This homework is due next Monday, September 9

Exercise 1. Consider the set of real numbers, \mathbb{R}, with its usual topology, and consider the subset $[1,7)=\{x \in \mathbb{R}: 1 \leq x<7\}$. Show that the set $[1,7)$ is not closed in \mathbb{R}. (Hint: Consider the point 1 , which is an element of $[1,7)$.) Now show that the set $[1,7)$ is not open. (Hint: It is enough to show that the complement of $[1,7)$ is not closed.)

Exercise 2 (Exercise 1 from the handout). Explain why a subset of \mathbb{R} that consists of a single element, such as $\{2\}$, is a closed subset of \mathbb{R}. Based on that fact and properties of closed sets, explain why every finite subset of \mathbb{R} is a closed subset of \mathbb{R}.

Exercise 3. Let A be the two-element set $A=\{a, b\}$. Show that each of the following collections of subsets of A is a topology for A :
a) $\mathcal{T}=\{\varnothing,\{a, b\}\}$
b) $\mathcal{S}=\{\varnothing,\{a\},\{a, b\}\}$
c) $\mathcal{R}=\{\varnothing,\{b\},\{a, b\}\}$
d) $\mathcal{V}=\{\varnothing,\{a\},\{b\},\{a, b\}\}$

Now explain why $\mathcal{T}, \mathcal{S}, \mathcal{R}$, and \mathcal{V} are the only possible topologies on the set A.
Exercise 4 (Exercise 2 from the handout). Let X be any set. Let \mathcal{T} be the the collection of all subsets of X (that is, $\mathcal{T}=\mathscr{P}(X)$). Explain why \mathcal{T} is a topology for X. Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of points in X, and that the sequence converges to x. Show that there is a natural number N such that $x_{n}=x$ for all $n \geq N$. (Hint: For $x \in X$, the set $\{x\}$ is an open set that contains X.)

Exercise 5. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. We define the closure, A^{c}, of A to be the smallest closed subset of X that contains A. That is, A^{c} satisfies the properties (a) $A \subseteq A^{c} ;$ (b) A^{c} is closed; and $A^{c} \subseteq F$ for any closed subset F for which $A \subseteq F$.

Let \mathscr{F} be the collection of all possible closed subsets of X that contain A as a subset: $\mathscr{F}=\{F \subseteq X: F$ is closed and $A \subseteq F\}$. Show that if we define $A^{c}=\bigcap_{F \in \mathscr{F}} F$, then A^{c} satisfies the three properties of the closure of A, as given above.

Finally, in \mathbb{R} with its usual topology, what do you think is the closure of the open interval $(0,1)$? (For this part of the problem, you are not asked to justify your answer.)

Exercise 6 (Exercise 7 from the handout). Let $X=\mathbb{N} \cup\{0\}$. That is, X is the set of non-negative integers. In this exercise, we consider X with a rather strange topology. For each $i=0,1,2,3, \ldots$, define N_{i} to be the set $N_{i}=\{0,1,2, \ldots, i-1\}$. So $N_{o}=\varnothing, N_{1}=\{0\}$, $N_{2}=\{0,1\}, N_{3}=\{0,1,2\}$, and so on. We can define a topology on X in which the open sets are precisely the sets $N_{o}, N_{1}, N_{2}, \ldots$, together with X itself. That is, we make the topological space (X, \mathcal{T}) where $\mathcal{T}=\left\{X, N_{o}, N_{1}, N_{2}, N_{3}, \ldots\right\}$. Show that \mathcal{T} is in fact a topology. (What is the union of a family of sets in \mathcal{T} ? What is the intersection of a family of sets in \mathcal{T} ?) What are the closed subsets in this topological space?

