1. Suppose that a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges on an open interval that contains zero. Then the power series defines a function $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ on that interval. We can write this function out more explicitly as

$$
f(x)=c_{o}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots
$$

So, a power series is something like an infinite polynomial. Recall also that you can take the derivative of a convergent power series term-by-term, just like a polynomial.
a) For the function $f(x)$ defined by the above power series, explain why $f(0)=c_{o}$.
b) Find a formula for $f^{\prime}(x)$, written out like an infinite polynomial. Then find $f^{\prime}(0)$.
c) Similarly, find $f^{\prime \prime}(0)$, and deduce that $c_{2}=\frac{1}{2} f^{\prime \prime}(0)$.
d) Similarly, find $f^{\prime \prime \prime}(0)$, and deduce that $c_{3}=\frac{1}{3 \cdot 2} f^{\prime \prime \prime}\left(0=\frac{1}{3!} f^{\prime \prime \prime}(0)\right.$.
e) Recall that $f^{(n)}$ is a notation for the n-th derivative of f. Find $f^{(4)}(0)$, and deduce that $c_{4}=\frac{1}{4!} f(4)(0)$.
f) Explain why $c_{n}=\frac{1}{n!} f^{(n)}(0)$ for all n.
g) Suppose that $g(x)$ is defined by $g(x)=\sum_{n=0}^{\infty} \frac{n x^{n}}{n^{2}+1}$. This series converges for $|x|<1$. Find $g^{(10)}(0)$.
2. We have shown that the power series $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ converges for all x. Let $f(x)$ be the function defined by this power series. Show that $f^{\prime}(x)=f(x)$ and that $f(0)=1$. (It might be useful to write out the series as an infinite polynomial.) This means that f is a solution of the initial value problem $\frac{d y}{d x}=y, y(0)=1$. We know that there is only one solution. What is it? What is f ?
3. Recall that a series $\sum_{k=1}^{\infty} a_{k}$ converges absolutely if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges. It converges conditionally if it converges but $\sum_{k=1}^{\infty}\left|a_{k}\right|$ does not converge. The other possibility is that the series $\sum_{k=1}^{\infty} a_{k}$ diverges -in that case, $\sum_{k=1}^{\infty}\left|a_{k}\right|$ automatically diverges as well.

Determine whether each of the following infinite series converges absolutely, or converges conditionally or diverges.
a) $\sum_{k=1}^{\infty} \frac{(-5)^{n}}{\sqrt{k}}$
b) $\sum_{k=2}^{\infty} \frac{k}{k^{3}-1}$
c) $\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k}}{5^{k} \sqrt{k}}$
d) $\sum_{k=2}^{\infty} \frac{\ln (k)}{k^{2}}$
e) $\sum_{k=1}^{\infty} \frac{2}{3^{k}+k^{3}}$
f) $\sum_{k=1}^{\infty} \frac{10000^{k}}{k^{k}}$
g) $\sum_{k=1}^{\infty} \frac{\sin (k)}{k^{2}}$
h) $\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k}}{k^{5}}$
(Hint for part d): Show that $\ln (k)<\sqrt{k}$ for all sufficiently large k.)

