This homework covers the reading from Chapter 1, Sections 8 and 9, and Chapter 2, Section 1. It is due by the end of Wednesday, February 24, and will be accepted late with a penalty until noon on Saturday, February 27.

1. (3 points) Write out each of the following sums in full, without using summation notation. You are **not** being asked to compute the value of the sums, just to expand each sum into a normal sum of several terms!

a)
$$\sum_{n=1}^{5} n \cdot 5^n$$
 b) $\sum_{i=1}^{7} (2i-1)$ **c**) $\sum_{k=3}^{6} \frac{k}{k^2+1}$

- **2.** (3 points) Use a proof by induction to show that for any integer $n \ge 1$, $\sum_{i=1}^{n} (2i-1) = n^2$
- **3.** (3 points) Use a proof by induction to show that for any integer $n \ge 1$, $n^3 + 2n$ is a multiple of 3. (That is, there is some integer j such that $n^3 + 2n = 3j$.)
- **4.** (3 points) Use a proof by induction to show that the following method correctly finds the sum of array elements A[0], A[1], ..., A[N-1] for all $N \ge 1$.

```
int recursive_sum( int[] A, int N ) {
    if ( N == 1 )
        return A[0];
    else {
        return A[N-1] + recursive_sum( A, N-1 );
    }
}
```

- 5. (4 points) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$; let $B = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$; and let $C = \{n \in \mathbb{Z} \mid -5 \leq n \leq 5\}$. Find the following sets. (For this exercise, you do **not** need to justify your answers.)
 - a) $A \cup B$ b) $A \cap B$ c) $A \smallsetminus B$ d) $B \smallsetminus A$ e) $A \cap C$ f) $\mathbb{N} \cup C$ g) $\mathbb{N} \smallsetminus C$ h) $\mathbb{Z} \smallsetminus A$

(Recall that \mathbb{N} is the set of natural numbers, $\mathbb{N} = \{0, 1, 2, 3...\}$, and \mathbb{Z} is the set of integers.)

- **6.** (2 points) Let A be the set $A = \{ \emptyset, a, \{a\} \}$. Write out the power set, $\mathscr{P}(A)$. (It has 8 elements. You do not have to justify your answer.)
- **7.** (3 points) Let A be any set. What can you say about $A \cup A$? about $A \cap A$? about $A \setminus A$? Justify your answer, either informally or by using the definitions of \cup , \cap , and \smallsetminus .
- **8.** (3 points) Prove: If A, B, and C are any sets and $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.