting of simple, basic
components that interact according to definite rules. An intelligence
makes its way in the world by forming an internal representation of that
system and using that representation—that is, calculating with it—to
understand, predict, and control external reality. When that intelligence
finds itself in a new situation, it can attempt to deal with it by extracting
the relevant facts, adding them to its internal symbol system, and then
using that system to calculate its response. This is the standard AI
approach to problem-solving.

For Dreyfus, this is nonsense. There are simply too many possibly
relevant facts to consider, and which ones are actually relevant depends
on contexts and meanings that are inaccessible to a symbol system. Peo-
ple, Dreyfus believes, do not deal with new situations by extracting facts
and calculating a response. People are always already in a situation.
That is, they experience any situation as part of a continuing interaction
with a world full of meaning and context. They react to the relevant
features of their environment without having to sift out those features
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from the huge background of irrelevant information. This, computers
can never do.

Computers can only follow rules, and while Dreyfus acknowledges
that people are capable of mechanically following rules, he believes that
their competence in a real, complex world is not and cannot be based on
rule-following, either conscious or subconscious. Dreyfus acknowledges
that computer programs such as SHRDLU and expert systems can display
useful but limited competence in stripped-down microworlds where all
the facts are given and all the rules are made explicit. But he does
not believe that such programs could ever be scaled up to true general
intelligence.11 Whatever one thinks of his philosophy, his pessimism
about traditional AI has proved to be justified, at least in the short term.

12.2.3. The Chinese Room. Dreyfus believes that it is impos-
sible to produce human-level competance using facts and rules. Other
philosophers have argued that even if a computer could be programmed
so that its performance was indistinguishable from a person’s, the com-
puter would still not be truly intelligent. The argument is that a sim-
ulation of intelligence is not the same as the real thing, and would not,
for example, confer on a seemingly intelligent computer the moral status
of a human being.

One of the most famous arguments along these lines was given by
John Searle, who describes the following thought experiment: Let’s as-
sume that you don’t know a single word of Chinese. You are locked
in a room with a large number of books, a lot of scratch paper, and a
slot in the wall. People outside the room pass in pieces of paper with
meaningless-looking squiggles written on them. Your job is to process
the squiggles according to definite rules, which are contained in the books
that have been locked up with you. After a certain amount of processing,
the rules tell you to draw certain squiggles on a piece of paper and pass
it to the people waiting outside. As far as you are concerned, you are
mechanically following meaningless rules.

Now, let us imagine that the squiggles are actually Chinese words
and that to the Chinese-speaking people outside, the papers being passed
into and out of the room make up a pleasant and natural conversation in
Chinese. By blindly following rules and processing meaningless squiggles,
you have managed to seem like a native Chinese speaker, but you have
done this without knowing Chinese!

11 It is interesting that Terry Winograd, SHRDLU’s programmer, is something
of a convert to Dreyfus’ point of view. See [Winograd and Flores].
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According to Searle, your position in this experiment is the same as
that of a computer trying to pass the Turing Test. Even if the com-
puter were to pass that test, it would not be evidence that the computer
“knows English” any more than your performance in the experiment is
evidence that you know Chinese. The question here is not whether pass-
ing the Turing Test is possible. Searle’s argument is that the test itself
is invalid since the test cannot distinguish between intelligence and mere
simulation of intelligence.

I should point out that Searle’s position looks incomprehensible or
even silly to most AI researchers. These researchers might start by point-
ing out how complicated the books of rules would have to be and how
long it would take you to form each reply. But even taking the experi-
ment on its own terms, their response would be that while of course you
don’t know Chinese, the whole system, including the books of rules and
the scratch paper, does in fact know Chinese. Searle in turn finds this
response silly.

12.2.4. The Problem of Consciousness. It looks very much
as though for both Dreyfus and Searle there is something about human
intelligence that cannot be duplicated in a computer, something that
depends on our biological nature and our evolutionary history. They
are far from alone in feeling that there is a fundamental difference be-
tween people and rule-following machines. The perceived disabilities of
such machines include things like emotion, creativity, free will and—most
fundamentally—consciousness.

Consciousness is the awareness that we all have of ourselves and of
the world. It is an odd sort of thing, since while we are each unavoid-
ably and undeniably aware of our own consciousness, we have no direct
evidence that anyone else is self-aware in the same way. Consciousness
distinguishes emotion from mere physiological response; it distinguishes
creativity from mechanical generation of novel symbol structures; and
it distinguishes free will from blind rule-following. Can rule-following
machines ever be conscious? If not, it might be difficult to accept them
as truly intelligent, no matter how closely they can simulate human be-
havior.

Some proponents of AI regard consciousness as a fundamentally sim-
ple thing, merely the result of one part of the brain monitoring the
activity of some other part. (See, for example, [Minsky].) Machines
would be as good at this as people, or better. This would perhaps have
been Alan Turing’s position. He was well aware of the problem of con-
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sciousness. In his view, if a machine can pass the Turing Test, then it is
useless to deny that it is conscious. It would be like one person denying
that any other person is self-aware, an absurd but perfectly consistent
philosophical theory known as solipsism. In practice, we believe that
other people are self-aware on the basis of purely external evidence that
they think and feel emotion just like we do.

But other people are like us in a way machines are not. Other people
are biological creatures, built in the same way we are. It is natural
to believe that they think and feel in the same way. Things are not
so clear in the case of machines. It is not surprising, then, that some
people think that biology—and not just intellect—is required for true
intelligence. This idea has been vindicated to some extent by some of
the recent developments in the field of AI that are discussed in the next
section.

12.3. AI in the World

While traditional AI has seen many successes and has spun off impor-
tant applications, it has always failed to live up to the most optimistic
predictions, and it has not yet come close to producing true general in-
telligence. One of the surprises along the way has been the difficulty
of getting computers to do things that people do easily, without even
thinking about them—things like picking a familiar face out of a crowd
or walking across a cluttered room. Computers can excel at logic and
can cope with stripped-down microworlds, but when it comes to existing
in a real, complex world, they are outclassed by, say, a cockroach.

In the traditional AI view, a mind—artificial or natural—understands
the world by building an internal symbolic representation. Its connection
with the outside world is really rather tenuous. Its input from that world
is a stream of data that must be filtered, interpreted, and integrated
into its internal representation before that input is of any use. When the
mind needs to act, it manipulates the internal representation to compute
a “plan,” which is actually a detailed program for the sequence of actions
it will take; actually performing the actions is something of an anticlimax.

The quest to create artificial intelligences that can cope with the
real world has led some researchers to move away from this physical
symbol system approach. These researchers note that the way people
and cockroaches deal with the world is not so much by thinking about it
as by reacting and adapting to to it. Why make a representation of the
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world when the world itself is right there in plain view? Why make a
detailed plan (which is likely to be frustrated by complex reality in any
case) when you can just go ahead and act to achieve your goals? This
view has something in common with Hubert Dreyfus’ idea of the way a
person exists in the natural world, but now it is being proposed by people
who want to build artificial entities that will be at home in the world in a
similar way. The rest of this section looks at some of the approaches these
people are taking. It is too early to tell whether these new approaches
will ever lead to true artificial intelligence, but they do offer some hope
of overcoming problems that traditional AI seems unable to handle.12

12.3.1. Neural Nets. The brain is composed of large numbers
of neurons; each neuron gets inputs from other neurons, performs some
computation on those inputs, and sends an output on to yet other neu-
rons. There is a superficial similarity here to a computer, with neurons
corresponding to transistors or logic gates. But the similarity is only su-
perficial, even leaving aside the fact that the brain operates in a complex
chemical broth whose effects we only partly understand.

First of all, neurons do not perform simple logical operations such as
AND and OR. The computations they do are much more complex than
that, so much so that a single neuron is more like a complete central
processing unit than a simple logic gate. The brain as a whole, then, is
more like a huge network of computers doing massively parallel process-
ing than it is like a single computer. (Parallel processing is discussed in
Chapter 10.)

Neurons are also like computers in that their behavior can change
over time. The output of a neuron depends not just on the current
values of its inputs but also on the history of previous inputs. That is,
neurons have a kind of memory or internal state.

Since the brain is the only natural object we know that exhibits in-
telligence, it makes sense to use it as a model for artificially intelligent
systems. Most people assume that if we could make an exact physical
model of the brain, it would share all of the brain’s properties, including
intelligence. Unfortunately, the brain is exceedingly complex, far beyond
our ability to model in detail. However, the structure of the brain pro-

12 These “new” approaches are not actually new. Some of them have deep
historical roots. However, until recently the AI field has been so dominated
by symbol manipulation that alternatives have received little attention. Today,
that is no longer true. For further reading on the subjects covered here, see
[Levy, Artificial Life], [Waldrop], [Caudill and Butler], [Brooks], and [Holland].
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vides inspiration for a kind of stripped-down, simplified model called a
neural net.

A neural net is made up of a number of processing units that I will
call neurodes. (This name is not standard; I have adopted it from
[Caudill and Butler].) A neurode is meant to be a simplified model
neuron. Each neurode has several inputs and computes an output based
on the values of its inputs and on its internal state. The inputs can
come from other neurodes or from outside the neural net; similarly, the
output of a neurode can be connected to other neurodes or to the outside
world. The neural net as a whole, then, is a kind of computational device
that takes some input values and computes one or more outputs. The
structure of a neural net is shown in Figure 12.1.

Each input to a neurode can be an arbitrary real number in some
range of values, let us say between −1 and 1.13 The output of the
neurode is computed as follows: First, each input value is multiplied by
a number called a weight, and the results of these multiplications are
added together. A different weight can be used for each input. This
gives what is called a weighted sum of the inputs. The value of the
sum is then adjusted according to some fixed formula to give the value
of the output. (This adjustment ensures that the output value is in the
correct range; the exact form of the adjustment is chosen to imitate the
way that real neurons work.)

The important point here is that the weights used in the weighted
sum are part of the internal state of the neurode. If the weights are
changed, then the neurode will perform a different computation. A given
neural net can perform many different computations, depending on the
weights used by each of its neurodes. A net could be programmed to
do some desired computation by setting the values of these weights.
What is remarkable—and what makes neural nets so different from other
approaches to AI—is that nets are not programmed at all. Instead, they
are “trained.” They learn from experience!

13 Because neural nets operate on real numbers rather than on zeros and ones,
they are what are called “analog computers” rather than the standard “digital
computers” that we have considered in the rest of the book. Real neurons are
also analog rather than digital devices. A digital computer can approximate
an analog computer to any desired degree of accuracy, and indeed neural nets
are generally simulated on standard digital computers. But there is an intrinsic
inexactness in the computations of analog computers, and a simulation can
therefore never be perfect. Although it is unlikely, it is at least theoretically
possible that this imperfection of analog computation plays some essential role
in intelligence.
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Inputs Outputs

Figure 12.1. A diagram showing the structure of a small but typi-
cal neural net. Each circle represents a neurode. Arrows pointing into
the neurode represent its inputs; each arrow pointing out represents the
output that the neurode computes from its inputs. The neural net as a
whole has two inputs entering from the left, and it computes two out-
puts which exit on the right. Not represented here is the important fact
that neurodes can be modified by changing their internal states. A neu-
ral net can be “trained” to do some desired computation by adjusting
the internal states of its neurodes.

The idea is to start with a neural net in which the weights are assigned
randomly and then to test it on sample data, for which the desired output
is known. Of course, the random net will almost surely give the wrong
answer. When it does this, the weights in the net are adjusted so that
it comes closer to giving the correct answer. The adjustments depend in
a straightforward way on the difference between the correct answer and
the output that the net actually gives, so that there is no need to analyze
why the net gave the wrong answer. (There is a mathematical technique
called backpropagation for adjusting the weights, but the details are
not important here.)

This process is repeated on a number of different sample inputs. The
samples are presented to the net over and over. Each time it gives the
wrong output, the weights are adjusted. Eventually, assuming the net is
large and complex enough, it will give the correct answer for each of the
sample inputs. More important, it will also tend to give correct answers
for similar inputs that were not among the samples.

As an example, consider a problem to which neural nets have been
successfully applied: recognizing hand-printed letters. The image of a
letter can be given as a grid of pixel colors; each pixel provides one
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input for the neural net. The output might be eight bits representing
the ASCII code of the letter. This problem is one that is easy for people
but difficult for computers.

A traditional AI program working on this problem might start by
analyzing the pixel data looking for certain features, such as vertical
lines, closed curves, and free-floating dots. The features that it finds
make up a symbol structure that contains the relevant information about
the input data. This symbol structure could then be analyzed by a set
of rules like those in an expert system. Or it might be compared with
stored symbol structures representing typical letters. Because of the
wide variation in the appearance of hand-printed letters, each step in this
procedure would be difficult and error-prone. It would certainly require
a large amount of careful programming to come up with a program that
will work for a large fraction of possible inputs.

With the neural net approach, there is no programming at all. A few
hundred sample images are used to train the net, as described above.
When the training is complete, the net would be able to identify the
letter represented by each sample image. It would also be able to identify
other images of letters, with a high degree of accuracy.

Neural nets can solve problems that are hard for traditional AI, and
they do so without being programmed with rules or symbol structures.
Of course, it is possible that a careful analysis of a neural net might show
that it is implicitly using rules and symbols. For example, in the net
described above, we might find that one particular neurode has output
1 when the input image contains a closed curve and output −1 when it
does not. This output, then, is a symbol whose meaning is the presence
or absence of a certain feature in the input.

Even if this is true, though, something interesting would be going on.
The rules and symbols, after all, were not carefully programmed in by
a human programmer. Instead, they emerged naturally from a simple
training process.

12.3.2. Complex Systems, Emergence, and Artificial Life.
Throughout this book, complexity has been portrayed as something that
arises by deliberate, planned, step-by-step construction. That is how
computers are built and how programs are written. But that is not the
only way complexity can arise. Sometimes, as in the case of neural nets,
complexity can emerge in systems consisting of simple components in-
teracting in simple ways. Somehow, the complex behavior of an ant
colony emerges from the relatively simple behavior of individual ants.
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Life emerges from the interactions of simple chemicals, and then contin-
ues to increase in complexity through the natural process of evolution.
The complex economy of a large city emerges from the decisions of a
large number of independent individuals acting on the basis of limited,
local knowledge. In each case, something qualitatively new arises on a
high level from simple interactions on a lower level.

This process of emergence in complex systems is something that we
are only beginning to understand. This new understanding is generating
an immense amount of excitement in a surprising variety of fields, in-
cluding economics, psychology, physics, biology, and, of course, artificial
intelligence.

