This homework is due next Wednesday, November 20.

1. Let $A = \{a, b, c, d, e\}$ and let $B = \{1, 2, 3, 4\}$ and let $C = \{R, G, B\}$. Let $f: A \to B$ and $g: B \to C$ be functions that are defined as sets as follows:

$$f = \{(a,3), (b,1), (c,1), (d,2), (e,4)\}$$

$$g = \{(1,R), (2,B), (3,R), (4,G)\}$$

Write out the set that represents the function $g \circ f$.

- **2.** Let $A = \{a, b, c, d, e, f\}$, and let h: A be the function defined as a set by $f = \{(a, b), (b, c), (c, e), (d, e), (e, f), (f, f)\}$
 - **a)** Write out the set that represents the function $h \circ h$.
 - **b**) Write out the set that represents the function $h \circ h \circ h$.
 - c) Write out the set that represents the function $h \circ h \circ h \circ h$.
 - d) What happens if you continue to take compositions of h with itself?
- **3.** (*Exercise 12.2.4.*) Let $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be the function defined by f(n) = (2n, n+3). Is f injective? Is it surjective? Prove your answers.
- **4.** (*Exercise 12.2.14.*) Let A be a set, and let $\theta: \mathscr{P}(A) \to \mathscr{P}(A)$ be the function defined by $\theta(X) = \overline{X}$. (Here, \overline{X} is the complement of the set X in A.) Is θ injective? Is it surjective? Is it bijective? Explain. (Hint: This is easy! Use the fact that $\overline{\overline{X}} = X$.)
- 5. (*Exercise 12.2.18.*) Let $f: \mathbb{N} \to \mathbb{Z}$ be the function $f(n) = \frac{1}{4}((-1)^n(2n-1)+1)$. Prove that f is bijective.
- **6.** Suppose that $f: A \to B$ and $g: B \to C$ are functions.
 - a) Show that if $g \circ f$ is surjective, then g is surjective.
 - b) Give an example to show that when $g \circ f$ is surjective, f is not necessarily surjective.
- **7.** Suppose that $f: A \to B$ and $g: B \to C$ are functions.
 - a) Show that if $g \circ f$ is injective, then f is injective.
 - b) Give an example to show that when $g \circ f$ is injective, g is not necessarily injective.
- 8. (*Exercise 12.5,2.*) Define $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{5\}$ by $f(x) = \frac{5x+1}{x-2}$. The function f is bijective. Find its inverse. (Note: You are **not** asked to show that f is in fact bijective; just assume that it is.)
- **9.** Define $s: Z \to Z$ by $s(n) = \begin{cases} n+1 & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd} \end{cases}$. The function s is bijective. Show that s is its own inverse function. Can you find any function from \mathbb{Z} to \mathbb{Z} that is its own inverse, besides s and the identity function? (There is one with a very simple formula.)