Math 135, Fall 2019, Homework 10

This homework is due next Wednesday, November 20.

1. Let $A=\{a, b, c, d, e\}$ and let $B=\{1,2,3,4\}$ and let $C=\{R, G, B\}$. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions that are defined as sets as follows:

$$
\begin{aligned}
f & =\{(a, 3),(b, 1),(c, 1),(d, 2),(e, 4)\} \\
g & =\{(1, R),(2, B),(3, R),(4, G)\}
\end{aligned}
$$

Write out the set that represents the function $g \circ f$.
2. Let $A=\{a, b, c, d, e, f\}$, and let $h: A$ be the function defined as a set by

$$
f=\{(a, b),(b, c),(c, e),(d, e),(e, f),(f, f)\}
$$

a) Write out the set that represents the function $h \circ h$.
b) Write out the set that represents the function $h \circ h \circ h$.
c) Write out the set that represents the function $h \circ h \circ h \circ h$.
d) What happens if you continue to take compositions of h with itself?
3. (Exercise 12.2.4.) Let $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be the function defined by $f(n)=(2 n, n+3)$. Is f injective? Is it surjective? Prove your answers.
4. (Exercise 12.2.14.) Let A be a set, and let $\theta: \mathscr{P}(A) \rightarrow \mathscr{P}(A)$ be the function defined by $\theta(X)=\bar{X}$. (Here, \bar{X} is the complement of the set X in A.) Is θ injective? Is it surjective? Is it bijective? Explain. (Hint: This is easy! Use the fact that $\overline{\bar{X}}=X$.)
5. (Exercise 12.2.18.) Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be the function $f(n)=\frac{1}{4}\left((-1)^{n}(2 n-1)+1\right)$. Prove that f is bijective.
6. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
a) Show that if $g \circ f$ is surjective, then g is surjective.
b) Give an example to show that when $g \circ f$ is surjective, f is not necessarily surjective.
7. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
a) Show that if $g \circ f$ is injective, then f is injective.
b) Give an example to show that when $g \circ f$ is injective, g is not necessarily injective.
8. (Exercise 12.5,2.) Define $f: \mathbb{R} \backslash\{2\} \rightarrow \mathbb{R} \backslash\{5\}$ by $f(x)=\frac{5 x+1}{x-2}$. The function f is bijective. Find its inverse. (Note: You are not asked to show that f is in fact bijective; just assume that it is.)
9. Define $s: Z \rightarrow Z$ by $s(n)=\left\{\begin{array}{ll}n+1 & \text { if } n \text { is even } \\ n-1 & \text { if } n \text { is odd }\end{array}\right.$. The function s is bijective. Show that s is its own inverse function. Can you find any function from \mathbb{Z} to \mathbb{Z} that is its own inverse, besides s and the identity function? (There is one with a very simple formula.)

