This homework is due at lab next week, on Tuesday, March 10.

1. Compute the following derivatives, using all of the rules that we have covered.
a) $\frac{d}{d x} e^{x} \sin (x)$
b) $\frac{d}{d t} \ln (2+\cos (t))$
c) $\frac{d}{d x} \frac{e^{x}-e^{-x}}{2}$
d) $\frac{d}{d s} \frac{\sin ^{-1}\left(e^{s}\right)}{s^{2}}$
e) $\frac{d}{d x} 4 \sqrt[5]{\ln (x)+1}$
f) $\frac{d}{d \theta} \theta e^{\tan (\theta)}$
2. Find an equation for the tangent line to the graph of $y=e^{x^{2}}$ at the point where $x=1$.
3. It is true, though not so easy to prove, that if the derivative of a function $f(x)$ satisfies $f^{\prime}(x)=0$ for all x in some interval, then $f(x)$ must be constant on that interval; that is, there is a constant c such that $f(x)=c$ for all x in the interval. In this problem, you will use this fact to prove one of the laws of logarithms for the natural logarithm function $\ln (x)$.
a) Let a be a positive constant, and define $f(x)=\ln (a x)-\ln (x)$, for $x>0$, Show that $f^{\prime}(x)=0$ for all $x>0$. Deduce that $\ln (a x)-\ln (x)$ is a constant.
b) By plugging $x=1$ into $\ln (a x)-\ln (x)$, deduce that the constant is $\ln (a)$, and conclude that $\ln (a x)=\ln (a)+\ln (x)$ for all positive numbers a and x.
4. Using the fact that $f(x)^{g(x)}$ can be written as $e^{g(x) \ln (f(x))}$. compute the following derivatives. (Alternatively, if you prefer the textbook's logarithmic differentiation method, you can use that technique instead.)
a) $\frac{d}{d x} x^{\sqrt{x}}$
b) $\frac{d}{d x}(\tan (x))^{x^{2}}$