This approach to AI can be seen in a new field called artificial life.
The object of artificial life research is to create artificial systems that
display some of the characteristics of living things. In a way, this is what
traditional AI does—intelligence, after all, is one of the characteristics of
at least some living things. But traditional AI, as we have seen, imitates
the computer-like symbolic processing aspect of intelligence and has a
great deal of trouble with the seemingly simple skills that make it possible
for a living organism to exist in the natural world.

One species of artificial life consists of robots created by Rodney
Brooks and his coworkers at the Massachusetts Institute of Technology.
Traditional AI has produced its own robots, with computer brains that
operate on a symbolic representation of the world. But these intellectual
robots have trouble dealing with the real world.

Brooks wants to create intelligent robots that don’t use symbolic rep-
resentation. So far, the robots that have been built in his lab are not
particularly intelligent. Their abilities might be compared with those of
insects, and in fact one of them looks very much like a foot-long cock-
roach. But Brooks argues that getting robots to do the kinds of things
that insects can do is a long first step towards intelligence. He points
out that in the three-billion-year history of life, intelligence appeared
only in the last few million years. “This suggests,” he writes, “that
problem solving behavior, language, expert knowledge and application,
and reason are all pretty simple once the essence of being and reacting
are available. That essence is the ability to move around in a dynamic
environment, sensing the surroundings to a degree sufficient to achieve
the necessary maintenance of life and reproduction. This part of intelli-
gence is where evolution has concentrated its time—it is much harder”
[Brooks, p. 141].
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Brook’s robots are constructed from fairly simple components that
can each have their own inputs, internal states, and behaviors. For
example, the leg of a robot insect might be capable of behaviors like
“raise,” “lower,” “move forward,” “move back,” and “keep still.” Its
internal state would determine which behavior it is pursuing. That state
might change when a sensor in the leg indicates that the leg has hit
an obstacle, or because of a signal from another component that has
detected a large threatening object moving nearby. The components
in the robot make up a hierarchy in which high-level components can
influence or control those on a lower level, just as the leg in our example
can be influenced by a danger-detecting sensor. But nowhere is there
a central intelligence that thinks and plans. The behavior of the robot
emerges from the interactions of its components with each other and
with the world.

12.3.3. The Genetic Algorithm. The behavior of Brook’s
robots can be surprisingly lifelike, but they lack an essential aspect of
life: They cannot reproduce. And because they cannot reproduce, they
cannot evolve. But there are other artificial life projects that deal with
both reproduction and evolution. The “organisms” in these projects
are simulated on a computer and “live” in a computer-simulated world.
These simulations can be thought of as a way of studying some of the
general characteristics of life and evolution. But from the point of view
of AI, evolution can be thought of as a way of automatically generating
and testing new ideas. It can be used to find solutions to problems
without explicitly programming those solutions. Although evolution is
a fundamentally simple process, it allows structures of great complexity
to emerge in a world—simulated or natural—where it operates.

Many people have experimented with simulated evolution, starting in
the 1950s. But the subject is most closely associated with John Holland,
who put it on a firm mathematical foundation in a 1975 book called
Adaptation in Natural and Artificial Systems. Holland investigated a
process called the genetic algorithm. He starts with a population
of individuals operating in some environment. Each individual has a
fitness value, which is just a number indicating how well it performs in
the environment. The individuals can reproduce, and the new individuals
generated in this way replace existing members of the population.

Evolution can occur because of two factors that affect reproduction.
First, individuals with higher fitness values have a greater chance of
reproducing. To put it another way, fitter individuals produce more
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offspring. This means that the average fitness of the population tends
to increase. Second, when an individual reproduces, its offspring is not
necessarily an exact copy of itself. Reproduction really means “repro-
duction with variation.” The variation is produced by what Holland
calls genetic operators. Examples include mutation, in which a small
random copying error occurs during reproduction, and cross-over, in
which traits from two different individuals are combined in novel ways.
Genetic operators allow the genetic algorithm to generate new traits and
new combinations of traits to be tested against the environment.

In an actual application, an individual might be represented by a se-
quence of zeros and ones that somehow encode its behavior, appearance,
or other information relevant to its fitness. This sequence of zeros and
ones is referred to as a chromosome, by analogy to the structures in
living cells that carry genetic information. With this type of representa-
tion, the mutation and cross-over operations are very simple. Mutation
corresponds to changing a zero to a one or a one to a zero as a chro-
mosome is copied during reproduction. In cross-over, a chromosome for
a new individual is constructed from pieces of the chromosomes of two
existing individuals.

In a static environment, the genetic algorithm can be thought of as a
way of searching for an optimal individual. The fitness of the population
will tend to move towards a maximum value, at which point the popula-
tion will consist entirely of near-optimal individuals, and evolution will
slow down and stop.

Things become more interesting when the environment itself changes
over time, since then the population must continually adapt to the chang-
ing environment. The most interesting case is when the population is
considered part of the environment, since then the environment changes
automatically as the average fitness of the population increases. For
example, suppose that the members of the population compete among
themselves. Perhaps they engage in simulated combat, or they might
compete for resources that they need to reproduce. This competition
has the potential to drive the evolving population to ever-increasing lev-
els of sophistication and complexity.

The genetic algorithm can be used to solve difficult, practical prob-
lems. For example, suppose the problem is to find the optimal shape
for the wings of a certain type of airplane. Once some way is found to
encode the shape as a sequence of zeros and ones, the genetic algorithm
can be applied. Fitness just measures the actual performance of a wing.
(This can be simulated on a computer; you don’t have to build legions of
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airplanes!) People are even using the genetic algorithm to try to evolve
programs that can predict the behavior of the stock market.

More interesting from my point of view, however, are simulated com-
puter worlds in which the evolving entities are lifelike simulated organ-
isms. For it is in such systems that we see hints of the real power of
evolution to generate complexity.

∗ ∗ ∗
The view of the mind as a logic machine, detached from the world

and engaged in a precise exercise in abstract reasoning, has a kind of cold
elegance. But the reality, I think, is messier and more interesting. If an
artificial mind ever looks out with understanding on the world, it will
probably be filled with echoes of SHRDLU and CYC alongside shadows
of neural nets and genetic algorithms and other things not yet imagined.
I suspect that it will be a complex, almost jury-rigged, affair, and that
no one will really understand exactly how it works—not even itself. In
this, it will be very much like us.

Chapter Summary

Can computers be programmed to be intelligent? If the requirement
is just that computers perform tasks that are ordinarily considered to
demand some intelligence, then the answer is surely yes. Artificial in-
telligence in this sense has had significant successes, with more to come.
But true general intelligence has not yet been achieved in computers,
and it is not clear whether it ever will be. Certainly, no computer has
yet come close to passing the Turing Test, proposed by Alan Turing in
1950 as a way of testing machines for intelligence.

The traditional approach to AI is based on the physical symbol sys-
tem hypothesis. Knowledge is represented as a data structure containing
symbols that are manipulated according to programmed rules. Existing
programs deal only with microworlds, but the CYC project is attempt-
ing to build a data structure containing enough facts to support general
intelligence. (It is not yet clear how close it will come to success.) Suc-
cessful applications of traditional AI include expert systems and some
natural language processing programs.

From the beginning, there has been controversy about whether true
artificial intelligence is even possible. Mathematical results proved by
Kurt Gödel and Alan Turing put certain absolute limits on what com-
puters can do. Hubert Dreyfus says that computers, which can deal only
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with facts and rules, can never interact with the natural world in the
way that people do. John Searle claims that even if a computer seemed
to be intelligent, it would be mere simulation, different in kind from the
intelligence of a conscious, feeling human being.

Inspired by the failures of traditional AI, and perhaps by these philo-
sophical criticisms, some researchers are using new techniques that are
informed by the ways in which people and other organisms exist in the
natural world. Many of these approaches make use of the fact that com-
plex behavior can emerge—without complex programming—from sim-
ple components interacting according to simple rules. Examples include
neural nets and the genetic algorithm.

This chapter brings The Most Complex Machine to an end on a philo-
sophical note. Computation, which seemed at first a simple and even
simple-minded thing, turns out to have hidden depth—to the extent
that some people have seriously proposed that the universe itself is a
kind of ongoing computation. It might be, we are told, that we our-
selves are fundamentally similar to the computers we have created, our
intelligence a kind of program being executed by the brain.

Some people are frightened by this idea that we might be machines—
mere machines, they would say. But even if, in the end, we do turn out
to be machines, we are very complex machines indeed, and it would only
show that machines are capable of exceedingly strange and marvelous
things.

Questions

1. There are several possible opinions on the Turing Test. You
might think that computers will eventually pass it, and that when they
do they will have to be considered intelligent. You might think that it
is impossible for a computer ever to pass it. You might think that a
computer could pass it without necessarily being intelligent. You might
imagine a super-intelligent computer that nevertheless could not pass
the test. What justifications can be given for each of these opinions?
What is your own opinion?

2. In traditional AI, a concept such as “dog” must be represented as
part of a symbol structure. The “dog” concept might be linked to other
concepts such as “mammal,” “pet,” or “fur.” Give a more detailed de-
scription of a symbol structure that represents the concept “dog.” (You
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might try drawing a structure in which linked symbols are connected by
lines.) To what extent do you think the structure captures the meaning
of the word “dog”?

3. Imagine a computer program that is supposed to understand
children’s stories. (Programs that attempt to do this have been written.)
The program will need rules about how typical things found in such
stories might behave. One such rule might be, “All birds can fly.” If the
story is about Polly, a bird who escapes when its cage is left open, the
program can deduce that Polly probably flew away even though that fact
is not explicitly stated in the story. Such deductions are part of what it
means to understand. The problem is that the rule isn’t true. Not all
birds can fly. For example, penguins are birds but cannot fly. List as
many other exceptions to the rule as you can find, even silly ones such
as, “A bird that is too afraid to fly cannot fly.” Might the exceptions
you list be relevant to understanding a children’s story? What does this
example show about the difficulty of encoding human knowledge as rules
and symbol structures?
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EACH CHAPTER in this text ends with a list of questions for your con-
sideration. These questions are meant to be thought about and/or dis-
cussed, and many of them don’t really have single, definite, right answers.
However, here are some thoughts of my own on possible answers—along
with, in a few cases, extra discussion of interesting points not covered
elsewhere in the text. These answers are meant to be read after you have
already thought about the questions, but of course, you can use them as
you like.

Chapter 1 Answers

1.1. How can we convert a base-ten number to the base two? For
a power of two, the answer is easy. You just get a one followed by
the appropriate number of zeros. For example, 25 = 1000002. The
next observation is that in base two, it is trivial to add up powers of
two provided that all the powers are different; each power of two just
contributes a one to the final answer. For example, 100002+10002+102 =
110102. So, the method of breaking a number down into a sum of distinct
powers of two, converting each power of two into binary, and then adding
the resulting numbers does always work.

Of course, you must have distinct powers of two for this to work
easily. It is true that 10 = 4+ 4+ 2 = 1002 +1002 +102, but this leaves
us with the problem of adding 1002 +1002, which is easy enough in this
case, but not so easy as adding numbers with ones in different positions.
The problem, then, is to systematically pull powers of two out of a base
ten number without any duplications. Starting with the largest power
of two contained in the number is one way of doing this. (Once you have
pulled out the largest power of two, what’s left over will be a smaller
number that cannot contain a second power of two of the same size.)

375
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1.2. Note that the question here is simply to find the number of
different sequences made up of k letters, where each letter is A, T, C,
or G. Although the question talks about DNA, that’s really just an
application of the answer and has nothing to do with finding the answer.

For binary numbers, we found that increasing the number of digits
by one would double the number of possible sequences of digits. This
was because we could take each sequence of k digits and produce two
sequences of length k + 1 from it, by tacking on either a zero or a one.

We can do something similar here. From each possible sequence of
k letters, we can produce four different sequences of length k + 1 by
tacking on either an A, a T, a C, or a G. For example, from the sequence
ATAAC, we can make ATAACA, ATAACT, ATAACC, and ATAACG.
It follows that the number of sequences of k + 1 letters is four times the
number of sequences of k letters. Since there are 4 sequences consisting
of just one letter, there will be 4× 4 sequences of length two, 4× 4× 4
of length three, and so on. In general, there will be 4k sequences of
length k.

1.3. For a circuit with k input wires, there are 2k different ways
of setting these wires to be on or off. The easiest way to see this is to
note that when we think of on as being the same as 1 and off as being
the same as 0, then the setting of the k wires represents a k-bit binary
number. Since there are 2k different k-bit binary numbers, there are 2k

different possible settings of the wires.

The second question, dealing with the number of possible circuits
with k inputs, is even more abstract and therefore more difficult. Think
of it like this: You are given a table listing all the possible combinations
of k inputs, where each input can be either off or on. The problem is to
figure out how many different ways there are to fill in the outputs. For
two inputs, the table would look like:

Input 1 Input 2 Output

off off

off on

on off

on on

The question is, in how many different ways can the last column be filled
in with on’s and off’s? But this isn’t so hard after all. There are four
spaces, each of which can be filled in in two ways. The number of ways
of doing this is the same as the number of 4-bit binary numbers, that
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is, 24. In general, if there are n rows in the table, then the number of
ways of filling in the column of output values will be 2n.

To finish this, we have to know what n is. Suppose that there are
k input wires. The number of rows in the table is just the number of
different ways that the values on these wires can be set. From the first
part of the problem, we know that this number is 2k. That is, n, the
number of rows in the table, is 2k. So, 2n, the number of ways of filling

in the output values, is 22
k

, which is our final answer.
Even for small values of k, this can be very large number. For circuits

with five inputs and one output, 2k would be 32, and the number of
different input/output tables would be 232, which is more than four
billion. For k = 10, the number is 21024, which is almost unimaginably
huge.

1.4. If you build a three-input AND gate from two regular two-input
AND gates, the circuit you build contains eight transistors—four in each
two-input AND gate. By building the three-input AND gate directly from
six transistors, you save two transistors. Obviously, if you are going to be
using a lot of three-input AND gates, the savings will be substantial. On
the other hand, we gain a great deal in conceptual simplicity by building
everything up from the three basic kinds of gates, and we can do so
without knowing anything about transistors at all. The trade-off, then,
is between conceptual simplicity and the cost of the physical components
of the circuit.

There is often such a trade-off, and it is not always obvious how the
conflict between them should be resolved. But conceptual simplicity is
important and can often help save development and maintenance costs.
Often, this will more than make up for the costs of the components
used.

Diagrams of the two possible ways of constructing a three-input AND

gate are shown in Figure A.1.

