
CPSC 327, Spring 2019 Sample Answers to Homework #5

1. The keys and their hash codes are shown in the table on the left. The table on the right shows
the contents of the array after all of the keys have been inserted.

key hash(key)

66 1

54 2

98 7

2 2

38 12

45 6

14 1

17 4

35 9

26 0

88 10

64 12

index contents

0 26

1 66

2 54

3 2

4 14

5 17

6 45

7 98

8 64

9 35

10 88

11

12 38

2. There is only one BST of height 2 containing the seven given keys. There are many possibilities
for the other trees. Here are some examples of trees of height 2 through 6:

10

1

4

5 16

17

21

5

1

4

10

16

17

21

4

5

1

10

16

17

21

21

1

4

5

10

16

17

4

1

5

10

16

17

21

4

1

5

10

16

17

21

3. Inserting an item into a BST takes time Θ(h), where h is the height of the tree. The best
case for the sorting algorithm would be when the keys are inserted in an order that keeps the
tree balanced. In that case, the height is always less than or equal to log2(n), and the time
for inserting the n items is Θ(n ∗ log(n)). An inorder traversal of a binary tree containing n

nodes only takes time Θ(n), which is of lower order than Θ(n ∗ log(n)). The the total best case
time is therefore Θ(n ∗ log(n)). A worst case occurs when the items are inserted in increasing
or decreasing order. In that case, the binary tree really has the same form as a linked list, and
inserting the k

th item takes k steps. To insert all n items takes 1 + 2 + · · · + n steps, which

is Θ(n2). The in-order traversal still only takes Θ(n) time, so the total worst cast run time is
Θ(n2).

4. If we could build an n-node BST in a run time of lower order than n∗ log(n), using comparisons,
then we could use the algorithm from Problem 3 to to sort n items in run time of lower order
than n ∗ log(n). This contradicts the known lower bound on sorting using comparisons.

5. A node in the B-Tree can hold 1, 2, or 3 keys. (If it is not a leaf node, then it will hold 2, 3
or 4 pointers to child nodes.) The first three keys will simply be inserted into the root node.
Inserting the fourth key will require splitting the root node and making a new root; the fourth
key then goes, in this case, into the second child of the root, and the fifth key is placed into
the same child. When the sixth key is inserted, it wants to go into that same second child, so
the child must be split. There is one more split when the eighth key is inserted. The B-Tree is
shown here at several stages of the process:

1 2 3 2

1 3 4 52 4

1 3 5 6 7

2 4 6

1 3 5 7 8 9

6. My algorithm reads segments of the file into main memory, sorts them using the standard
merge sort algorithm in memory, and then writes the result back to secondary storage in new
files (one file for each segment). Make the segments as large as possible, given the size of main
memory. The data from the original file has been broken into several files, say K files, and
the data in each of the K files is sorted. The algorithm can then merge the K files into one
large sorted file, using a merge routine similar to the one from Problem 3b from the previous
homework assignment. Note that it is not necessary to read the K files into memory all at once;
in fact, it is only necessary to have one page from each file in memory at any given time. This
algorithm reads each data item twice and writes it twice. If the original file occupies P pages in
secondary storage, then the algorithm reads 2 ∗ P pages and writes 2 ∗ P pages. The algorithm
is essentially just merge sort, and the CPU time is Θ(n ∗ log(n)), where n is the file size. (Note
that to minimize the number of page accesses, it is important to merge the K segments in one
pass, rather than merging them two at a time in multiple passes as standard merge sort would
do. Each pass in standard merge sort would require reading and writing all of the data from
the original file, and there would be a total of 4 ∗ P ∗ log2(K) page accesses, instead of 4 ∗ P .)

In the example, the file contains 240 bytes, so at 212 bytes per page, it occupies 228 pages.
With 8GB of main memory, we can merge sort a 4GB (233 byte) file segment in main memory,
so to cover the whole file, we need K = 27 = 128 segments. (We probably can’t quite do 4GB at
a time, so maybe a few more segments.) To read all of the segments into main memory requires
228 page reads. Writing them back to new files takes 228 page writes. Merging the 128 segments
requires reading and writing all of the data again, so it adds another 228 page reads and the
same number of page writes. The total is therefore 230 page acesses, counting both reads and
writes.

