1. (2 points) The associative law for intersection states that $A \cap(B \cap C)=(A \cap B) \cap C)$ for any sets $A, B$, and $C$. Verify this law by reducing it to the associative law for propositional logic.

## Answer:

$$
\begin{align*}
A \cap(B \cap C) & =\{x \mid x \in A \cap(B \cap C)\} \\
& =\{x \mid(x \in A) \wedge((x \in B) \wedge(x \in C))\} \\
& =\{x \mid((x \in A) \wedge(x \in B)) \wedge(x \in C)\} \\
& =\{x \mid((x \in A \cap B)) \wedge(x \in C)\} \\
& =(A \cap B) \cap C
\end{align*}
$$

(Definition of $\cap$ )
(Associative law for logic)
(Definition of $\cap$ )
(Definition of $\cap$ )
2. (3 points) Let $a, b$, and $c$ be values of type int given as hexadecimal numbers in Java as

```
a = 0xABCD1234 b = 0x5678EF09 c = 0xFFFF
```

Find the values of the following Java expressions, writing the answers as hexadecimal numbers. Do not just give the value, which you could get Java to compute for you; show enough work or explain your reasoning, to show how the answer is computed.
a) $(\mathrm{a} \ll 16)$ | (b >>> 16)
b) a \& (c << 16)
c) $(\mathrm{a} \&(\mathrm{c} \ll 16))$ | $(\mathrm{b} \& \mathrm{c})$

## Answer:

a) a << 16 shifts a 16 bits to the left which is four hexadecimal digits, filling in with zeros on the right, giving $0 \times 12340000$. b >>> 16 shifts a 16 bits to the rightwhich is four hexadecimal digits, filling in with zeros on the left, giving $0 \times 00005678$. When those two numbers are combined with a bitwise or operation, or'ing with zero has no effect, and so the value of ( $\mathrm{a} \ll 16$ ) | (b >>> 16) is $0 \times 12345678$.
b) By similar reasoning, c << 16 is 0xFFFF0000. Since and'ing with 1 has no effect and and'ing with 0 results in zero, a \& ( $c \ll 16$ ) is $0 x A B C D 0000$.
c) $\mathrm{b} \& \mathrm{c}$ is 0 x 0000 EF 09 . (Note that 0xFFFF is still a 32-bit number, which can be written in full as 0x0000FFFF.) When the answer from part b) is or'ed with $b$ \& $c$, the result is 0xABCDEF09.
3. (4 points) Consider the two 16 -bit integers $n$ and $m$ shown below. First, compute the three 16 -bit integers $\sim n$, and $n \& m$, and $n \mid m$. Then, what subset of $\{15,14, \ldots, 1,0\}$ does each of the integers $n, m, \sim n, n \& m$, and $n \mid m$ correspond to? (Write out each set in full using the usual set notation.)

$$
\begin{aligned}
n & =1001110110000101 \\
m & =0101100111000111
\end{aligned}
$$

## Answer:

$$
\left.\begin{array}{rll}
n & =1001110110000101 & \\
m & =0101100111000111 & \\
\hline \sim n & =0110,12,11,10,8,7,2,0\} \\
\hline n \& m & =0001100101111010 &
\end{array}\right\}
$$

4. (3 points) What is computed by the following method? (Hint: Write $N$ in binary!) Explain your answer.
```
int countSomething( int N ) {
    int ct = 0;
    for (int i = 0; i <= 31; i++) {
        if ((N & 1) == 1 ) {
            ct++;
        }
        N = N >>> 1;
    }
    return ct;
}
```


## Answer:

When $N$ is written as a binary number, it is made up of 1's and 0's. This function counts the number of 1 's in that binary expansion of $N$. (If you think of $N$ as representing a subset of $\{31,30,29, \ldots, 1,0\}$, then the function computes the cardinality of that subset.)
 $c t$ is incremented. The assignment $\mathrm{N}=\mathrm{N} \ggg 1$ shifts $N$ one bit to the right, so that the next time through the loop, the next bit from the original $N$ is being tested. This is done 32 times, so that every bit from the original $N$ is tested, and $c t$ is incremented one for each bit that is a 1 .
5. (2 points) Describe the set $\{1,2,3\} \times \mathbb{N}$. Show that you understand its structure.

## Answer:

This set is similar to three copies of $\mathbb{N}$, one for each value in the set $\{1,2,3\}$, From the 1 we get elements of $\{1,2,3\} \times \mathbb{N}$ of the form $(1,0),(1,1),(1,2),(1,3),(1,4), \ldots$, with one element for each number in $\mathbb{N}$. From the 2 , we get $(2,0),(2,1),(2,2),(2,3),(2,4), \ldots$ And similarly for the 3 . We could write out the whole set using set notation with ellipses as

$$
\begin{aligned}
\{1,2,3\} \times \mathbb{N}=\{ & (1,0),(1,1),(1,2),(1,3),(1,4), \ldots \\
& (2,0),(2,1),(2,2),(2,3),(2,4), \ldots, \\
& (3,0),(3,1),(3,2),(3,3),(3,4), \ldots
\end{aligned}
$$

6. (5 points)
a) Consider the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(n)=n+1$. Is $f$ a one-to-one function? Is $f$ an onto function? Justify your answers.
b) Now, consider the function $g: \mathbb{N} \rightarrow \mathbb{N}$ given by $g(n)=n+1$. Is $g$ a one-to-one function? Is $g$ an onto function? Justify your answers.

## Answer:

a) $f$ is one-to-one. Suppose $f(n)=f(m)$. This means $n+1=m+1$, which implies $n=m$. [Here, I've shown that for any $n, m \in \mathbb{Z}$, if $f(n)=f(m)$, then $n=m$. This is the definition of one-to-one.] It is onto, since given $m \in \mathbb{Z}$, we can let $n=m-1$, which is in $\mathbb{Z}$, and then $f(n)=m$. [Here, I've shown that fora any $m \in \mathbb{Z}$, there is an $n \in \mathbb{Z}$ such that $f(n)=m$. This is the definition of onto.]
b) $g$ is one-to-one by an argument identical to the proof that $f$ is one-to-one. However, $g$ is not onto, since there is no $n \in \mathbb{N}$ such that $f(n)=0$. This follows from the fact that since $n \geq 0$ for all $n \in \mathbb{N}$, then $f(n)=n+1>0$; so it is impossible that $f(n)=0$. [The proof here shows that it is not the case that $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, f(n)=m$. The disproof is by giving the counterexample $m=0$.]