1.5. After a subroutine ends, the computer must jump back to the
point in the program from which the subroutine was called. This point is
called the return address and is just a binary number. (The computer
can get this number from the program counter before it jumps to the
start of the subroutine.) While the computer is executing the subroutine,
it must remember the return address. It might store this data in some
particular memory location, say, memory location number 38,543. Then,
every subroutine could end with the instruction, “Go back to the return
address stored in memory location 38,543.”
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Second

Input

Third

Input
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AND
AND

Figure A.1. Two ways of constructing a three-input AND gate. The
top circuit is constructed from four transistors; the one below, from two
two-input AND gates. The symbol used for an AND gate in the lower
diagram is introduced in Chapter 2.

Using a single memory location will not work, however, if one sub-
routine calls another. The problem is that when the return address for
the second subroutine is placed in location 38,543, it will erase the return
address for the first subroutine. The computer will then have no way to
get back to the point in the program from which the first subroutine was
called. One solution would be to use a different memory location for each
subroutine. The subroutine is itself stored in memory. The computer
could use the location just after the end of each subroutine to store the
return address for that subroutine. The instruction at the end of the
subroutine would say, “Go back to the return address stored in the next
memory location.”

This works fine except for one subtle but surprisingly important pos-
sibility. What happens if a subroutine calls itself ? This is called recur-
sion, a subject that you will encounter again in Chapter 7. The problem
here is that if the return address is simply stored in memory after the
end of the subroutine, then the second call to the subroutine will erase
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the return address for the first. The solution is for the computer to keep
a list of all the return addresses of currently active subroutines, stored
in a portion of memory set aside for this purpose. When a subroutine is
called, a new return address is added to the end of the list; when the sub-
routine ends, the last return address in the list is used. This list might
contain several different return addresses for the same subroutine, if that
subroutine calls itself. This is discussed in more detail in Section 7.4.

The last part of the question—to explain why it is essential for a
subroutine to be able to make use of other subroutines—is related to the
idea of a complex system as having many different levels of complexity.
On each level, new components are made by chunking together simpler
components from the levels below. The step from one level to the next
has to be small enough to be comprehensible, so that real complexity
cannot be achieved in just one step. If subroutines could not use other
subroutines, we would be limited to just one level of chunking, and our
ability to program solutions to complex problems would be greatly lim-
ited. In fact, we can write subroutines to solve fairly easy problems, and
then use them in subroutines to solve slightly complex problems, which
can be used in turn to solve moderately complex problems and so on to
as many levels as we need.

1.6. Structured complexity is everywhere. In biology, an organism
is made up of organs, which are made up of cells, which are made up of
smaller components. In the other direction, individual organisms can be
grouped into species, which are grouped into genera, then into families,
and so forth.

Books are made up of chapters, sections, subsections, paragraphs,
sentences, words, and letters—on different levels of complexity. Political
organizations are often divided into national, state, county, and munic-
ipal levels. Armies have divisions, brigades, and platoons. Time can be
measured in eons, millennia, centuries, years, days, hours, minutes, or
seconds.

A planet or star is just a lot of atoms, organized in the right way.
Stars and planets can get together and make solar systems. A bunch of
solar systems make a galaxy, while galaxies themselves can be organized
into clusters.

There are lots of examples. Just look around. And think about how
dealing with an organized world, instead of with a chaos of details, makes
your life easier.
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A

B

A

B

Figure A.2. The top circuit corresponds to the expression (A AND B)
OR ((NOT A) AND (NOT B)). Its output is on whenever its inputs are
the same. For the bottom circuit, the outputs are on whenever the in-
puts are different, that is, when A is true and B is false or when A is
false and B is true.

Chapter 2 Answers

2.1. The circuit whose output is on whenever its two inputs are the
same is shown in Figure A.2. A circuit with two inputs whose output is
on whenever the two inputs are different corresponds to the expression
(A AND (NOT B)) OR ((NOT A) AND B). This circuit is also shown in
the figure.

Now, saying that the two inputs of a circuit are different is exactly
equivalent to saying that they are NOT the same. Given a circuit that
computes whether its inputs are the same, we could feed the output from
that circuit through a NOT gate. The output from the NOT gate would
then be on precisely when the inputs to the circuit are different. That is,
if we feed the output from the top circuit in Figure A.2 through a NOT

gate, we obtain a circuit equivalent to the bottom circuit in that figure.
Suppose we have a large input/output table in which most of the

outputs are specified to be true. The best way to proceed is to build a
circuit that does exactly the opposite of what that table specifies! That
is, we build a circuit whose output is on precisely when the table says
that the output should be off. The circuit that we really want can
then be obtained by feeding the output from the circuit we have built
through a NOT gate. This will produce a circuit that is smaller than the
one that we would have obtained by following the specifications in the
table directly.
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A B NOT (A AND B) (NOT A) OR (NOT B)

false false true true
false true true true
true false true true
true true false false

Figure A.3. A truth table that verifies DeMorgan’s law, namely that
NOT (A AND B) ≡ (NOT A) OR (NOT B). The last two columns of
the table show that these two expressions have the same value for any
possible combination of input values.

2.2. I will leave it as an easy exercise to draw the circuits represent-
ing the two sides of DeMorgan’s Law. Figure A.3 shows a truth table
which demonstrates that the two sides of DeMorgan’s laws have the same
value for any possible combination of inputs. (A truth table is simply a
systematic way of listing all possible inputs to an expression of Boolean
algebra and finding the value of the expression in each case. Truth tables
are effective ways of verifying that the laws of Boolean algebra are in fact
true.)

An English example of DeMorgan’s law is the statement, “This card
is not the ace of spades.” This can be rephrased as, “It is NOT true that
both (this card is an ace AND this card is a spade).” Now, ask yourself
how a card can fail to be both an ace and a space. It can do so either
by failing to be an ace OR by failing to be a spade. Thus, a card is “not
the ace of spades” if and only if either “it is not an ace” or “it is not a
spade” (or if it is neither, which is included in the meaning of the logical
operator OR).

As another example, we would say that it is NOT a warm and sunny
day if it is NOT warm OR if it is NOT sunny.

There are actually two parts to DeMorgan’s law. The second part
says that NOT (A OR B) ≡ (NOT A) AND (NOT B). You can easily verify
this with a truth table. For an example in English, saying “It is neither
warm nor sunny” is equivalent to asserting that both “It is not warm”
and “It is not sunny.”

2.3. An input/output table for a full adder is shown in Figure A.4.
The circuit built from this is quite complicated, and I leave it as a
straightforward but annoying exercise.

A circuit built directly from the table in Figure A.4 is much more
complicated, in the sense of having more gates, than the circuit we built
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A B Carry-in Sum Carry-out

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure A.4. A table showing the two outputs of a full adder circuit for
each possible combination of values of its three inputs. The outputs are
the two digits of the sum obtained when the three input bits are added.
For example, the sum 12 + 12 + 02 = 102 is represented by the seventh
row of the table.

from two half-adders. Therefore, it would be more expensive and con-
sume more power. In this practical sense, it certainly makes a difference
which version we use. On the other hand, the two circuits have exactly
the same input/output behavior. In that sense, they are completely in-
terchangeable, and in this theoretical sense it makes no difference which
one we use.

In general, we should prefer the “simpler” solution to a problem,
but it is not always clear what that means. When cost is paramount,
the simpler circuit is the one with fewer gates. But if we are primarily
interested in understanding what is going on, then conceptual simplicity
is more important, even if the result is a circuit with more gates.

2.4. Given any logic circuit that does not contain a feedback loop,
it is possible to write down an expression of Boolean algebra that gives
the output of the circuit as a function of its inputs. (I am assuming here
that the circuit has only one output; if it has several, then one Boolean
expression is needed for each of its outputs.) The key observation is that
we can actually write down expressions for the outputs from all of the
individual gates in the circuit; the final output from the circuit is just a
special case.

The first step is to label the inputs with letters, such as A and B.
Then, we go on to label each output wire from each gate in the circuit
with the logical expression computed by that gate. Pick any gate in the
circuit such that the input wires to that gate are already labeled (either
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with individual letters or with expressions computed by other gates).
Suppose that the gate is a NOT gate and that the label on the input
wire is P . Then label the output of that NOT gate with “(NOT P )”. If
the gate is an AND gate and if the two inputs to the gate are labeled P
and Q, then label the output with “(P AND Q)”. An OR gate is treated
similarly. Repeat this process until the output from every gate is labeled,
including the final output from the entire circuit. A circuit labeled in
this way is shown in Figure 2.3.

How do we know that all the output wires will eventually be labeled?
Well, if there’s a feedback loop in the circuit, they won’t be. It is not
possible to label the output from a gate until after its inputs have been
labeled. If the gate is part of a feedback loop, however, one of the inputs
to the gate is connected, directly or indirectly, to the output from the
gate. This means that that input cannot be labeled until sometime after
the output is labeled. This gives a contradiction: We can’t label the
output unless the input is already labeled, but the input depends on the
output.

If there is no feedback loop (and assuming that all the input wires to
all the gates in the circuit are in fact connected to something), then our
method for labeling outputs works. Essentially, a loop is the only thing
that can go wrong. Actually proving this requires a bit of mathematical
thinking. (Read this if you want.)

We have to show that as long as there are any gates in the circuit
whose outputs are unlabeled, there must be at least one gate whose
inputs are all labeled but whose output is unlabeled. Pick any gate,
G1, whose output is unlabeled. If it has an unlabeled input, let G2 be
the gate that produces that input. If G2 also has an unlabeled input,
then let G3 be the gate that produces that input, and so forth. There
can’t be any repetitions in this list because a repetition would be a
loop (some Gn gets input from Gn+1, which gets input from Gn+2, . . . ,
which gets input from Gn). If there are no repetitions, the sequence G1,
G2, . . . can’t continue forever since there are only a finite number of
gates in the circuit. So, the list must end eventually with some gate that
has no unlabeled inputs. This is what we wanted to show. Finding a gate
whose inputs are labeled allows us to label its output and to continue
the labeling process.

2.5. If a NOT gate is sitting by itself, unconnected to anything, then
there is no power being supplied to its input; its input is off. Since the
NOT gate reverses its input, the output is on. (Remember that the NOT
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gate has an internal power supply that produces the voltage on its output
wire.) Now, suppose that you connect the output wire of the NOT gate
to its input wire.

At the very moment you do this, the input to the gate is still off,
but a tiny fraction of a second later the electric impulse from the output
wire reaches the input. When the input to a NOT gate is turned on, its
output goes off. (Again, only after the small period of time it takes for
the signal to pass through the gate.) So, now the output is off. But the
output is connected to the input, so this turns the input off. But when
the input goes off, the output turns on again. But when the output turns
on, it turns the input on. . . .

This cycle repeats regularly. The output from the gate alternates
between on and off. The time it takes to complete an on/off cycle is just
the time it takes for an electrical signal to pass through the gate and
over the wire connecting the output to the input. The NOT gate is really
a kind of clock that turns its output wire on and off as it “ticks.”

2.6. A multiplexer circuit is shown in Figure A.5. The second cir-
cuit in that figure uses four multiplexers and a four-bit adder to produce a
circuit that can either add or subtract, depending on whether the control
wire, Select-subtract, is off or on. Note that Select-subtract is connected
to the Select wire of each of the four multiplexers and is also connected
to the Carry-in input wire on the right end of the addition circuit. (Refer
to Figures 2.9 and 2.10 if you have forgotten the details of how addition
and subtraction circuits work.)

When Select-subtract is off, the input data for the calculation is fed
unchanged into the addition circuit, and the Carry-in at the left of the
addition circuit is turned off. So, the addition circuit simply computes
the sum of the two four-bit inputs as usual.

If Select-subtract is on, then the ones complement of the second four-
bit input is fed into the addition circuit. Furthermore, the Carry-in wire
is turned on. This is the setup for doing subtraction, as shown in Fig-
ure 2.10.

We have thus arranged for the same circuit to be used for both ad-
dition and subtraction. To complete the redesign of the ALU, we need
only make a minor modification in the circuit shown in Figure 2.13, to
account for the fact that the addition and subtraction circuits have been
consolidated. A simple way of doing this is to replace the wires labeled
“from Subtraction Circuit” and “from Addition Circuit” with a single
wire that comes from the combined circuit.
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Figure A.5. The top circuit in this figure is a multiplexer. Its out-
put will be equal to the value of input A if the Select wire is on, and
will be equal to input B if the Select wire is off. The bottom circuit can
perform both additions and subtractions, as explained in the answer to
problem 2.6. (Refer to Figures 2.9 and 2.10 for the original addition
and subtraction circuits.)

Because of the complexity of an addition circuit, these modifications
will significantly reduce the size of the ALU without changing its func-
tion. (But, in fact, the main reason for working through this problem is
to further your understanding and intuition about the way control wires
and gates can be used to control the flow of data through a circuit.)

Chapter 3 Answers

3.1. We cannot connect the ALU’s input wires directly to the out-
put from the accumulator. The problem is that when the ALU performs
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a computation, the Load-AC-from-ALU control wire is turned on to load
the answer into the accumulator. All this takes time, and the value
in the accumulator will change before Load-AC-from-ALU is turned off.
The output from the accumulator will change at the same time. If the
output from the accumulator were used directly as input to the ALU,
then the input to the ALU would change as well. But this might then
cause the output from the ALU to change (from the right answer to
something else), which can cause a further change in the contents of the
accumulator, and so on.

In effect, as long as Load-AC-from-ALU is on, we have created an
uncontrolled feedback loop that will have unpredictable (and useless)
results. The X register attached to the ALU’s input stops this loop from
forming. With the X register in place, a loop could be formed only if
both the Load-AC-from-ALU and the Load-X-from-AC wires were turned
on at the same time, opening up both “information gates” that control
the flow of information in the loop. That will never happen.

3.2. This one I’m not going to do for you. A complete drawing of
xComputer is pretty complicated. All the interconnections between the
various components are indicated in Figures 3.1, 3.4, and 3.6. It would
be useful to put it all together, maybe with pretty colors.

3.3. If all programs were written correctly the first time, it would
never happen that a meaningless instruction code would be loaded into
the instruction register. In the real world, though, it could easily happen.
For example, a JMP instruction might incorrectly jump to a memory
location that contains data instead of part of the program. Ideally, the
computer would be able to indicate in some way that an error has been
detected. In our simple model computer, perhaps the best that can
be done is to have the computer halt. This is certainly better than
having the computer ignore the instruction and go on as if nothing has
happened! It is usually better to get no result at all than to get an
incorrect result.

In the design of xComputer as given in this chapter, no account is
taken of the possibility of illegal instructions. For example, the leftmost
two bits of a legal instruction code, which indicate the addressing mode
for that instruction, must be 00, 01, or 10. A value of 11 is not allowed.
It is completely predictable what would happen when an illegal instruc-
tion code beginning with 11 is loaded into the instruction register, but
only with a detailed analysis of the construction of the computer. In
Figure 3.14, for example, both of the wires Indirect and Constant—which
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indicate the addressing mode—will be turned on for an instruction be-
ginning with 11. This will cause all those control wires to come on that
would ordinarily be turned on for either constant or indirect addressing.
Although something definite and predictable would happen, it would
probably look pretty random.

