Math 135, Fall 2019, Sample Answers to Homework 10

1. Note that $g \circ f: A \rightarrow C$, so the first coordinates of the ordered pairs in $g \circ f$, considered as a set of ordered pairs, are a, b, c, d, and e. To compute the second coordinates, note, for example, that $g \circ f(a)=g(f(a))=g(3)=R$, and therefore $(a, R) \in g \circ f$. Doing a similar computation for each element of A, we see that

$$
g \circ f=\{(a, R),(b, R),(c, R),(d, B),(e, G)\}
$$

2. Note, for example, that $h \circ h(a)=h(h(a))=h(c)=e$, and $h \circ h \circ h(a)=h(h \circ h(a))=h(e)=f$. In particular, if we know $h \circ h$, we can use that to compute $h \circ h \circ h$ in one step by forming the composition of h with $h \circ h$.
a) $h \circ h=\{(a, c),(b, e),(c, f),(d, f),(e, f),(f, f)\}$
b) $h \circ h \circ h=\{(a, e),(b, f),(c, f),(d, f),(e, f),(f, f)\}$
c) $h \circ h \circ h \circ h=\{(a, f),(b, f),(c, f),(d, f),(e, f),(f, f)\}$
d) Since $(h \circ h \circ h \circ h)(x)=f$ for all $x \in A$, and $h(f)=f$, As we continue to add on additional compositions with h, we will always get a function whose value is f for all $x \in A$.
3. The function f is injective. Proof: Suppose that $f(n)=f(m)$. We want to show that $n=m$. Saying $f(n)=f(m)$ means that $(2 n, n+3)=(2 m, m+3)$. In particular, by definition of equality of ordered pairs, this means that $2 n=2 m$. Dividing both sides of this equation by 2 shows that $n=m$.

Howeve, f is not surjective. Proof: For example, the element $(1,0)$ cannot be equal to $f(n)$ for any n since the first coordinate of $f(n)$ is always an even number.
4. The function θ is injective: Suppose that $\theta(X)=\theta(Y)$; that is, $\bar{X}=\bar{Y}$. Taking the complement of both sides of the equation gives $\overline{\bar{X}}=\overline{\bar{Y}}$, and because $\overline{\bar{X}}=X$ for any set X, this means that $X=Y$. The function θ is also surjective. Given $Y \in \mathscr{P}(A)$, let $X=\bar{Y}$. Then $\theta(X)=\overline{\bar{Y}}=Y$, so we have shown that every $Y \in \mathscr{P}(A)$ is in the range of θ. Because θ is both injective and surjective, it is by definition bijective.
5. We first show that f is injective: Suppose that $n, m \in \mathbb{N}$ and $f(n)=f(m)$. We must show that $n=m$. Since $f(n)=f(m)$, we have that $\frac{1}{4}\left((-1)^{n}(2 n-1)+1\right)=\frac{1}{4}\left((-1)^{m}(2 m-1)+1\right)$. Multiplying by 4 and subtracting 1 from both sides gives $(-1)^{n}(2 n-1)=(-1)^{m}(2 m-1)$. Note that $(-1)^{n}$ is 1 if n is even and is -1 if n is odd. The two sides of the equation $(-1)^{n}(2 n-1)=$ $(-1)^{m}(2 m-1)$ must have the same sign or must both be zero. If both sides are zero, we must have $2 n-1=2 m-1=0$; if not, then we see that $(-1)^{n}$ must equal $(-1)^{m}$, and we can divide the equation by that number to get $2 n-1=2 m-1$. In any case, $2 n-1=2 m-1$. Finally, adding 1 and dividing by 2 yields $n=m$.

Next, we show that f is surjective: Suppose that $k \in \mathbb{Z}$. We must find an $n \in \mathbb{N}$ such that $f(n)=k$, that is, $\frac{1}{4}\left((-1)^{n}(2 n-1)+1\right)=k$. Consider three cases: $k=0, k>0$, and $k<0$. For the case $k=0$ we see that $f(1)=\frac{1}{4}\left((-1)^{1}(2 \cdot 1-1)+1\right)=\frac{1}{4}((-1)(1-1))=0$. For the case $k>0$, let $n=2 k$. Noting that $(-1)^{2 k}=1$, we see that $f(n)=f(2 k)=\frac{1}{4}\left((-1)^{2 k}(2(2 k)-1)+1\right)=$ $\frac{1}{4}(1 \cdot(4 k-1)+1)=\frac{1}{4}(4 k)=k$. For the case $k<0$, let $n=1-2 k$. Noting that $1-2 k$ is an odd positive number, we see that $f(n)=f(1-2 k)=\frac{1}{4}\left((-1)^{1-2 k}(2(1-2 k)-1)+1\right)=$ $\frac{1}{4}((-1) \cdot(2-4 k-1)+1)=\frac{1}{4}(-(1-4 k)+1)=k$. So, in any case, k is in the range of f.

