This lab is due at the start of next week's lab.

1. Suppose that f is a function that is continuous on $[0, \infty]$ and that $\lim _{x \rightarrow \infty} f(x)=1$. Consider the average value of $f(x)$ on the interval $[0, b]$. What do you expect to happen to this average value as $b \rightarrow \infty$? That is, what is $\lim _{b \rightarrow \infty}\left(\frac{1}{b} \int_{0}^{b} f(x) d x\right)$? Why? Explain your reasoning. Draw a picture.
2. Consider the function $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x<2 \\ 3, & 2 \leq x \leq 5\end{array}\right.$. This function has a jump discontinuity at $x=2$. (Recall that this means the left and right limits, $\lim _{x \rightarrow 2-} f(x)$ and $\lim _{x \rightarrow 2+} f(x)$, both exist but are different.) Nevertheless, f is integrable on the interval [0,5], and we can define the area function $A(x)=\int_{0}^{x} f(t) d t$.
a) Draw the graph of f on the interval $[0,5]$.
b) Find an explicit formula for the area function $A(x)=\int_{0}^{x} f(t) d t$ on the interval $[0,5]$. It will be similar to the formula for $f(x)$; that is, it will be a split function. (Show your work!)
c) The Fundamental Theorem of Calculus implies that $A(x)$ is differentiable on any interval on which $f(x)$ is continuous, but it doesn't say anything about what happens at $x=2$, where $f(x)$ has a discontinuity. So, what does happen with $A(x)$ at $x=2$? Is A differentiable at $x=2$? Is A continuous at $x=2$? Why? [Look at what happens as you approach $x=2$ from the left and from the right.]
d) Try to come up with a hypothesis about what happens to any area function $A(x)=$ $\int_{a}^{x} f(t) d t$ at a value of x where f has a jump discontinuity. State your hypothesis clearly, and try to specify as much as you can about the behavior of A at the point where f is discontinuous.
3. Sometimes, an indefinite integral can be found using a substitution that is less than obvious. Compute the following integrals by using the suggested substitution.
a) $\int \frac{x^{3}}{\sqrt{2 x^{2}+1}} d x$, using $u=2 x^{2}+1$. (Hint: Write x^{2} in terms of u.)
b) $\int \frac{1}{\sqrt{x}(1+x)} d x$, using $u=\sqrt{x}$. (Hint: Write x in terms of u.)
c) $\int \sin ^{3}(x) d x$, using $u=\cos (x)$. (Hint: Write $\sin ^{2}(x)=1-\cos ^{2}(x)$.)
4. In each of the following problems, fill in the box with a non-zero function that will make the integral doable. Then find the resulting integral.
а) $\int \square \cdot \sin \left(x^{2}+3 x+7\right) d x$
b) $\int \sqrt{x} \cdot e^{\square} d x$
c) $\int \sqrt[3]{\square} \cdot\left(3 e^{3 x}+3 e^{-3 x}\right) d x$

If you have extra time in the lab, consider working on this homework, which is due next Tuesday along with the lab:

Section 6.1, \# 8, 30, 34, 40, 60