To avoid this, the Control circuit should be redesigned so that every
illegal instruction is treated exactly like a Halt instruction. This is no
different in principle from the way we designed the Control circuit in the
first place, but the logic circuit that controls the Stop-clock wire will be
more complicated. (If you would prefer to have xComputer ignore illegal
instructions, you could have it turn on Set-COUNT-to-zero instead of
Stop-clock when such an instruction is detected. You would still have to
redesign the Control circuit to do this.)

3.4. The Control circuit in xComputer consists of 26 subcircuits,
each responsible for turning one control wire on and off as necessary to
execute machine-language instructions. This problem asks us to “de-
sign” the subcircuits for the Load-PC-from-IR and Load-PC-from-memory
control wires. As explained in Section 3.3, we can begin by looking at
the lists of steps for executing each instruction, and we can use these lists
to write down a Boolean expression that specifies when each control wire
is to be turned on. The Boolean expressions are given in terms of the
outputs from the decoder circuits shown in Figure 3.14. These Boolean
expressions are in fact the designs for the circuits that we want.

Load-PC-from-IR is used during step 4 of the executions of the JMP,
JMZ, JMN, and JMF instructions, as shown in Figure 3.11. This control
wire is used for the direct-addressing versions of the commands; it moves
the location number specified in the data bits of the instruction from the
instruction register to the program counter. For the conditional jump
instructions, this is done only if some condition holds. The wires AC=0,
AC<0, and FLAG=1 in Figure 3.14 are used to test the conditions for the
JMZ, JMN, and JMF instructions. So, the expression that determines
when Load-PC-from-IR is to be turned on is:

Load-PC-from-IR = Step4 AND Direct AND

( JMP OR (JMZ AND AC=0)
OR (JMN AND AC<0)
OR (JMF AND FLAG=1) ).

(You have to remember that Step4, Direct, JMP, AC=0, and so on are
just the names of wires, from Figure 3.14, that are available as inputs to
the circuit that we are designing.)
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Load-PC-from-memory didn’t show up in any of the lists of steps given
in Chapter 3. This is because it is needed only for the jump instructions
that use indirect addressing, JMP-I, JMZ-I, JMN-I, and JMF-I. The
lists of steps for these instructions were left as an exercise. In direct ad-
dressing, the data bits in the instruction specify the location in memory
to which the computer should jump when the instruction is executed.
In indirect addressing, the data bits again specify a location in memory,
but the contents of that location specify another location to which the
computer should jump. That is, the new value for the PC comes from
memory, not from the instructions register. The data from the instruc-
tion register is loaded into the address register to specify where the data
for the PC is to be found. (Got that?) The steps for executing JMP-I
are

Step 4 (JMP-I): Turn on Load-ADDR-from-IR.
Step 5 (JMP-I): Turn on Load-PC-from-memory.
Step 6 (JMP-I): Turn on Set-COUNT-to-zero.

The steps for JMZ-I, JMN-I, and JMF-I are similar but include a test
in step 5 to see whether the appropriate condition is true. The Boolean
expression for Load-PC-from-memory is thus

Load-PC-from-IR = Step5 AND Indirect AND

( JMP OR (JMZ AND AC=0)
OR (JMN AND AC<0)
OR (JMF AND FLAG=1) ).

3.5. The xComputer was designed to manipulate sixteen-bit binary
numbers (as data), six-bit numbers (as instruction codes), and ten-bit
numbers (as addresses for specifying locations in memory). For example,
each memory location holds a sixteen-bit number, and the main memory
has sixteen data input wires and sixteen data output wires for reading
and storing numbers. But it has only ten address wires for specifying
locations.

The ALU is designed with sixteen-bit inputs and outputs. On the
other hand, the program counter and the address register, which both
hold addresses of locations in memory, are ten-bit registers.

The limitation to ten address wires was more or less forced on us
by two other decisions: the decision to represent a machine-language
instruction with a single sixteen-bit number (rather than using two con-
secutive memory locations to store a single instruction, for example) and
the decision to use six-bit instruction codes, leaving room for only ten
data bits in our sixteen-bit instructions.
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Label Instruction

LOD Packed
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
STO Char1
LOD Packed
AND-C 255
STO Char2

Packed: data
Char1: data
Char2: data

Label Instruction

LOD Char1
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
OR Char2
STO Packed

Packed: data
Char1: data
Char2: data

Figure A.6. Two assembly-language programs for manipulating ASCII
character codes. Although we think of it as representing a character,
an ASCII code is really just an eight-bit number. The program on the
left takes a sixteen-bit number, initially stored in the memory location
labeled Packed, breaks it into two eight-bit numbers, and stores them in
the memory locations labeled Char1 and Char2. The second program
reverses the process. It combines two eight-bit numbers from Char1 and
Char2 and stores the result in Packed.

We could easily redesign xComputer to use data with more than
sixteen bits. Making, say, a thirty-two-bit adder is no more conceptually
difficult than a sixteen-bit adder. Essentially, we would double the size of
most of the components used in building the computer. Once we do this,
we could have more address bits in our instructions. Assuming that we
still use six-bit instruction codes, that would leave twenty-six bits that
we could use to specify an address. We could then use a main memory
with up to 226, or about 67 million, locations.

3.6. Figure A.6 shows programs for converting characters between
“packed” and “unpacked” format. The first program extracts two eight-
bit numbers from a single sixteen-bit number. It assumes that the
sixteen-bit number is stored in the memory location labeled Packed be-
fore the program is run. If the original sixteen-bit number is
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a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8

where the a’s and b’s stand for zeros or ones, then shifting it right eight
times converts it to 00000000a1a2a3a4a5a6a7a8. This gives us the first
eight-bit number we want. The second eight-bit number is computed as

00000000111111112 AND a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8
= 00000000b1b2b3b4b5b6b7b8

where “AND” here means a sixteen-bit AND operation. Note that in the
program, 00000000111111112 is given in base-ten form as 255.

For the second program, we are given two eight-bit numbers in mem-
ory locations Char1 and Char2, and the object is to combine them into a
single sixteen-bit number and store them in the location named Packed.
Let’s suppose that the given numbers are 00000000a1a2a3a4a5a6a7a8
and 00000000b1b2b3b4b5b6b7b8. Shifting the first left eight times converts
it to a1a2a3a4a5a6a7a800000000. We can then combine this with the
second number using a sixteen-bit OR operation:

a1a2a3a4a5a6a7a800000000 OR 00000000b1b2b3b4b5b6b7b8
= a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8

This gives the result we want to store in Packed.
Working through this example can help you gain some understand-

ing of why the shift operations and the sixteen-bit AND, OR, and NOT

operations should be included in a computer’s instruction set.

3.7. Implementing subroutines on xComputer is not all that hard,
and it provides a natural use for the otherwise odd-looking instruction
JMP-I. (Recall that JMP-I N tells the computer to fetch the contents
of memory location N and to jump to the address indicated by the
number it finds there.) We decree that the memory location immediately
following a subroutine will be used to store the return address. The
program that calls the subroutine is responsible for storing the return
address there before jumping to the start of the subroutine. In outline,
the subroutine would look like this:

Label Instruction Comment

Sub: . . . ;start of subroutine

. . . ;instructions for subroutine

JMP-I RtnAdr ;jump to location stored in RtnAdr

RtnAdr: data ;holds the return address

The dots represent whatever instructions constitute the subroutine. The
subroutine actually ends with the JMP-I instruction. The next loca-
tion, labeled RtnAdr, is where the program must put the return address.
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The instruction “JMP-I RtnAdr” means “jump to the memory location
whose address is stored in location number RtnAdr.”

The program would call this subroutine with the three instructions:

LOD-C Next
STO RtnAdr
JMP Sub

Next: . . .

The line labeled Next can contain any instruction. This is where the
program will pick up after the subroutine has been executed. Remember
that the label Next is really a number. The instruction “LOD-C Next”
will load that number into the accumulator. From there, it is stored into
location RtnAdr, where the JMP-I at the end of the subroutine expects
it. Once the return address has been set up, the JMP instruction will
begin execution of the subroutine.

By the way, sometimes a program and a subroutine must pass data
back and forth. Such data can be handled in the same way that we have
handled the return address. If the program must provide some data for
the subroutine, it can load it into a location that follows the subroutine in
memory, and the subroutine can access it from there. Data to be passed
back from the subroutine to the program can be handled similarly.

3.8. A complete assembly-language program for multiplying two
numbers is shown in Figure A.7. As explained in Subsection 2.2.4, mul-
tiplication can be performed as a sequence of shift operations and addi-
tions. You should look at the example in that section again and work
some additional examples.

If N1 consisted entirely of ones, then we would multiply another
number N2 by N1 by repeatedly shifting N2 to the left and adding up
all the numbers we generate in this way. The number of digits in N1
would tell us how many times to do this. For example, if N1 = 11112,

11112 × 11012 = 11012 + 110102 + 1101002 + 11010002.

(Shifting N2 to the left is the same as multiplying it by 102, so that
11010002 = 11012×10002, for example. Combine this with the fact that
11112 = 12+102+1002+10002 to see why this method of multiplication
works.)

If N1 contains a zero, it just means that we should omit the corre-
sponding term on the right of the sum. To keep things straight, though,
we still should shift N2 left for each step:

10102 × 11012 = (0× 11012) + 110102 + (0× 1101002) + 11010002.
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Label Instruction

start: LOD-C 0
STO ANS

loop: LOD N1
JMZ done
SHR
STO N1
JMF doAdd

shift: LOD N2
SHL
STO N2
JMP loop

doAdd: LOD N2
ADD ANS
STO ANS
JMP shift

done: HLT
N1: data
N2: data

ANS: data

Figure A.7. A program for multiplying two numbers. The numbers
must be stored in the locations labeled N1 and N2 before the program
is run. The product of these two numbers will be placed in the location
labeled ANS. This will only give the correct answer if that answer can
be expressed with sixteen or fewer bits.

So there is really nothing mysterious here. We need a loop that will
repeatedly shift N2 to the left and either add or not add the result into
a sum, depending on whether the next bit in N1 is one or zero. Testing
the bits of N1 requires some ingenuity, and it gives a chance to actually
use the FLAG register and the JMF instruction. Recall that when the
ALU is used to shift N1 to the right, the rightmost bit will “fall off”
into the FLAG register. The JMF instruction can then be used to test
whether that bit was a zero or a one. In our multiplication program, we
repeatedly shift N1 to the right at the same time that we are shifting
N2 to the left. Each time we do this, we test whether the bit that falls
into the FLAG register is one. If it is, we add the (current) value of
N2 into the answer and then shift N2 to the left. If the bit in the flag
register is 0, we skip the addition but still do the left shift. We know
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we are done when the value of N1 becomes zero (because we have then
accounted for all the ones that the original number contained).

All this is hard enough to say in English. Getting it into assembly
language is something of a chore, but at least the result is unambiguous.
I encourage you to trace the step-by-step execution of the program in
Figure A.7 for a few examples.

Here is a brief summary of how this program works: The first two
instructions in the program put a zero in memory location ANS ; this is
the starting point for the sum that will be the answer at the end of the
program. The five instructions beginning with loop test whether N1 is
zero (which tells us our answer is complete), shifts it to the right, and
tests whether the bit that falls off the end is a one. If it is, then the
instructions beginning with doAdd will add the current value of N2 to
the sum. Whether or not the addition is performed, the instructions
beginning with shift will shift N2 to the left and then jump back to the
beginning of the loop.

Chapter 4 Answers

4.1. This problem asks you to “play computer.” That is, you are
supposed to follow a definite, step-by-step procedure in which the actions
you perform and the the decisions you make are based only on the explicit
instructions you are given and the very small amount of data you can
inspect at a given time. When deciding what to do next, you are not
allowed to remember what has happened in the past, and you cannot
let yourself be influenced by the meaning of what you are doing. The
fact that computers operate in this way is one of the things that makes
writing programs for them so difficult. Playing computer can help you
get a feel for just how simple-minded and literal-minded computers are,
and that can help to make programming easier.

You should sit down with Figure 4.1 and a pencil. Work through the
six-step procedure, writing in changes to the values listed in the various
memory locations. Start with step 1: Cross out the 0 in location 1 and
put a 1 there. For step 2, put a 0 in location 0. (There is already a 0
there, so this doesn’t change anything this time around.)

For step 3, look at each input value in turn, in locations 4, 8, 10, 14,
and 16. For each of these values, check the output value that is its source.
For example, the value in location 4 is the input to a NOT gate, which is
attached—as specified in location 5—to the output wire whose value is
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in location 1. Since the value in location 1 is 1, you have to change the
value in location 4 to match this. So, cross out the 0 in location 4 and
write in a 1. As you go on to check each of the other input values, you
will find that the value listed in location 16 for the second input of the
OR gate also changes.

In step 4, check that the output values stored in locations 3, 7, and 13
are correct for the given inputs to each gate. Location 3 represents the
output from a NOT gate. The input for this gate (in location 4) is listed
as 1, so the output should be 0. Since the output is listed as 1, you have
to cross out the 0 in location 3 and write in a 1. Also, according to the
directions in step 4, you should cross out the 0 in location 0 and write
in a 1. The output value for the OR gate also changes; the output of the
AND gate does not.

Then, in step 5, the fact that there is a 1 in location 0 means that
you have to return to step 2 and repeat steps 2 through 5 again.

Soon enough, after doing this for a while, you should say, “Oh yeah,
now I see how it works.” At that point, of course, you have accomplished
the purpose of the exercise. You have extracted the meaning from the
details of the individual steps in the program.

4.2. The reason we don’t do this is that a Turing machine can’t do
anything interesting by staying in the same cell. The action of a Turing
machine at a given time is completely determined by the state it is in
and by the symbol that it reads. If it did sit on the same cell for a while,
its ultimate action—writing some symbol and then moving left or right
or halting—would be completely determined by the initial symbol that
it saw in that cell and the initial state it was in when it first entered
that cell. Whenever it encountered the same symbol in the same state, it
would go through the same sequence of operations before performing the
same ultimate action. So, we might as well make it skip the intermediate
steps and go directly on the ultimate action it would take eventually in
any case.

