This homework covers the reading from Chapter 1, Sections 8 and 9, and Chapter 2, Section 1. It is due by the end of Wednesday, February 24, and will be accepted late with a penalty until noon on Saturday, February 27.

1. (3 points) Write out each of the following sums in full, without using summation notation. You are not being asked to compute the value of the sums, just to expand each sum into a normal sum of several terms!
a) $\sum_{n=1}^{5} n \cdot 5^{n}$
b) $\quad \sum_{i=1}^{7}(2 i-1)$
c) $\sum_{k=3}^{6} \frac{k}{k^{2}+1}$
2. (3 points) Use a proof by induction to show that for any integer $n \geq 1, \quad \sum_{i=1}^{n}(2 i-1)=n^{2}$
3. (3 points) Use a proof by induction to show that for any integer $n \geq 1, n^{3}+2 n$ is a multiple of 3 . (That is, there is some integer j such that $n^{3}+2 n=3 j$.)
4. (3 points) Use a proof by induction to show that the following method correctly finds the sum of array elements $\mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[\mathrm{N}-1]$ for all $N \geq 1$.
```
int recursive_sum( int[] A, int N ) {
    if ( N == 1 )
        return A[0];
    else {
        return A[N-1] + recursive_sum( A, N-1 );
        }
}
```

5. (4 points) Let $A=\{1,2,3,4,5,6,7,8,9\} ;$ let $B=\{2,4,6,8,10,12,14,16,18\}$; and let $C=\{n \in \mathbb{Z} \mid-5 \leq n \leq 5\}$. Find the following sets. (For this exercise, you do not need to justify your answers.)
a) $A \cup B$
b) $A \cap B$
c) $A \backslash B$
d) $B \backslash A$
e) $A \cap C$
f) $\mathbb{N} \cup C$
g) $\mathbb{N} \backslash C$
h) $\mathbb{Z} \backslash A$
(Recall that \mathbb{N} is the set of natural numbers, $\mathbb{N}=\{0,1,2,3 \ldots\}$, and \mathbb{Z} is the set of integers.)
6. (2 points) Let A be the set $A=\{\varnothing, a,\{a\}\}$. Write out the power set, $\mathscr{P}(A)$. (It has 8 elements. You do not have to justify your answer.)
7. (3 points) Let A be any set. What can you say about $A \cup A$? about $A \cap A$? about $A \backslash A$? Justify your answer, either informally or by using the definitions of \cup, \cap, and \backslash.
8. (3 points) Prove: If A, B, and C are any sets and $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.
