
CPSC 229, Spring 2021 Homework #5

1. (2 points) The associative law for intersection states that A∩ (B ∩C) = (A∩B)∩C) for any
sets A, B, and C. Verify this law by reducing it to the associative law for propositional logic.

Answer:

A ∩ (B ∩ C) = {x |x ∈ A ∩ (B ∩ C)} (Definition of ∩)

= {x | (x ∈ A) ∧ ((x ∈ B) ∧ (x ∈ C))} (Definition of ∩)

= {x | ((x ∈ A) ∧ (x ∈ B)) ∧ (x ∈ C)} (Associative law for logic)

= {x | ((x ∈ A ∩B)) ∧ (x ∈ C)} (Definition of ∩)

= (A ∩B) ∩ C (Definition of ∩)

2. (3 points) Let a, b, and c be values of type int given as hexadecimal numbers in Java as

a = 0xABCD1234 b = 0x5678EF09 c = 0xFFFF

Find the values of the following Java expressions, writing the answers as hexadecimal numbers.
Do not just give the value, which you could get Java to compute for you; show enough work or
explain your reasoning, to show how the answer is computed.

a) (a << 16) | (b >>> 16) b) a & (c << 16) c) (a & (c << 16)) | (b & c)

Answer:

a) a << 16 shifts a 16 bits to the left which is four hexadecimal digits, filling in with zeros on
the right, giving 0x12340000. b >>> 16 shifts a 16 bits to the rightwhich is four hexadecimal
digits, filling in with zeros on the left, giving 0x00005678. When those two numbers are
combined with a bitwise or operation, or’ing with zero has no effect, and so the value of
(a << 16) | (b >>> 16) is 0x12345678.

b) By similar reasoning, c << 16 is 0xFFFF0000. Since and’ing with 1 has no effect and and’ing
with 0 results in zero, a & (c << 16) is 0xABCD0000.

c) b & c is 0x0000EF09. (Note that 0xFFFF is still a 32-bit number, which can be written in full
as 0x0000FFFF.) When the answer from part b) is or’ed with b & c, the result is 0xABCDEF09.

3. (4 points) Consider the two 16-bit integers n and m shown below. First, compute the three
16-bit integers ~n, and n & m, and n | m. Then, what subset of {15, 14, . . . , 1, 0} does each of
the integers n, m, ~n, n & m, and n | m correspond to? (Write out each set in full using the
usual set notation.)

n = 1001 1101 1000 0101
m = 0101 1001 1100 0111

Answer:



n = 1001 1101 1000 0101 {15, 12, 11, 10, 8, 7, 2, 0}
m = 0101 1001 1100 0111 {14, 12, 11, 8, 7, 6, 2, 1, 0}
~n = 0110 0010 0111 1010 {14, 13, 9, 6, 5, 4, 3, 1}

n & m = 0001 1001 1000 0101 {12, 11, 8, 7, 2, 0}
n | m = 1101 1101 1100 0111 {15, 14, 12, 11, 10, 8, 7, 6, 2, 1, 0}

4. (3 points) What is computed by the following method? (Hint: Write N in binary!) Explain
your answer.

int countSomething( int N ) {
int ct = 0;
for (int i = 0; i <= 31; i++) {

if ( (N & 1) == 1 ) {
ct++;

}
N = N >>> 1;

}
return ct;

}

Answer:

When N is written as a binary number, it is made up of 1’s and 0’s. This function counts
the number of 1’s in that binary expansion of N . (If you think of N as representing a subset of
{31, 30, 29, . . . , 1, 0}, then the function computes the cardinality of that subset.)

The test if ( (N & 1) == 1 ) tests whether the rightmost bit in N is 1, and if so the value of
ct is incremented. The assignment N = N >>> 1 shifts N one bit to the right, so that the next time
through the loop, the next bit from the original N is being tested. This is done 32 times, so that
every bit from the original N is tested, and ct is incremented one for each bit that is a 1.

5. (2 points) Describe the set {1, 2, 3} × N. Show that you understand its structure.

Answer:

This set is similar to three copies of N, one for each value in the set {1, 2, 3}, From the 1 we get
elements of {1, 2, 3} × N of the form (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), . . . , with one element for each
number in N. From the 2, we get (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), . . . . And similarly for the 3. We
could write out the whole set using set notation with ellipses as

{1, 2, 3} × N = { (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), . . . ,
(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), . . . ,
(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), . . .
}

6. (5 points)
a) Consider the function f : Z→ Z given by f(n) = n+ 1. Is f a one-to-one function? Is f

an onto function? Justify your answers.
b) Now, consider the function g : N→ N given by g(n) = n+ 1. Is g a one-to-one function?

Is g an onto function? Justify your answers.



Answer:

a) f is one-to-one. Suppose f(n) = f(m). This means n + 1 = m + 1, which implies n = m.
[Here, I’ve shown that for any n,m ∈ Z, if f(n) = f(m), then n = m. This is the definition
of one-to-one.] It is onto, since given m ∈ Z, we can let n = m− 1, which is in Z, and then
f(n) = m. [Here, I’ve shown that fora any m ∈ Z, there is an n ∈ Z such that f(n) = m.
This is the definition of onto.]

b) g is one-to-one by an argument identical to the proof that f is one-to-one. However, g is
not onto, since there is no n ∈ N such that f(n) = 0. This follows from the fact that since
n ≥ 0 for all n ∈ N, then f(n) = n + 1 > 0; so it is impossible that f(n) = 0. [The proof
here shows that it is not the case that ∀m ∈ N, ∃n ∈ N, f(n) = m. The disproof is by
giving the counterexample m = 0.]