By the way, even if the Turing machine sat on the same cell cal-
culating forever, it would still not be doing a particularly interesting
calculation. There are only a finite number of different symbols, and the
machine has only a finite number of states. If it stays in the same cell
forever, rather than straying over its infinite tape, only the single sym-
bol in that one cell will ever have any effect. Eventually in the course of
its infinite calculation, the Turing machine must find itself in the same
state and reading the same symbol as at some previous time. Once that
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happens, it will just go through the same series of steps again and again,
returning to the same situation over and over in an infinite cycle.

4.3. The first table in Figure A.8 is a specification for a Turing
machine that subtracts one from its input. The assumption is that the
input is a binary number and that the machine is started on the rightmost
digit of that number. This is a fairly simple machine that will leave
leading zeros in the answer on the tape. (For example, on input 1000, it
will output 0111 rather than just 111.)

If the rightmost digit is a 1, all that is necessary to subtract 1 from
the input is to change that rightmost digit to a 0. In this case, when the
machine is started in state 0, it will see the 1, write a 0, move right and
change to state 1. In state 1, it will encounter a blank, move left, and
halt.

If a number ends in a sequence of one or more 0’s, each of those 0’s
should be changed to a 1, and the 1 immediately to their left should be
changed to a 0. The second line of the specification table takes care of
changing the 0’s to 1’s, and then the first line takes care of changing
the 1 to a 0. After that, lines three and four will move the machine back
to its original starting point, where it will halt.

If this machine is started on a number consisting of just a sequence of
0’s, it will move left, converting those 0’s to 1’s until it sees a blank. At
that time it will take the default action of moving to right and halting.
(It is not clear what it should do in this case anyway!)

The much more complicated second table in Figure A.8 adds two
binary numbers. It does this by repeatedly subtracting 1 from the sec-
ond number and adding 1 to the first number until the second number
becomes 0. It then erases the second number so that only the answer
remains on the tape. Embedded in this machine are modified versions
of the subtraction machine and the addition machine from Figure 4.2.
Essentially, the subtraction is done in state 0 and the addition in state 4.
States 2 and 3 erase the second number after it becomes zero. (When
this happens, state 0 will convert all the 0’s to 1’s and then encounter
a blank; at that point, the machine enters state 2.) State 1 moves the
machine left from the second number to the rightmost digit of the first,
while states 5 and 6 move it right from the first number back to the
rightmost digit of the second, where the calculation returns to state 0. I
encourage you to trace the action of this machine for a few sample inputs.

4.4. I will not try to do this for you. Here is a recipe for the copying
machine described in the problem; I leave the details to you.
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Current
State

Current Cell
Contents

New Cell
Contents

Direction
of Motion

New
State

0 1 0 R 1
0 0 1 L 0
1 1 1 R 1
1 # # L h

Current
State

Current Cell
Contents

New Cell
Contents

Direction
of Motion

New
State

0 1 0 L 1
0 0 1 L 0
0 # # R 2
1 1 1 L 1
1 0 0 L 1
1 # # L 4
2 1 1 R 2
2 # # L 3
3 1 # L 3
3 # # L h
4 0 1 R 5
4 1 0 L 4
4 # 1 R 5
5 0 0 R 5
5 1 1 R 5
5 # # R 6
6 0 0 R 6
6 1 1 R 6
6 # # L 0

Figure A.8. Tables of rules for two Turing machines. These ma-
chines are discussed in the answer to Question 2.3.

Assume that the machine is started on the y. It should erase the y
and move left one cell. If it sees a 0 or a 1 in that cell, then it has to copy
that digit to the left end of the tape. For example, suppose it sees a 0.
It should write a y to mark its spot, move left, and change to state 2. In
state 2, it should move left until it sees the z, and then continue to move
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left (in state 3) until it finds a blank space. It should write a 0 in that
space, then it should move right to the y (in state 4). It should replace
the y with a 0, move left, and return to state 0.

In state 0, if the machine sees a 1 instead of a 0, it should copy the 1
is a similar way using states number 5, 6, and 7. Finally, if it sees a
blank when in state 0, it should write a y and halt, since the number has
been completely copied.

4.5. If we can make “definite rules” for answering some question,
then we should be able to program a computer to follow those rules. The
rules would have to be spelled out in great enough detail to be complete
and unambiguous. Otherwise, how would it be possible to sure that they
are correct? But if they are complete and unambiguous, then following
those rules is a calculation rather than a thoughtful, creative process,
and a computer should be able to follow them as well as a human could.

At least, this is true if the Church-Turing Thesis is correct. The
Church-Turing Thesis is the assertion that anything that can reasonably
be called computation can be done by a computer, and hence by a Turing
machine. We cannot prove this thesis; we can only give evidence for it.
But the evidence—that all definitions of computation that have been
proposed are equivalent to computation by a Turing machine—is rather
strong.

4.6. Dr. McCoy is an interested party here, and he has set the rules.
Whatever answer Mr. Spock gives, Dr. McCoy can do the opposite of
what he predicts. Spock has no chance of being right. He can’t logically
predict the future if the future depends on his prediction.

This is the same problem that is at the heart of the proof of the
unsolvability of the Halting Problem. The machine H cannot make a
correct prediction about the result of a calculation if that calculation is
rigged to do the opposite of whatever it predicts.

Perhaps Spock’s best response would be to throw both the rock and
Dr. McCoy into the lake. But I guess that wouldn’t be logical.

Chapter 5 Answers

5.1. It could easily be argued that the ENIAC computer was com-
putationally universal. Certainly, it could solve any problem that a mod-
ern computer could solve (subject as always to limitations such as the
size of its memory). However, the modifications necessary to change the
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ENIAC’s program seem to me to be very close to actually building a new
machine. We wouldn’t say that a box of transistors was computationally
universal just because we could build a variety of computing machines
from them. Well, all right, that’s not being fair to the ENIAC either.
But when we program a modern computer to solve a new problem, we
don’t have to make any physical change to the machine itself. All we
do is load a new program into its memory. Even the Analytical Engine
would have been programmed just by dropping a new set of cards into its
card reader. The ENIAC was not programmable in this more interesting
sense.

5.2. It actually does make sense to use general-purpose micropro-
cessors running permanent, special-purpose programs. It is much easier
to write a special-purpose program than it is to design a special-purpose
computer chip. It is relatively cheap to mass-manufacture identical mi-
croprocessors. These can then be loaded with various programs to adapt
them to particular tasks.

The program for such a microprocessor can be stored on a chip called
a PROM, or programmable read-only memory. Such chips are actually
not quite “read-only.” A program can be stored in such a memory—but
only once. After that, the contents of the PROM can be read but not
modified.

By the way, it is becoming more economical to produce small batches
of special-purpose computer chips, largely because of the application of
computers to the design and manufacturing process.

5.3. It seems reasonable for the mouse’s buttons to work something
like a keyboard. That is, when the user presses a mouse button, an
interrupt signal is sent to the computer so that the operating system can
respond immediately to the mouse click.

It is not so obvious how the mouse can control a cursor on the screen.
Your first guess might be that the mouse periodically sends a report of
its position to the computer, but that can’t be right because it’s not the
position of the mouse that matters. The cursor moves only when the
mouse is rolled across a flat surface. If you pick it up and move it, the
cursor will stay fixed on the screen even though the mouse has changed
position.

In fact, as the mouse rolls across a table, it sends out an interrupt to
the computer every time it moves a certain distance back or forth or up or
down. The computer responds to these interrupts by moving the cursor.
In general, this response is handled automatically by a device driver or
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some other part of the operating system, without the intervention of
any application program that might be running. Such a program can,
if necessary, ask the operating system where the cursor is. (It would do
this by calling some subroutine in the operating system that exists for
just this purpose.)

As to the actual drawing of the cursor, this can be handled in various
ways. The video controller that draws the image on the screen might be
programmed to automatically substitute an image of the cursor for part
of that image. It would simply ignore the data in video memory that
are currently “covered” by the cursor. Alternatively, the CPU might be
directly responsible for storing the image of the cursor into the appro-
priate position in video memory. The CPU would have to save a copy
of the data that were originally stored there, so that it can restore the
data when the cursor moves.

5.4. Two identical machines can, in fact, execute exactly the same
machine-language instructions, even if those machines are running two
different operating systems. The problem is that any practical program
for a real computer is, by itself, incomplete. Such a program will do
part of its work, perhaps even most of it, by calling subroutines from the
operating system. If that program is run on a machine with a different
operating system, then the subroutines that it needs won’t be available.
The only programs that could be run on both machines would be those
without any “jump-to-subroutine” instructions that call subroutines that
are not part of the programs themselves.

In practice, there are also other difficulties. For example, different
operating systems use different techniques for storing programs in files,
and they generally store extra, system-specific information in the file
along with a program. One operating system might not even recognize
a file from another system as being a program in the first place!

5.5. Frankenstein is the archetypical story of technology gone out
of control. The scientist who seeks knowledge and power without con-
sidering the consequences is destroyed by the “monster” he creates. It
is a story still worth reading and considering.

The story in the original novel is rather different from the version
popularized in the movies. The monster in the book is no unthinking
brute; it is articulate and explains its motivations even as it drives its
creator to his destruction. The monster claims that it could have been a
force for good as easily as for evil, and that Dr. Frankenstein, by creating
it and then abandoning it, is responsible for what it has become.
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It has always seemed to me that Frankenstein is about the obligation
of scientists and other seekers-after-knowledge to try to understand all
the consequences of what they create and to take responsibility for it.
In Section 5.3, I have argued that this is certainly true for computer
technology, which is in itself neither good nor evil, but which has the
capacity for both.

5.6. If you start making a serious list of computerized databases
that might contain information about you, it will probably soon grow
longer than you initially expect. Furthermore, it will almost certainly
be incomplete. This is because data can propagate so easily from one
computer to another. Most people understand how easy it is for a name
and address to find its way onto the mailing list of a mail order company,
magazine, or political organization. They might be less aware of (and
more disturbed by) the extent to which data such as credit information
and court records are publicly available to those interested in obtaining
them.

Chapter 6 Answers

6.1. A major theme of this book is that complexity can be handled
by building up complex systems level by level from simpler components.
Complex programs and complex circuits are just two examples of com-
plex systems, and the analogies between them are strong. In the case
of programs, instructions are chunked together into structures such as
loops, decisions, and subroutines; these are then available to be used as
black boxes for building more complex programs. In circuits, the basic
building blocks are transistors or logic gates, but once some of these are
assembled into a circuit, that circuit can become a building block in even
larger circuits.

There are some differences, of course, largely owing to the fact that
a circuit is a physical object, while a program is just a just a collection
of information. For example, it is not possible for one circuit to “call”
another in the way that one subroutine can call another subroutine—
the first circuit must physically contain a copy of the second. Still, the
similarities outweigh the differences.

6.2. A line on the screen consists of a set of pixels whose color has
been changed to make it different from the background color. As we
have seen, the color of a pixel is simply a reflection of a number stored in
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the computer’s video memory. In order to draw a line on the screen, the
CPU must change the number in memory corresponding to each pixel on
the line. So, we might guess that somewhere inside the implementation
of the forward statement is a loop that changes individual pixels on the
line, one by one. Each time through the loop, a store instruction is
executed that changes the color of one pixel.

For this to work, the CPU must be able to determine where the line
starts and ends. So, at all times, it has to keep track of where the turtle
is and what its current heading is; this information must be stored in
memory. Using this information together with the distance specified in
the forward command, the CPU can compute the endpoints of the line.

If the turtle is displayed on the screen, then the CPU must start
by erasing the turtle from its current position on the screen, which itself
involves changing the color of many pixels. It can then draw the line and
redraw the turtle in its new position. Finally, it must change the stored
turtle position in its memory (so that it doesn’t lose track of where the
turtle is located).

Of course, to you as a programmer, all this looks like a single simple
operation: The turtle moves forward a specified distance in response to
a single command. All the complexity is hidden in the “black box.”

6.3. Here are three style guidelines that I mentioned: (1) Programs
should be laid out on the page so that they are easy to read. This is
called formatting the program. Using indentation, spaces, and line
breaks can help to make the structure of the program obvious. (2) Vari-
ables should be given meaningful names, related to their purpose in the
program. (3) Informative, helpful comments should be used to help a
reader understand the program. I might also have mentioned: (4) State-
ments such as loops and if statements should not be too deeply nested
inside each other, since that would require a reader to keep too many
levels of complexity in mind at once.

Good style exists purely for human readers. The computer would
accept a randomly formatted program with no comments and with vari-
ables named x1, x2, . . . , x237, but no person would ever be willing to
read it. (Keep in mind that the principal human reader of a program
that you write is likely to be you yourself, a few days, months, or years
later!)

6.4. In the program in Figure 6.10, the value of the variable count is
initialized to zero before the loop begins. Each time through the loop, 1
is added to the value of count, so that it takes on the successive values 1,
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2, 3, 4, . . . . The loop ends when the value of count becomes equal to the
value of the variable HowMany—if that ever happens. If the user inputs
a negative value for HowMany, then count will never become equal to
HowMany, and the loop will never end. The computer will continue
drawing larger and larger squares forever. The same thing will happen
if the value of HowMany is not an integer, since the only possible values
for count are integers.

So, the loop in this program has a precondition: HowMany must be
a positive integer. As mentioned in Subsection 6.3.1, there are two ways
to deal with a precondition: Either use an if statement to check that it is
true, or change the preceding instructions so that the precondition you
need is a postcondition of those instructions (that is, something that is
guaranteed to be true after those instructions are executed).

Using an if statement to test the precondition leads to a program that
simply ignores an illegal value and does nothing when the user inputs a
bad value:

declare count, HowMany, length
AskUser("How many squares should I draw?", HowMany)
if HowMany > 0 and trunc(HowMany) = HowMany then
{ Insert rest of program from Figure 6.10 }

end if

The function trunc used in the if statement was introduced in Subsec-
tion 6.3.3. Trunc converts its parameter into an integer; if that pa-
rameter is already an integer, trunc doesn’t change it. Thus, the test
“trunc(HowMany) = HowMany” checks whether the value of HowMany
is an integer.

A more satisfactory solution is to guarantee that the precondition
holds. One way to make sure that a condition holds is to use a loop
whose exit statement tests that condition. Then the only way that the
loop can ever end is for the condition to test true. Applying this strategy
leads to a program like

declare count, HowMany, length
AskUser("How many squares should I draw?", HowMany)
loop
exit if HowMany > 0 and trunc(HowMany) = HowMany
AskUser("Please enter a positive number.", HowMany)

end loop
{ Insert rest of program from Figure 6.10 }
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After the loop ends, the value of HowMany is definitely known to be
a positive integer. (By the way, we have no way of guaranteeing that
the loop will actually end—the user might just sit there forever typing in
3.14159 over and over! A computer scientist would say that this program
is “partially correct,” meaning that if it halts it gives a correct result,
but there is no guarantee that it will halt. You might want to modify
the program so that it gives the user only, say, ten chances to enter an
acceptable input.)