We have shown that f is injective and surjective. Therefore, by definition, it is bijective.
6. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
a) Suppose that $g \circ f$ is surjective. We want to show that g is surjective. Let $c \in C$. We must find a $b \in B$ such that $g(b)=c$. Since the function $g \circ f: A \rightarrow C$ is surjective by assumption, there is an $a \in a$ such that $g \circ g(a)=c$. Let $b=f(a)$. Then $g(b)=g(f(a))=g \circ f(a)=c$.
b) We must find an example were $g \circ f$ is surjective, but f is not surjective. For the most trivial possible example, let $A=\{a\}, B=\{1,2\}$, and $C=\{c\}$. Define $f: A \rightarrow B$ by setting $f(a)=1$, and define $g: B \rightarrow C$ by setting $g(1)=g(2)=c$. Then $g \circ f(a)=c$, so $g \circ f$ is surjective, but f is not surjective because 2 is not in the range of f. (For an example with formulas, defining $f: \mathbb{N} \rightarrow \mathbb{Z}$ by letting $f(n)=n-1$ for all n, and define $g: \mathbb{Z} \rightarrow \mathbb{N}$ by $g(m)=1+|m|$ for all $m \in \mathbb{Z}$. Then for $n \in \mathbb{N}, g \circ f(n)=1+|n-1|=n$, so $g \circ f$ is surjective. However, f is not surjective.)
7. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
a) Suppose that $g \circ f$ is injective. We want to show that f is surjective. Suppose that a_{1} and a_{2} are elements of A and that $f\left(a_{1}\right)=f\left(a_{2}\right)$. We must show that $a_{1}=a_{2}$. Applying g to both sides of the equation $f\left(a_{1}\right)=f\left(a_{2}\right)$, we get that $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, that is $g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)$. Because $g \circ f$ is injective by assumption, we can conclude that $a_{1}=a_{2}$.
b) We must find an example were $g \circ f$ is injective, but g is not injective. But in fact, both examples given for the previous problem work here as well.
8. Let $y \in \mathbb{R} \backslash\{5\}$. To find $f^{-1}(y)$, we must solve $f(x)=y$ for x. That is, we must find $x \in R \backslash\{2\}$ such that $\frac{5 x+1}{x-2}=y$. Multiplying the equation by $x-2$ gives $5 x+1=(x-2) y=x y-2 y$. Subtract $x y$ from both sides gives $5 x-x y+1=-2 y$, and subtracting 1 from both sides gives $5 x-x y=-2 y-1$, or $x(5-y)=-(2 y+1)$. Because $y \in \mathbb{R} \backslash\{5\}$, we know $y \neq 5$ and therefore $5-y \neq 0$. So we can divide the equation by $5-y$ to give $y=\frac{-(2 y+1)}{5-y}=\frac{2 y+1}{y-5}$. This computation shows that $f\left(\frac{2 y+1}{y-5}\right)=y$ and therefore $f^{-1}(y)=\frac{2 y+1}{y-5}$.

We can also check this:

$$
\begin{aligned}
f\left(\frac{2 y+1}{y-5}\right) & =\frac{5\left(\frac{2 y+1}{y-5}\right)+1}{\frac{2 y+1}{y-5}-2} \\
& =\frac{5(2 y+1)+1(y-5)}{(2 y+1)-2(y-5)} \\
& =\frac{10 y+5+y-5}{2 y+1-2 y+10} \\
& =\frac{11 y}{11} \\
& =y
\end{aligned}
$$

9. We must show that $s \circ s$ is the identity function on \mathbb{N}. We note that if n is even then $s(n)=n+1$ is odd, and that if n is odd then $s(n)=n-1$ is even. It follows that in the case when n is even, $s \circ s(n)=s(n+1)=(n+1)-1=n$, and in the case where n is odd, $s \circ s(n)=s(n-1)=$ $(n-1)+1=n$. So, in any case, $s \circ s(n)=n$, which means that $s=s^{-1}$.

Another function that is its own inverse is $\nu: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $\nu(n)=-1$. this function is its own inverse because $\nu \circ \nu(n)=\nu(-n)=-(-n)=n$. for all $n \in \mathbb{Z}$,

