This homework is due on Friday, April 17.

1. Consider a quadratic polynomial $p(x) = ax^2 + bx + c$, with $a \neq 0$. Find the critical point of p(x). Use the second derivative test to decide whether the critical point is a local minimum or a local maximum for p(x). The answer will depend on a, the coefficient of p(x).

2. Sketch the graph of a function $f(x)$ that has all of the following properties,	x	f(x)
including the values of the function shown in the table.	-3	0
f'(x) = 0 for $x = -2, -1, 0, and 2$.	-2	1
f(x) is increasing for $x < -2, -2 < x < -1$, and $0 < x < 2$.	-1	2
f(x) is decreasing for $-1 < x < 0$ and $x > 2$.	0	1
f(x) has a point of inflection at $x = 1$. (It also has other inflection points.)	1	2
	2	3
	4	0

- **3.** Let $g(x) = x \sin(x)$. Find the critical points of g(x). Show that f(x) is always increasing, except at its critical points.
- 4. Consider the cubic polynomial function $f(x) = 2x^3 + 9x^2 + 12$. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f. Sketch the graph of y = f(x). (Note: For questions 4 though 7, you should show your work and answer all questions explicitly. Don't just draw the graph!)
- 5. Consider the polynomial function $p(x) = x^4 2x^2$. Find the intervals on which p is increasing and on which it is decreasing. Find any local maxima and local minima of p. Find the intervals on which p is concave up and on which it is concave down. Find any inflection points of p. Sketch the graph of y = p(x).
- 6. Consider the function $f(x) = xe^{-x}$. You can assume that $\lim_{x\to\infty} f(x) = 0$. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f. Sketch the graph of y = f(x).
- 7. Consider the function $f(x) = \frac{x}{1+x^2}$. This function approaches 0 as x goes to $+\infty$ or to $-\infty$. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f. Sketch the graph of y = f(x).