6.5. When I say “develop” a program I mean more than just “write”
one! You should always approach a problem thoughtfully and systemat-
ically. The most basic approach is to try to break the problem down into
simpler subproblems. One way to do this is to think of a series of states
that the program might go through on the way to a complete solution.
When you do this, you are designing a process that the computer might
go through to solve the problem. You can then try to write the “script”
for that process by finding the program instructions that will move the
computer from one state to the next.

If the problem is to produce a picture, then you can try to imagine
the steps you would go through to produce the picture by hand. The
“comb” you are supposed to draw in this case consists of eleven vertical
lines connected by ten horizontal line segments along the bottom of the
picture. Let’s suppose that the vertical lines are five units long and that
the connecting segments are each one unit long. One way to decompose
the problem is like this:

Draw a vertical line;
Draw a horizontal segment;
Draw a vertical line;
Draw a horizontal segment;
...

Draw a horizontal segment;
Draw a vertical line.

Since the process repeats itself, we can collapse it into a loop. Each rep-
etition of the loop will draw one vertical line and one horizontal segment.
We have to draw one extra vertical line outside the loop—this can be
done either at the beginning or the end. Now the process looks like this:

Draw a vertical line;
loop

Draw a horizontal segment;
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Draw a vertical line;
exit if ten lines have been drawn

end loop

We have to use a count variable to keep track of how many times the loop
has been executed. We also have to be careful to set up preconditions
involving the position and heading of the turtle before we draw each
line. Before drawing a vertical line, the turtle must be facing up, with a
heading of 90. Before drawing a horizontal segment, the turtle must be
facing to the right and must be at the bottom of the picture. Taking all
this into account, we get the program:

declare count
face(90)
forward(5) { Draw a vertical line }
loop
back(5) { Return turtle to bottom }
face(0)
forward(1) { Draw a horizontal segment }
face(90)
forward(5) { Draw a vertical line }
count := count + 1
exit if count = 10

end loop

6.6. For example, we can produce the sentence “Mary runs” be-
cause a 〈sentence〉 is a 〈noun part〉 followed by a 〈verb part〉, a 〈noun part〉
can be a 〈proper noun〉 which can be “Mary”, and a 〈verb part〉 can be an
〈intransitive verb〉 which can be “runs”. (Remember that a vertical bar
in a rule indicates that you have to make a choice among alternatives.)

Other 〈sentence〉s include “The President of the United States un-
derstands John,” “The unicorn loves a woman,” and “John is a fish who
thinks.”

When applying BNF rules such as those given in this problem, it is
customary to write out each step. For example, using the symbol → to
mean “becomes”:

〈sentenct〉 → 〈noun part〉〈verb part〉
→ 〈proper noun〉〈verb part〉
→ John 〈verb part〉
→ John 〈transitive verb〉〈noun part〉
→ John is 〈noun part〉
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→ John is 〈common noun phrase〉
→ John is 〈article〉〈common noun〉 who 〈verb part〉
→ John is a 〈common noun〉 who 〈verb part〉
→ John is a fish who 〈verb part〉
→ John is a fish who 〈intransitive verb〉
→ John is a fish who thinks

In each step here, just one rule is applied. In the second line, for
example, 〈noun part〉 is replaced by 〈proper noun〉 using one of the options
in the rule

〈noun part〉 :== 〈proper noun〉 | 〈common noun phrase〉
Every 〈sentence〉 can be generated in this way.

One interesting note about these rules is that they can produce an
infinite number of different sentences. This is because they include a
circular definition (the “nesting” referred to in the question). A sentence
consists partly of a 〈noun part〉. Now, among the things a 〈noun part〉
can be is a 〈common noun phrase〉, which can optionally end with “who
〈verb part〉.” Finally, a 〈verb part〉 can include a 〈noun part〉, completing
the cycle. This means you can make sentences like

• John knows the dog who loves Mary.
•Mary loves the cat who knows the dog who hates John.
• John understands the unicorn who loves the woman who knows
the cat who loves the fish.

You can make sentences as long as you want, all of them different and
all of them perfectly grammatical. Having a finite number of rules that
generate an infinite number of different sentences (or programs) is what
makes BNF so powerful and useful.

Chapter 7 Answers

7.1. Once a subroutine has been written by a programmer, it can
be used in exactly the same way as a subroutine that is built into the
language. In each case, the subroutine is simply called by name and
passed any necessary parameters. A subroutine of either type is a black
box for performing some specific task and can be used as a building block
in complex programs. The main difference, then, is just that one type of
subroutine is, in fact, written by the programmer and can be changed by
the programmer if necessary; built-in subroutines are given and cannot
be changed.
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7.2. The point of a ref parameter is that the value of the actual pa-
rameter can be changed by the subroutine. It just doesn’t make sense for
the actual parameter to be anything other than a variable, since that is
the only kind of parameter that has a value that can be changed. A sub-
routine with a ref parameter is something like an assignment statement.
In fact, we could define the really trivial subroutine

sub assign(ref variable, value)
variable := value

end sub

Then, the subroutine call “assign(x,17)” is equivalent to the assignment
statement “x := 17,” which changes the value of x to 17. It would make
no more sense to say “assign(3,17)” than it would to try to change the
value of the constant 3 to 17.

7.3. If you want to write a subroutine to draw a house, you should
first make sure you know how to draw one by hand. A drawing of a very
simple house is shown in Figure A.9. It is made up of a large square,
one unit on each side, containing three rectangles representing a door
and two windows. The large square is topped by a triangular roof. The
lower-left corner of the house is at the point (0,0). This house can easily
be scaled to any other size by multiplying all the coordinates by any
given number.

A subroutine to draw such a house can simply draw four rectangles
and then two more lines to represent the roof. Since we have to draw
so many rectangles, we might as well start with a rectangle-drawing
subroutine. Let’s assume we’ve already written a subroutine rect(w,h)
that draws a rectangle w units wide and h units high. Assume that
after the rectangle is drawn, the turtle is left at its original position and
heading. (This postcondition is important! You have to pay attention
to such things.)

A house-drawing subroutine using rect is shown in Figure A.9. Since
this subroutine draws the house using only move, forward, and back com-
mands, it will correctly draw a house no matter what the initial position
of the turtle. The house will be drawn with its lower-left corner at the
current turtle position. (This assumes that the turtle starts out facing
to the right; if the turtle is facing some other direction, the subroutine
will draw a “tilted” house.) After the house is drawn, the turtle will be
restored to its original position and heading.

Once the subroutine House has been written, it can be used to draw
more complicated pictures. For example, it could be used to draw a
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(0.5,1.3)

(0,0) (1,0)

(1,1)(0,1)

(0,0.4) (0,0.6)

(0.6,0.6)

(0.2,0.6)

(0.4,0.4)

sub House(size)
rect(size, size)
forward(0.4 ∗ size)
rect(0.2 ∗ size, 0.4 ∗ size)
PenUp
move(−0.2 ∗ size, 0.6 ∗ size)
PenDown
rect(0.2 ∗ size, 0.2 ∗ size)
PenUp
forward(0.4 ∗ size)
PenDown
rect(0.2 ∗ size, 0.2 ∗ size)
PenUp
move(−0.6 ∗ size, 0.4 ∗ size)
PenDown
move(0.5 ∗ size, 0.3 ∗ size)
move(0.5 ∗ size, −0.3 ∗ size)
PenUp
move(−size, −size)
PenDown

end sub

Figure A.9. A drawing of a house, with some points labeled with their
coordinates. We can scale the house to any size by multiplying all of
the coordinates by some number. The subroutine can draw houses of
different sizes. It uses another subroutine, rect(w,h), which draws a
rectangle of width w and height h.

small “village” consisting of three houses of various sizes:

PenUp MoveTo(−8,−4) PenDown
House(6)
PenUp MoveTo(−1,2) PenDown
House(4)
PenUp MoveTo(2,−6) PenDown
House(8)

7.4. The point of this problem is to build up a series of increasingly
complex subroutines, one fairly easy step at a time. One possible solution
is shown in Figure A.10. The hardest part is to draw a star, since it is
probably not obvious what angle the turtle must turn through after
drawing each of the five lines in the star. However, if you think about
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sub Star
turn(72)
forward(1) turn(144) forward(1) turn(144)
forward(1) turn(144) forward(1) turn(144)
forward(1) turn(144)
turn(−72)

end sub

sub RowOfStars(NumberOfStars)
declare count count := 0
loop
Star
PenUp forward(2) PenDown
count := count + 1
exit if count = NumberOfStars

end loop
PenUp back(2 ∗ NumberOfStars) PenDown

end sub

sub FieldOfStars(NumberOfRows, StarsPerRow)
declare count count := 0
loop
RowOfStars(StarsPerRow)
PenUp move(0,2) PenDown
count := count + 1
exit if count = NumberOfRows

end loop
PenUp move(0,−2 ∗ NumberOfRows) PenDown

end sub

Figure A.10. Subroutines for drawing a star, a row of stars and a
field of stars. All of these subroutines are designed to return the turtle
to its original position and heading after execution.

the process, you will see that the turtle turns through a total of two full
circles as it draws a star, for a total of 720 degrees. Since it makes five
individual turns while doing so, each turn is 720/5, or 144, degrees. (In
my subroutine, I have added a turn of 72 degrees at the beginning to
make the star come out in its usual orientation; this is balanced by a
turn of −72 degrees at the end of the subroutine to return the turtle to
its original heading.)
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Bar(8,1) Bar(8,2)Bar(8,0)

Bar(8,3) Bar(8,4)

Figure A.11. Some of the drawings that can be produced using the
subroutine Bar defined in Question 6 from Chapter 7.

Note that the subroutines RowOfStars and FieldOfStars are very
similar. FieldOfStars uses the subroutine RowOfStars as a black box
in almost exactly the same way that RowOfStars uses the subroutine
Star. The basic idea of lining up a given number of identical pictures
is the same. The only difference is that in one case they are lined up
horizontally and in the other, vertically.

7.5. Jonathan Swift’s image of big fleas that are plagued by little
fleas that are plagued in their turn by littler fleas, and so on forever, is a
pretty illustration of recursion, since he describes an infinitely complex
situation in just a few words. The image you get from his poem might
be similar to an image of the Koch curve or a binary tree, even though
a little less abstract. “Big detours have small detours, which themselves
have smaller detours, and so on ad infinitum.” (Of course, there is also
Swift’s wry commentary on the human condition, which you can take
as a kind of bonus.) (And if you suspect there might be some analogy
between the fleas and the bugs in a program, you might just be onto
something.)

7.6. Figure A.11 shows the drawings produced by the subroutine
calls Bar(8,0), Bar(8,1), and so forth.

When the value of the parameter complexity is zero, the turtle simply
goes forward length/2 units, then back length, and then forward length/2.
The result is that the turtle returns to its original position and heading
after drawing a line length units long. The midpoint of that line is



410 Answers

the original position of the turtle, and the line is oriented in whatever
direction the turtle happens to be facing. (This postcondition, the turtle
at the center of the figure in its original position and heading, turns out
to be true for this subroutine no matter what parameters it is given, and
it is what makes the pieces of the drawing fit together properly when the
value of complexity is greater than zero.)

When complexity is greater than zero, the instructions executed by
the turtle include two recursive calls to Bar with actual parameters
length/2 and complexity−1. This means that Bar(8,1) will contain two
copies of the figure produced by Bar(4,0), that Bar(8,2) will contain two
copies of the figure produced by Bar(4,1), and so forth. This makes it
easy to build up the sequence of drawings in Figure A.11 one step at
a time: Each figure is made of two scaled-down copies of the previous
figure in the sequence, together with some extra line segments. (This
uses the fact that Bar(x/2,n) is just a half-size copy of Bar(x,n). This
is not automatic, but it is easy to see that it is true in this case since
all the forward and backward motions of the turtle are scaled with the
length parameter.)

If we look in more detail at the instructions executed when complexity
is greater than zero, we see that the turtle first moves forward length/2
units. It then makes a right-angle turn and draws a half-size copy of a
Bar of smaller complexity; when it finishes this it is back at its starting
position and heading. It then reverses its right-angle turn and backs up
length units, putting it at the other end of a line length units long. It
draws another small Bar at right angles to that line and finally returns
to the center of that line by executing a forward(length/2) command. It
ends up in the same position and heading as when it started the whole
procedure.

7.7. For this answer to this question, you should look all the way
back to the answer for Question 5 in Chapter 1. If a subroutine is not
recursive, we can simply use one fixed set of memory locations as an ac-
tivation record for that subroutine (that is, for its local variables, param-
eters, and a return address). Once a nonrecursive subroutine has been
called, it cannot be called again until the first call has been completed.
Once the first call completes, the data in the activation record for that
call are no longer necessary, and there is no reason why the second call
should not use the same locations in memory for its activation record.

The problem with a recursive subroutine is that it can be called a sec-
ond time (and a third, or a fourth. . . ) before the first call has completed.
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Each call needs its own activation record, in its own segment of memory.
The stack provides a neat way of organizing all this memory—so neat
that it is even used for nonrecursive subroutines.

Chapter 8 Answers

8.1. A major principle of programming-language design is that the
language should make it possible to express concretely the abstract ideas
in the programmer’s mind. To some extent, this will depend on the
applications for which the language is designed. A language designed
for scientific calculation does not need the same features as a language
such as LISP that supports symbolic processing. This is simply because
programmers working in two such different areas will have different sorts
of ideas that need to be expressed.

A second principle might be that the language should be designed so
that as many errors as possible can be caught by the compiler before a
program is even run. As I noted earlier, this is why, in most languages,
variables must be declared before they are used.

Third, the language should support good programming style. For
example, it should allow long, meaningful variable names, and it should
allow a programmer to lay out a program on a page to show its structure.

8.2. A rigorous specification of syntax makes it possible for everyone
who uses the language or writes compilers to be absolutely sure about
what is and is not acceptable. A program that runs on one machine
when translated by one compiler should also run on another machine
when translated by a different compiler.

Since semantics is generally specified more informally than syntax,
it is harder to be sure that everyone agrees about just what a program
actually means. That is, even though the program runs on many differ-
ent computers, it might not give exactly the same results in each case.
Obviously, this is something we would like to avoid, but semantics is a
difficult subject, and the problem of specifying the semantics of a lan-
guage completely and rigorously is not yet solved.

8.3. This is an application of the general principle that the compiler
should be able to detect and point out as many errors as possible. The
more exact the compiler can be when describing an error, the easier
it will be for the programmer to find and fix it. A message such as
“missing end sub,” which you might get in xTurtle, is more informative
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than the message “missing end,” which is what you would get in Pascal.
The Pascal statement makes you search through all the while loops,
if statements, record declarations, and subroutine definitions in your
program to find the one that is missing the end. In xTurtle, the message
“missing end sub” would send you on a search through the subroutines
only.

