Answer 1. a) $\{0,4,16,36,64,100, \ldots\}=\left\{\left(x^{2}: x \in \mathbb{Z}\right.\right.$ and x is even $\}$. The elements are the squares of the even integes: $0=0^{2}, 4=2^{2}=(-2)^{2}, 16=4^{2}=(-4)^{2}$, etc. (We can use all of the integers here because the square of a negative integer is positive. This could also be written, for example, as $\left\{(2 x)^{2}: x \in \mathbb{Z}\right.$ and $\left.x \geq 0\right\}$; here, by using $(2 x)^{2}$, we only get the squares of even numbers.)
b) $\{\ldots,-8,-3,2,7,12,17, \ldots\}=\{2+5 n: n \in \mathbb{Z}\}$. The numbers in the set are separated by 5 , so we can get all the elements in the set by starting with 2 and adding positive or negative multiples of 5 . In fact, we could start with any element; for example, the set can be written $\{-8+5 n: n \in \mathbb{Z}\}$.
c) $\left\{\ldots, \frac{1}{27}, \frac{1}{9}, \frac{1}{3}, 1,3,9,27 \ldots\right\}=\left\{3^{n}: n \in \mathbb{Z}\right\}$. The elements in the set are powers of three, $1=3^{0}, 3=3^{1}, 9=3^{2}, 27=3^{3}$, and so on, and $\frac{1}{3}=3^{-1}, \frac{1}{9}=3^{-2}$, and so on.

Answer 2. $\{n \in \mathbb{Z}: 2<n<5\} \times\{n \in \mathbb{Z}:|n|=5\}=\{3,4\} \times\{-5,5\}=\{(3,5),(3,-5),(4,5),(4,-5)\}$

Answer 3. a) $|\mathscr{P}(A) \times \mathscr{P}(B)|=|\mathscr{P}(A)| \cdot|\mathscr{P}(B)|=2^{n} \cdot 2^{m}=2^{n+m}$. This uses the fact that $|X \times Y|=|X| \cdot|Y|$ and the fact that $|\mathscr{P}(X)|=2^{|X|}$.
b) $\mid\{X: X \in \mathscr{P}(A)$ and $|X| \leq 1\} \mid=n+1$. The set $\mathscr{P}(A)$ contains all subsets of A. The set X consists of the subsets of A that have zero elements or one element. The only subset with zero elements is the empty set, so there is one subset with cardinality 0 . For each of the n elements of A, we get a subset that contains just that one element, which gives a total of n subsets with cardinality one. This gives $n+1$ subsets with cardinality zero or 1 .

Answer 4. Yes, it is always true that if $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. If X is any element of $\mathscr{P}(A)$, then X is a subset of A. But anything in A is also in B, so that means that X is also a subset of B. But saying X is a subset of B means that X an element of $\mathscr{P}(B)$.

Answer 5. $\overline{\bar{A}}=A$. Saying $x \in \overline{\bar{A}}$ means that x is not in the complement of A; that is, x is not outside of A. But that is the same as saying that x is inside A.

Answer 6. $\bigcup_{i \in \mathbb{N}} A_{i}=\{n \in \mathbb{Z}: n$ is even $\}$, since every even number is in one of the sets A_{n}. (Any even integer $2 k$ is in $A_{|k|}$. And $\bigcap_{i \in \mathbb{N}} A_{i}=\{0\}$, since 0 is the only number that is in A_{n} for all n. (In fact, $A_{1} \cap A_{2}=\{2,0,2\} \cap\{4,0,4\}$, so the intersection of the first two sets is already just $\{0\}$.)

Answer 7. $\bigcup_{i \in \mathbb{N}}[0, i+1]=[0, \infty)$, since every non-negative real number is in one of the sets, and the sets contains only non-negative real numbers. And $\bigcap_{i \in \mathbb{N}}[0, i+1]=[0,2]$, since all the sets contain the interval $[0,2]$ and the intersection can't be bigger than $[0,2]$ because $[0,2]$ is one of the sets that is being intersected.

Answer 8. If $\bigcap_{\alpha \in I} A_{\alpha}=\bigcup_{\alpha \in I} A_{\alpha}$, then all of the sets A_{α} must be equal, and each of them is equal to the intersection. Let B be the intersection, which is the same as the union. Let A_{α} be one of the sets. When you take the union of some sets, every one of those sets is contained in the union, so $A_{\alpha} \subseteq B$. When you take the intersection of some sets, every one of those sets contains the intersection, so $B \subseteq A_{\alpha}$. Saying $A_{\alpha} \subseteq B$ and $B \subseteq A_{\alpha}$ is the same as saying $A_{\alpha}=B$. That is, every one of the sets A_{α} is equal to B.

Answer 9. Yes. If $J \neq \varnothing$ and $J \subseteq I$, then $\bigcap_{\alpha \in I} A_{\alpha} \subseteq \bigcap_{\alpha \in J} A_{\alpha}$. If x is in the first intersection, then $x \in A_{\alpha}$ for every $\alpha \in I$. But since $J \subset I$, it follows that $x \in A_{\alpha}$ for every $\alpha \in J$, and that means that x is in the second intersection. (We only need $J \neq \varnothing$ because the intersection of zero sets has not been defined.)

Answer 10. If $C=\varnothing$, then $X \times C=\varnothing$ for any set X. So, for example $\{1\} \times \varnothing=\{2\} \times \varnothing$ even though $\{1\} \neq\{2\}$. However, if $A \times C=B \times C$ and $C \neq \varnothing$, then A must equal B. To see this, note that if C is not empty, then there exists some element $c \in C$. Then for any $a \in A$, we have $(a, c) \in A \times C$. But $A \times C=B \times C$, so we also have $(a, c) \in B$, which means that a must be in B also. (Another way of saying this: If $C \neq \varnothing$, then A is clearly equal to the set of first coordinates of ordered pairs in $A \times C$, and B is equal to the set of first coordinates of ordered pairs in $B \times C$. So $A \times C=B \times C$ will imply $A=B$.)

