
CPSC 229, Spring 2021 Homework #5

1. (2 points) The associative law for intersection states that A∩ (B ∩C) = (A∩B)∩C) for any
sets A, B, and C. Verify this law by reducing it to the associative law for propositional logic.

Answer:

A ∩ (B ∩ C) = {x |x ∈ A ∩ (B ∩ C)} (Definition of ∩)

= {x | (x ∈ A) ∧ ((x ∈ B) ∧ (x ∈ C))} (Definition of ∩)

= {x | ((x ∈ A) ∧ (x ∈ B)) ∧ (x ∈ C)} (Associative law for logic)

= {x | ((x ∈ A ∩B)) ∧ (x ∈ C)} (Definition of ∩)

= (A ∩B) ∩ C (Definition of ∩)

2. (3 points) Let a, b, and c be values of type int given as hexadecimal numbers in Java as

a = 0xABCD1234 b = 0x5678EF09 c = 0xFFFF

Find the values of the following Java expressions, writing the answers as hexadecimal numbers.
Do not just give the value, which you could get Java to compute for you; show enough work or
explain your reasoning, to show how the answer is computed.

a) (a << 16) | (b >>> 16) b) a & (c << 16) c) (a & (c << 16)) | (b & c)

Answer:

a) a << 16 shifts a 16 bits to the left which is four hexadecimal digits, filling in with zeros on
the right, giving 0x12340000. b >>> 16 shifts a 16 bits to the rightwhich is four hexadecimal
digits, filling in with zeros on the left, giving 0x00005678. When those two numbers are
combined with a bitwise or operation, or’ing with zero has no effect, and so the value of
(a << 16) | (b >>> 16) is 0x12345678.

b) By similar reasoning, c << 16 is 0xFFFF0000. Since and’ing with 1 has no effect and and’ing
with 0 results in zero, a & (c << 16) is 0xABCD0000.

c) b & c is 0x0000EF09. (Note that 0xFFFF is still a 32-bit number, which can be written in full
as 0x0000FFFF.) When the answer from part b) is or’ed with b & c, the result is 0xABCDEF09.

3. (4 points) Consider the two 16-bit integers n and m shown below. First, compute the three
16-bit integers ~n, and n & m, and n | m. Then, what subset of {15, 14, . . . , 1, 0} does each of
the integers n, m, ~n, n & m, and n | m correspond to? (Write out each set in full using the
usual set notation.)

n = 1001 1101 1000 0101
m = 0101 1001 1100 0111

Answer:

n = 1001 1101 1000 0101 {15, 12, 11, 10, 8, 7, 2, 0}
m = 0101 1001 1100 0111 {14, 12, 11, 8, 7, 6, 2, 1, 0}
~n = 0110 0010 0111 1010 {14, 13, 9, 6, 5, 4, 3, 1}

n & m = 0001 1001 1000 0101 {12, 11, 8, 7, 2, 0}
n | m = 1101 1101 1100 0111 {15, 14, 12, 11, 10, 8, 7, 6, 2, 1, 0}

4. (3 points) What is computed by the following method? (Hint: Write N in binary!) Explain
your answer.

int countSomething(int N) {
int ct = 0;
for (int i = 0; i <= 31; i++) {

if ((N & 1) == 1) {
ct++;

}
N = N >>> 1;

}
return ct;

}

Answer:

When N is written as a binary number, it is made up of 1’s and 0’s. This function counts
the number of 1’s in that binary expansion of N . (If you think of N as representing a subset of
{31, 30, 29, . . . , 1, 0}, then the function computes the cardinality of that subset.)

The test if ((N & 1) == 1) tests whether the rightmost bit in N is 1, and if so the value of
ct is incremented. The assignment N = N >>> 1 shifts N one bit to the right, so that the next time
through the loop, the next bit from the original N is being tested. This is done 32 times, so that
every bit from the original N is tested, and ct is incremented one for each bit that is a 1.

5. (2 points) Describe the set {1, 2, 3} × N. Show that you understand its structure.

Answer:

This set is similar to three copies of N, one for each value in the set {1, 2, 3}, From the 1 we get
elements of {1, 2, 3} × N of the form (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), . . . , with one element for each
number in N. From the 2, we get (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), And similarly for the 3. We
could write out the whole set using set notation with ellipses as

{1, 2, 3} × N = { (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), . . . ,
(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), . . . ,
(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), . . .
}

6. (5 points)
a) Consider the function f : Z→ Z given by f(n) = n+ 1. Is f a one-to-one function? Is f

an onto function? Justify your answers.
b) Now, consider the function g : N→ N given by g(n) = n+ 1. Is g a one-to-one function?

Is g an onto function? Justify your answers.

Answer:

a) f is one-to-one. Suppose f(n) = f(m). This means n + 1 = m + 1, which implies n = m.
[Here, I’ve shown that for any n,m ∈ Z, if f(n) = f(m), then n = m. This is the definition
of one-to-one.] It is onto, since given m ∈ Z, we can let n = m− 1, which is in Z, and then
f(n) = m. [Here, I’ve shown that fora any m ∈ Z, there is an n ∈ Z such that f(n) = m.
This is the definition of onto.]

b) g is one-to-one by an argument identical to the proof that f is one-to-one. However, g is
not onto, since there is no n ∈ N such that f(n) = 0. This follows from the fact that since
n ≥ 0 for all n ∈ N, then f(n) = n + 1 > 0; so it is impossible that f(n) = 0. [The proof
here shows that it is not the case that ∀m ∈ N, ∃n ∈ N, f(n) = m. The disproof is by
giving the counterexample m = 0.]