8.4. Here is a type declaration for a Pascal data structure that can
store information about thirty students:

type StudentRecord = record
name: string ;
grades: array[1..3] of real ;

end;

StudentData = array[1..30] of StudentRecord ;

This does not actually create the data structure. To do that, you have
to declare a variable of type StudentData. For example, you could say:

var sd : StudentData;

The variable sd will consist of thirty pieces named sd [1], sd [2], . . . , sd [30].
Each of these pieces is a record containing the name of a student and
that student’s three test grades.

This works fine if there are exactly thirty students. If all we know is
that the number of students is less than or equal to 100, then we have to
allow space for 100 students. We can do this by changing the definition
of StudentData so that it has 100 pieces instead of thirty:

StudentData = array[1..100] of StudentRecord ;

However, that is not enough, because we have not provided any way for
the program to keep track of exactly how many students there are. For
example, if you wanted to find the average on the first test, you would
have to add up all the grades on that test and divide by the number
of students. The program needs a variable to represent the number of
students. So, in addition to the variable sd, you should declare a variable

var NumberOfStudents: integer ;

In fact, since NumberOfStudents and sd are actually part of the same
abstract concept, a neater solution would be to chunk these two variables
together into a record.

Finally, if you don’t know any upper limit on the number of students,
the only solution in Pascal is to use pointers. That is, you can put the
data for each student into a record and link all the records together using
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a pointer from each record to the next. The pointer is necessary because
it will provide the only way of ever finding the data again in memory. A
data structure of this type is called a linked list.

8.5. In LISP, there is only one answer about how to represent some-
thing: as a list! You can represent the data about a single student as
a list containing that student’s name and three grades. For example:
“(Fred 87 75 93).” Or, you might prefer to represent the name as a list
containing a first name, middle initial, and last name: “((John Q Doe)
73 67 94).” The lists of data for individual students can then be strung
together into one long list:

( (Fred 87 75 93)
(Jane 83 85 91)
. . . )

Note that there is no set limit on the number of students in the list.
Similarly, this structure could accommodate differing numbers of grades
for each student. What is harder here than in Pascal is accessing the
individual entries in the data structure.

In Prolog, the data must be represented as a list of facts that associate
each student with that student’s grades. For example:

gradeOnFirstTest(fred,87)
gradeOnSecondTest(fred,75)
gradeOnThirdTest(fred,93)
gradeOnFirstTest(jane,83)
gradeOnSecondTest(jane,85)
gradeOnThirdTest(jane,91)

...

8.6. Recursion is a kind of repetition. When a subroutine calls
itself recursively, the computer starts executing the subroutine again
from the beginning. This is similar to returning to the beginning of
a loop, similar enough that any loop can be replaced with a recursive
subroutine. Consider a loop that has the form:

loop
〈some statements〉
exit if 〈condition〉
〈more statements〉

end loop

We can write a subroutine that does the same thing as this loop:
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sub ImitateLoop
〈some statements〉
if not 〈condition〉 then
〈more statements〉
ImitateLoop

end if
end sub

The actual loop given above can be replaced in a program by a call to
this subroutine. In the subroutine, if the 〈condition〉 is false, then the
recursive call to ImitateLoop at the end of the if statement sends the
computer back to the beginning of the subroutine. If the 〈condition〉 is
true, however, the body of the if statement is skipped and the subroutine
ends.

There is one complication. In practice, the statements inside the
loop would refer to some variables. These variables must be passed
to the subroutine as parameters. Figure A.12 shows the nested square
program from Figure 6.10 rewritten to use a recursive subroutine instead
of a loop. Note that count and length are passed as ref parameters since
their values are changed by the subroutine. HowMany, whose value does
not change, is passed as a regular parameter.

8.7. This is one of those yes-and-no questions. In a sense, all pro-
gramming languages are equivalent just as all computers are equivalent.
Anything that can be done in one language can be done in any other.
So, in theory, learning one language is enough. However, languages are
certainly not equivalent when it comes to actually writing programs.
Some languages are easy to use, and some, like machine language, are
almost impossible. You might think that it should still be possible to find
one really good language and stick to that. Some programmers do just
that, but the fact remains that there is no language that is ideally suited
to every task. (See the answer to Question 8.1.) A good programmer
understands this and learns a variety of languages.

Chapter 9 Answers

9.1. What you, personally, would do with a database depends, of
course, on what your interests are and whether you have any collection
of data that would be worth storing on the computer. For example,
you might want to store information about your audio compact disk
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sub NestOfSquares(ref count, ref length, HowMany)
forward(length) turn(90)
forward(length) turn(90)
forward(length) turn(90)
forward(length)
count := count + 1
if count < HowMany then
length := length + 2
PenUp Move(−1,−1) PenDown
face(0)
NestOfSquares(count, length, HowMany)

end if
end sub

declare count, HowMany, length
AskUser("How many squares should I draw?", HowMany)
count := 0
length := 1
NestOfSquares(count, length, HowMany)

Figure A.12. The nested squares program from Figure 6.10 rewritten
to use a recursive subroutine instead of a loop. Anything that can be
done with a loop can be done with recursion instead, as explained in the
answer to Question 6 from Chapter 8.

collection. For each CD, you could store the title, artists, and list of
selections. You might add the date of publication and the purchase
date. As for the operations you might want to perform, you could easily
query your database to get a list of all the CD’s in your collection by
a specific artist. A more complicated query could tell you whether you
have any song in your collection performed by three different artists.

All this might be interesting, but it is questionable whether it would
be useful for anyone with a nonprofessional interest in compact disks.
Even more questionable is whether you would, or should, have the dis-
cipline to keep the database up to date. I suspect that most potential
personal uses for database programs would be similarly inappropriate.
One reason for studying computer applications, of course, is to get some
idea of where they can be used effectively.

9.2. It simply takes less information to fill an area on your screen
with text than to fill it with graphics. Think of a single character. It
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takes only eight bits of information to specify a character’s ASCII code,
but it occupies perhaps forty or fifty pixels on the screen. Even simple
black and white graphics use one bit for each pixel (to say whether
that pixel is black or white). Color graphics typically use between four
and twenty-four bits per pixel, so filling the screen area occupied by a
character with color graphics instead could take twenty or a hundred
times as much information. And transmitting that information from the
other end of a modem connection would take twenty to a hundred times
as long as transmiting the character’s ASCII code.

Some speedup could be obtained by compressing the the graphics
data so that fewer bits are used to represent the same image. But then,
compression could be used for text as well. If the objective is to get some
unique image from one computer onto the screen of another, then there
is not much else that can be done.

However, in the case of providing a graphical user interface, much
of the graphics that appears on the screen will not be unique. Many
interface elements, such as “icons” that represent choices available to
the user, will appear over and over. These can be transmitted just once,
or they can be provided by the graphical user interface program that
the user is running so that they don’t have to be transmitted at all. If
this is done, it will take very little information to display such standard
interface elements: just a short code number to specify which item is to
be displayed, and an indication of where on the screen it should appear.
Transmitting this information will take very little time. (By the way, this
is sort of what’s done with text. What you see on your screen is a picture
of a character that your computer knows how to draw. The ASCII code
of the character tells the computer which of these character-pictures to
draw.)

9.3. An algorithm is in TIME(n) if there is a constant c such that
the running time for input of size n is less than or equal to cn. Searching
an unsorted list is in TIME(n) because every item has to be checked (in
the worst case), and because checking each item takes the same amount
of time. If the processing time for one item is c, where c is a constant in-
dependent of the number of items in the list, then the time for processing
n items is cn.

More generally, if an algorithm processes each item of input in some
way, and if the time it spends on each item is (less than or equal to)
some constant that is independent of the number of input items, then
the algorithm is in TIME(n). This is just another way of stating the
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definition, but concentrating on the processing time per item gives a
nice characterization.

Other problems that can be solved with constant per-item processing
time include: finding the maximum or minimum in an unsorted list of
numbers, checking whether a list of numbers is sorted (you just have to
check whether each number is less than or equal to the one after it in
the list), inserting a number into its proper place in a sorted list, and
computing the average of a list of numbers.

By the way, you might be wondering why the processing time per
item would change as the number of input items increases. This could
easily happen if the input numbers are not processed in isolation. In
sorting a list, for example, the basic operation is comparing two numbers,
to see which one should come first in the list. Unless you are careful,
you might end up comparing each of the n input numbers to each of
the other n− 1 inputs. That’s n− 1 comparisons for each of the n
inputs, for a total of just under n2. This explains why the most obvious
sorting algorithms are in complexity class TIME(n2), although with some
ingenuity, a sorting algorithm can have per-item processing time that
grows like log2(n) rather than like n.

Chapter 10 Answers

10.1. Parallel processing increases the effective speed of comput-
ers, but it does not increase the range of problems that they can solve
in theory. The reason for this was actually mentioned several times in
the text: Parallel processing can be simulated on an ordinary, single-
processor computer. Instead of running each process on a different pro-
cessor, multitasking can be used to divide computing time on a single
processor among all the processes that need it. Multitasking allows a
single-processor computer to do anything that can be done through par-
allel processing.

However, it is certainly possible that some problems that cannot be
solved by a single-processor computer in a reasonable amount of time
might be quickly solved by applying massive parallel processing. But
this is a practical, not theoretical, difference.

10.2. Each of the three turtles performs three operations: (1) Get
the value of sum; (2) Add ForkNumber to it; (3) Store the answer in sum.
The variable sum starts out with a value of zero. Altogether, the three



418 Answers

turtles perform a a total of nine operations, which can be interwoven in
various ways. For example:

Turtle #1: Get sum (reads 0)
Turtle #2: Get sum (reads 0)
Turtle #2: Add ForkNumber (adds 2 to 0, giving 2)
Turtle #2: Store answer in sum (stores 2)
Turtle #3: Get sum (reads value 2, stored by Turtle #2!)
Turtle #1: Add ForkNumber (adds 1 to 0, giving 1)
Turtle #3: Add ForkNumber (adds 3 to 2, giving 5)
Turtle #1: Store answer in sum (stores 1)
Turtle #3: Store answer in sum (stores 5)

Each turtle performs its own three operations in the same order, but—for
whatever reason—Turtle #2 manages to perform its calculation before
Turtle #3 ever reads the value of sum. Since Turtle #3 is the last to set
the value of sum, the value that it computes, 5, is the final value of sum.

Other orderings of these operations will give different final values. If
the roles of Turtles #1 and #2 are interchanged in the above list of op-
erations, for example, then the final value of sum would be 4 (computed
by Turtle #3 by adding 3 to 1). If Turtle #1 completes all three opera-
tions before Turtle #2 does anything, and Turtle #2 then completes its
operations before Turtle #3 does anything, then the final value of sum
will be 6.

The example at the end of Section 10.1.2, dealing with two simulta-
neous withdrawals from a bank account, shows how a similar problem
might arise with shared variables in a real situation. Suppose that a
process in an automatic teller machine performs the operation “deduct
$100 from the account” in the following sequence of operations: (1) Get
the account balance (from the central bank); (2) Subtract 100; (3) Store
the answer (back to the database in the central bank). The problem is
that the account balance, which is stored in one location on the central
computer, is shared by many processes running in many different au-
tomatic teller machines. If two processes perform this operation at the
same time, they might perform these operations in the order:

Process #1: Get the account balance
Process #2: Get the account balance (reads same value)
Process #1: Subtract 100
Process #2: Subtract 100 (gets the same answer)
Process #1: Store the answer (original balance, minus 100)
Process #2: Store the answer (just stores the same number)
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declareHowMany

AskUser("How many squares should I draw?", HowMany)

fork(HowMany)
PenUp
MoveTo(−ForkNumber , −ForkNumber)
PenDown
forward(2 ∗ ForkNumber) turn(90)
forward(2 ∗ ForkNumber) turn(90)
forward(2 ∗ ForkNumber) turn(90)
forward(2 ∗ ForkNumber) turn(90)

Figure A.13. Solution to Question 10.4. This program draws nested
squares by creating one process for each square that is to be drawn.

The final answer is just $100 less than the original balance, rather than
the correct $200. Needless to say, this is not the way things are done
by real banks. Something like the grab command in xTurtle might be
used: One process can gain control of the account balance and force the
other to wait until it has completely finished its transaction. This makes
an interleaving of operations, as shown above, impossible.

10.3. The message-passing mechanism has an automatic, built-in
solution to the mutual exclusion problem. Suppose that two processes
both want to subtract 100 from an account balance and that each process
sends the message “Subtract 100 from the account balance” to the central
computer, where the account balance is stored. Even if these messages
are sent at exactly the same time, the central computer will only process
one message at a time. This means that one message will be completely
processed before the processing of the next one starts. Each message
correctly subtracts $100 from the account balance.

Note that in this case, the account balance is not really a shared
variable. It is accessible to one just one process—the one running on
the central computer. Other processes can’t access the balance directly;
they can only “ask” the central computer to do it for them.

10.4. An xTurtle program to draw nested squares using multiple
processes is shown in Figure A.13. After determining how many squares
to draw, the program creates a separate turtle to draw each square. Each
turtle moves to the lower-left corner of the square it is supposed to draw,
and then draws the square as usual, with a sequence of forward and turn
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declare max { shared variable }
max := 0
fork(100) { create 100 processes }
declare N, StepCount
StepCount := 0
N := ForkNumber { starting point for sequence }
{ Now, count steps in sequence starting from N }
loop

exit if N = 1
if N/2 = trunc(N/2) then

N := N / 2
else

N := 3 ∗ N + 1
end if
StepCount := StepCount + 1

end loop
grab max { take control of shared variable, max }

if StepCount > max then
max := StepCount

end if
end grab

Figure A.14. Solution to Question 10.5. This program will find the
largest number of steps in the “3N+1” sequence starting from any inte-
ger between 1 and 100.

commands. Note that to write this program, I had to figure out how big
the squares would be (2 ∗ ForkNumber) and where the lower-left corners
would be. This is a bit of thinking that I didn’t have to do for the
program in Figure 6.10. On the other hand, for this new version I didn’t
have to write a loop or deal with the variables length and count. I find
the parallel processing version easier to understand and more elegant,
but this is to some extent a matter of taste.

