This homework is due on Friday, April 17.

1. Consider a quadratic polynomial $p(x)=a x^{2}+b x+c$, with $a \neq 0$. Find the critical point of $p(x)$. Use the second derivative test to decide whether the critical point is a local minimum or a local maximum for $p(x)$. The answer will depend on a, the coefficient of $p(x)$.
2. Sketch the graph of a function $f(x)$ that has all of the following properties, including the values of the function shown in the table.
$f^{\prime}(x)=0$ for $x=-2,-1,0$, and 2 .
$f(x)$ is increasing for $x<-2,-2<x<-1$, and $0<x<2$.
$f(x)$ is decreasing for $-1<x<0$ and $x>2$.
$f(x)$ has a point of inflection at $x=1$. (It also has other inflection points.)

x	$f(x)$
-3	0
-2	1
-1	2
0	1
1	2
2	3
4	0

3. Let $g(x)=x-\sin (x)$. Find the critical points of $g(x)$. Show that $f(x)$ is always increasing, except at its critical points.
4. Consider the cubic polynomial function $f(x)=2 x^{3}+9 x^{2}+12$. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f. Sketch the graph of $y=f(x)$. (Note: For questions 4 though 7, you should show your work and answer all questions explicitly. Don't just draw the graph!)
5. Consider the polynomial function $p(x)=x^{4}-2 x^{2}$. Find the intervals on which p is increasing and on which it is decreasing. Find any local maxima and local minima of p. Find the intervals on which p is concave up and on which it is concave down. Find any inflection points of p. Sketch the graph of $y=p(x)$.
6. Consider the function $f(x)=x e^{-x}$. You can assume that $\lim _{x \rightarrow \infty} f(x)=0$. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f. Sketch the graph of $y=f(x)$.
7. Consider the function $f(x)=\frac{x}{1+x^{2}}$. This function approaches 0 as x goes to $+\infty$ or to $-\infty$. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f. Sketch the graph of $y=f(x)$.
