1. Suppose that a power series $\sum_{n=0}^{\infty} c_n x^n$ converges on an open interval that contains zero. Then the power series defines a function $f(x) = \sum_{n=0}^{\infty} c_n x^n$ on that interval. We can write this function out more explicitly as

$$f(x) = c_o + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots + c_n x^n + \dots$$

So, a power series is something like an infinite polynomial. Recall also that you can take the derivative of a convergent power series term-by-term, just like a polynomial.

- a) For the function f(x) defined by the above power series, explain why $f(0) = c_o$.
- **b)** Find a formula for f'(x), written out like an infinite polynomial. Then find f'(0).
- c) Similarly, find f''(0), and deduce that $c_2 = \frac{1}{2}f''(0)$.
- **d**) Similarly, find f'''(0), and deduce that $c_3 = \frac{1}{3\cdot 2}f'''(0) = \frac{1}{3!}f'''(0)$.
- e) Recall that $f^{(n)}$ is a notation for the *n*-th derivative of f. Find $f^{(4)}(0)$, and deduce that $c_4 = \frac{1}{4!}f^{(4)}(0)$.
- **f)** Explain why $c_n = \frac{1}{n!} f^{(n)}(0)$ for all n.
- g) Suppose that g(x) is defined by $g(x) = \sum_{n=0}^{\infty} \frac{nx^n}{n^2 + 1}$. This series converges for |x| < 1. Find $g^{(10)}(0)$.
- 2. We have shown that the power series $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges for all x. Let f(x) be the function defined by this power series. Show that f'(x) = f(x) and that f(0) = 1. (It might be useful to write out the series as an infinite polynomial.) This means that f is a solution of the initial value problem $\frac{dy}{dx} = y$, y(0) = 1. We know that there is only one solution. What is it? What is f?
- **3.** Recall that a series $\sum_{k=1}^{\infty} a_k$ converges absolutely if $\sum_{k=1}^{\infty} |a_k|$ converges. It converges conditionally if it converges but $\sum_{k=1}^{\infty} |a_k|$ does not converge. The other possibility is that the series $\sum_{k=1}^{\infty} a_k$ diverges—in that case, $\sum_{k=1}^{\infty} |a_k|$ automatically diverges as well.

Determine whether each of the following infinite series converges absolutely, or converges conditionally or diverges.

a)
$$\sum_{k=1}^{\infty} \frac{(-5)^n}{\sqrt{k}}$$
 b) $\sum_{k=2}^{\infty} \frac{k}{k^3 - 1}$ c) $\sum_{k=1}^{\infty} \frac{(-1)^k 2^k}{5^k \sqrt{k}}$ d) $\sum_{k=2}^{\infty} \frac{\ln(k)}{k^2}$
e) $\sum_{k=1}^{\infty} \frac{2}{3^k + k^3}$ f) $\sum_{k=1}^{\infty} \frac{10000^k}{k^k}$ g) $\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2}$ h) $\sum_{k=1}^{\infty} \frac{(-1)^k 2^k}{k^5}$

(Hint for part **d**): Show that $\ln(k) < \sqrt{k}$ for all sufficiently large k.)