10.5. The “3N+1” sequence starting from an integer N is defined
by the operation: If N is even, then divide N by two; otherwise, multiply
N by three and add 1; and repeat this until N becomes equal to 1. The
program in Figure A.14 computes the 3N+1 sequence for every number
between 1 and 100, and it does these computations simultaneously by
creating a separate process to handle each different starting number.
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Each process creates its own variables, StepCount and N, which are
used in this program in exactly the same way that they were used in
Figure 6.11. However, all the variables share a single copy of a variable
called max. Each process runs a loop to count the number of steps in
its assigned sequence; at the end of this loop, the value of StepCount is
equal to the number of steps in the sequence.

After the loop, the process “grabs” the shared variable max, checks
its value, and possibly changes that value. The grab command is neces-
sary because several processes could be performing this operation at the
same time, and there is the possibility for “interleaving” of operations,
just as described in the answer to Question 10.2. Suppose, for exam-
ple, that one process checks the value of max and decides to change it.
Without the grab command, it is possible that some other process will
change the value of max while the first process is thinking—so the value
that the first process replaces might not be the value that it checked! It
might even replace the true maximum value with a lower value, and the
program as a whole will end up with the wrong value stored in max.

(Note, by the way, that we have no easy way to check the value of
max at the end of the program. A TellUser statement won’t work, since
each process will execute the statement, and we’ll end up getting 100
messages, with different values ofmax, instead of just one. Obviously, the
xTurtle language should have some feature to deal with this problem—
some way to “reunite” the processes after they have all done their work.)

10.6. This question is almost answered in Subsection 8.3.1. The
only problem is relating what is said there to the idea of distributed
processing. In an object-oriented system, we can imagine (or arrange in
fact) that each object is really a process that receives messages from other
objects (that is, other processes) and carries them out. Each object has
control over the data that it contains, and other objects can manipulate
that data only by sending messages. It makes little difference, from the
programming point of view, whether the objects are all in the same com-
puter or are distributed over many computers on a network. (Compare
the answer to Question 10.3, where the bank account balance might well
be a Bank Account Object in a distributed, object-oriented system.)

Chapter 11 Answers

11.1. The object here is to construct a wheel from circles, lines, and
squares using certain geometric transformations. Squares don’t make
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The origin,
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Figure A.15. A wagon constructed from transformed squares and
wheels. Note that the wagon is assumed to be positioned with the ori-
gin at the location shown.

very good wheels, but we can use a circle to represent the rim of the wheel
and line segments to represent its spokes. We start with the standard
circle of diameter 1, centered at the origin. The wheel has six spokes,
and we could use six separate line segments to draw them. But it’s easier
to see the six spokes as paired into three diameters and to just use three
line segments. One of the diameters—the horizontal one—is the line
that extends from the point (− 1

2
, 0) to (0, 1

2
). This is one of our basic

components, and we can simply include it in the image. The other two
diameters can each be obtained by rotating our standard line segment
through the proper angle. Thus, an image of a wheel can be built from
four parts: a standard circle, a standard line segment, another standard
line segment rotated 60 degrees, and one more standard line segment
rotated 120 degrees.

Now, we turn to the construction of a “wagon,” as shown in Fig-
ure A.15. We have already built a wheel, so we can freely include
wheels, with any required transformations, as components in the wagon.
To make the wheels used in this particular wagon, we have to magnify
them by a factor of 2 and rotate them a bit—say, by 15 degrees. These
transformations leave the wheels centered at the origin, so we finish by
applying a translation to each wheel to move its center to the desired
point at one corner of the wagon.

There are still two pieces to account for in the image: the large rect-
angle that makes up the body of the wagon and the very thin, rotated
rectangle that forms its handle. We can make a rectangle from a square
by scaling it by different amounts in the horizontal and vertical direc-
tions. Using the measurements shown in the figure, we can make the
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body of the rectangle by starting with the standard one-by-one square
centered at the origin; we translate it vertically by one-half unit so that
the origin lies at the center of its lower edge; then we scale it by a factor of
5 in the horizontal direction and a factor of 1.6 in the vertical direction.
And finally, we can make the handle as follows: Start with the standard
square; translate it by one-half unit horizontally so that the origin lies
on its left edge; scale by a factor of 3 in the horizontal direction and 0.1
in the vertical direction; rotate by −30 degrees; and translate 2.4 units
horizontally and 1.5 units vertically.

11.2. A subroutine is a set of instructions packaged into a black
box and given a name so that it can be used as a component in building
more complex subroutines and programs. The same subroutine can be
designed once and then used over and over in many different situations.

Building complex images is similar. A “sub-scene” can be designed
once and for all and then used as a black box in constructing larger im-
ages. As always, this sort of thing is essential for dealing with complexity:
the task is divided into manageable sub-tasks which can be worked on
separately. In the example, the task of building a wheel is done once and
for all. Then, wheels can be included as components in a wagon or in
any other image without redesigning them each time.

A scene description language should provide support for the creation
and use of sub-scenes. It should also provide some basic components.
And there should be some way of applying geometric transformations to
components. Let’s agree that in our language, each component will have
a name. The basic components are named circle, square, and line. New
components can be defined as sub-scenes and given names. A scene or
sub-scene is specified by listing the names of the components it contains;
these names can be modified by a list of geometric transformations to
be applied to them. For example,

circle
line
line rotate 60
line rotate 120

describes a scene made up of four components: a circle, a line, a line
rotated by 60 degrees from its standard position, and another line rotated
by 120 degrees. This is, in fact, the same description of a “wheel” as
that given in the answer to Exercise 11.1. Note that “line rotate 60”
means a line rotated by 60 degrees. In addition to rotate, we allow
the transformations translate and scale. Several transformations can be
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define wheel
[
circle
line
line rotate 60
line rotate 120

]

wheel scale 2,2 rotate 15 translate −2.5,0
wheel scale 2,2 rotate 15 translate 2.5,0
square translate 0,0.5 scale 5,1.6
square translate 0.5,0 scale 3,0.1

rotate −30 translate 2.4,1.5

Figure A.16. A wagon specified using the scene description language
that was invented in the answer to Exercise 11.2. The first seven lines
define what is meant by a “wheel.” Then come five lines that specify
the wagon itself.

strung together. For example,

square translate 0,0.5 scale 5,1.6

specifies a square that is first translated 0.5 units vertically and then
scaled by a factor of 5 horizontally and by a factor of 1.6 vertically.
(Note that translate and scale each require two “parameters.”)

Finally, our language needs some syntax for defining a sub-scene.
This should be similar to defining a procedure in a programming lan-
guage. Figure A.16 shows one possibility. Here, a sub-scene is defined
and given the name “wheel.” This makes wheel into a component that
can then be used later in the definition of the main scene.

11.3. When a scaling transformation is applied, all distances are
increased or decreased. When a figure is scaled by a factor of two, for
example, the distance from the origin to any given point in the figure
is doubled. The origin itself is fixed; every other point moves away
from it. The size of the figure is doubled. If the center of the figure—
whatever that might mean—is at the origin, then the figure increases in
size symmetrically around the origin, so it is still centered at the origin.
But if the figure is at some distance from the origin, then it will end up
at twice that distance after the scaling operation.

Suppose that the object is centered at the point (3,5) and that we
want to double its size without moving its center. If we just scaled by a



Chapter 11 Answers 425

factor of two, the center would move to the point (6,10). However, if we
first apply translation by −3 units horizontally and −5 units vertically,
then the center will be at the origin. Scaling by a factor of two will leave
the center at the origin. Finally, we can return the center to the point
(3,5) with a translation by 3 units horizontally and 5 units vertically.
This sequence of transformations—translate, then scale, then translate
back—scales the figure by a factor of two and leaves its center at the
point (3,5).

11.4. Computer graphics can deal most easily with surfaces that are
flat and that have the same properties at each point. For such surfaces,
there is no need for “bump mapping” or “texture mapping.” Plastic
and metal surfaces are perfect examples, and so these surfaces often
look realistic in computer graphics images. The same cannot be said of
more visually interesting surfaces such as—to use a standard example—a
beat-up old couch.

The main difference between plastic and metal surfaces is that metal
has a high degree of specular reflection and little diffuse reflection. Plas-
tic, on the other hand, generally has a high degree of diffuse reflection;
its specular reflection can range from moderate (for shiny plastic) to al-
most zero (for a very dull, “matte” surface). Note that a metal surface
can look very interesting, at least in a ray-traced image where specular
reflection is handled correctly, but its interest is “borrowed” from the
things that it reflects.

11.5. A recursive procedure is one that calls itself. That is, in the
course of solving some problem, a subproblem is encountered that has
the same general form as the big problem. A subroutine written to solve
the problem can call itself to solve the sub-problem.

In ray-tracing, the basic problem is to determine the color of the light
ray emitted by a surface in a given direction. At the “top level,” the ray
that we are interested in is one that leaves the surface and strikes the
eye of a viewer. But the color of this ray is determined, at least partly,
by the colors of certain other light rays—such as the one that strikes the
surface at just the right angle and is specularly reflected to the viewer’s
eye, or the ones from light sources that hit the surface and are reflected
diffusely by it in all directions (including towards the viewer’s eye).

So, to determine the color of the ray that really interests us, we
must first determine the color of several other light rays. The recursive
procedure “Find the color of a given light ray” calls itself to find the
color of each of the other rays that contribute to that color.
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As with any recursive procedure, this could go on forever if we let
it, tracing rays further and further back in time. In practice, of course,
there has to be a limit. We look back so many levels and no further.
In the subroutines in Chapter 7, a parameter named “complexity” was
used to control the number of levels of recursion. A recursive ray-tracing
subroutine could work in much the same way.

Chapter 12 Answers

12.1. The debate on the Turing Test has been going on for almost
fifty years, and the opinions put forth by knowledgeable people cover the
whole range of possibilities. So, you needn’t be shy about forming your
own opinion.

The argument that a super-intelligent computer might not be able
to pass the test is certainly valid, since such a computer might have no
ability whatsoever to use English language. This is, however, sort of
beside the point, as Turing points out early in his paper. Turing does
not claim that every intelligent entity can pass his test, merely that any
computer that does pass it can definitely be said to be intelligent. This
leaves open the possibility of an intelligent computer (or extraterrestrial)
that cannot pass the test.

It is possible, however, that no computer will ever pass the test.
The Turing Test is enormously difficult to pass. The difficulty seems
to have surprised many people, and in fact, one of the lessons of a half-
century of artificial intelligence research has been an appreciation for the
difficulty of tasks that people perform easily. Attempts to reduce these
tasks to rules and symbols have resulted in programs that can do some
interesting things, but not in programs that can operate with anything
like the flexibility and naturalness that people display in doing everyday
tasks.

Still, the continued rapid advance in computer hardware and software
raises the possibility that computers with the information storage and
processing capabilities of the brain will exist some time in the not-so-
distant future. With the right program, why wouldn’t such computers
be as intelligent as we are? Perhaps they will be, but it is not clear that
the “right program” can ever be written. It is not even clear that people
are running a program in their heads when they think.

And even if some future computer running some extraordinarily com-
plex program can pass the Turing Test, would that entitle it to be called
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bird
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machine
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Figure A.17. A semantic net including the symbol “dog” along with
symbols to which it is linked in various ways. Each link is labeled to
show the type of relationship it represents. Links might be used by a
computer to deduce information that is not stored explicitly in the se-
mantic net. For example, we can deduce that a dog has fur from the
facts that a dog is a mammal and a mammal has fur. A much larger
net might contain everything there is to know about dogs—or at least
enough for a computer to work “intelligently” with the concept.

intelligent? Some people, like John Searle, would say no. Their argument
is that a computer following a program and pushing symbols around can
never be intelligent, no matter how impressive the result, because it has
no understanding of what it is doing, nor does it have a choice to do
anything else.

Personally I think I would have to accept any computer that were to
pass the Turing Test as intelligent. Human use of language is so intricate
and so laden with meaning that I don’t believe this test could ever be
passed without real understanding of what is being said. I tend to doubt,
however, that any traditional rule-following, symbol-pushing computer
will ever pass the test. As I indicate at the end of Chapter 12, that still
leaves open the possibility of other approaches that might yet create real
artificial minds.

12.2. Figure A.17 shows a small part of a symbol structure in which
the symbol “dog” is linked to many other symbols. Some of these symbols
represent other general concepts, such as “mammal” and “car”; others
represent specific individuals such as “Lassie” and “Timmy.” Links are
labeled to show different types of relationships between symbols.
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This symbol structure is an example of a semantic net. The word
“semantic” refers to meaning, and its use here is a claim that somehow
the meaning of a word is represented by the way it is linked to other words
in the net. In evaluating this claim, you should remember that most of
your own understanding of the example in the Figure A.17 comes from
your previous experience with the word “dog,” with all its connotations
and connections to your own life. Try to imagine the net labeled with
words from a language you have never heard of. Obviously, you would
have no idea that it was about dogs! If there is a semantic net inside your
head, then the word “dog” must be linked to a lot more than other words.
It must also be linked to images of dogs you have known, memories of
cuddling a puppy, sounds of barking, some stupid pet tricks from David
Letterman’s TV show, the fear you have felt of a growling dog on a
deserted street, the sight of a wagging tail, . . . .

12.3. If we try to list all the exceptions to the rule that all birds
can fly, it is hard to find an end to the list. All birds can fly, except. . .

• If the bird is a penguin, then it can’t fly.

• If the bird is an ostrich, then it can’t fly.

• If the bird is dead, then it can’t fly.

• If it’s a baby bird, then it can’t fly.

• If its wings have been clipped, then it can’t fly.

• If it’s sick, then possibly it can’t fly.

• If it is chained to its perch, then it can’t fly.

• If its feet are nailed to the table, then it can’t fly.

• If it’s a hawk wearing a hood, then it can’t fly until the hood is
removed.

• If it has eaten too much, then possibly it has become too fat to fly.

• If it’s a toy bird, then it can’t fly.

• If it’s really an airplane (called a “bird” by metaphor) and it has no
fuel, then it can’t fly.

I have done this exercise with classes I have taught. I like to end with
the example of a bird who can’t fly because it is afraid, and ask the class
if they agree that this is a silly exception to the rule that “all birds can
fly.” Then I imagine a children’s story about a bird who is afraid to fly
but learns to overcome that fear. Here, the “silly” exception is vitally
important to understanding the story! And then, I ask whether that
story is really about birds at all, or is it about the process of dealing
with fear and growing up?
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Obviously, encoding the full range of human knowledge into a set
of rules would be extremely difficult, if not impossible. Almost any
definite rule you state will have exceptions and qualifications. These
exceptions are, of course, just more rules, and they can have their own
exceptions. (A penguin can fly in an airplane.) It is easy to believe that
the accumulation of rules will never stop, and easy to doubt that it will
ever add up to real understanding in any case.

When I use this example in class, it is a starting point for an under-
standing of the difficulty of passing Turing’s Test, and of an appreciation
for the depth and complexity of human intelligence.
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