Homework 5:

Theorem 1. Let a, b, and c be integers, where a and b are not both zero, and c is not zero. Then $\operatorname{gcd}(a c, b c)=c \cdot \operatorname{gcd}(a, b)$.

Proof: [Note: As stated, this theorem is not true! If $c<0$ it is not possible for $\operatorname{gcd}(a c, b c)=c \cdot \operatorname{gcd}(a, b)$ because a greatest common divisor is always positive. I will give a proof that assumes that $c>0$.]

Let $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{gcd}(a c, b c)$. Since $d \mid a$ and $d \mid b$, it follows easily that $d c \mid a c$ and $d c \mid b c$. So, $d c$ is a common divisor of $a c$ and $b c$. Since e is the greatest common divisor, we must have $d c \leq e$.

We know d can be written as $d=a k+b \ell$ for some integers k and ℓ, and multiplying both sided by c gives $d c=a c k+b c \ell$. We also know that e is the smallest positive integer that can be written in the form $a c i+b c j$ for integers i and j. Since $d c$ can be written in that form, we must have $d c \geq e$.

Since $d c \leq e$ and $d c \geq e$, it follows that $e=d c$, as we wanted to show.
Theorem 2. Let $a, b, c \in \mathbb{N}$, If a does not divide $b c$, then a does not divide b.
Proof: We prove the contrapositive: If $a \mid b$ then $a \mid b c$. This is a theorem that we have previously proved. [In fact, $a \mid b$ means $b=k a$ for some integer k. Then $b c=b k a=a(b k)$, which means that $a \mid b c$.]

Theorem 3. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d(\bmod n)$.
Proof: Suppose $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$. Since $a \equiv b(\bmod n), n \mid(a-b)$, and $(a-b)=k n$ for some integer k. Since $c \equiv d(\bmod n), n \mid(c-d)$, and $(c-d)=\ell n$ for some integer ℓ. So, $a c-b d=$ $a c-a d+a d-b d=a(c-d)+d(a-b)=a \ell n+d k n=n(a \ell+d k)$. We see that $n \mid(a c-b d)$, and therefore $a c \equiv b d(\bmod n)$.

Theorem 4. Let r and s be rational numbers. The $r+s$ is rational.
Proof: Suppose that r and s are rational. Since r is rational, we can write $r=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$. Since s is rational, we can write $s=\frac{c}{d}$, where $c, d \in \mathbb{Z}$ and $d \neq 0$. Then, $r+s=\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{c b}{b d}=\frac{a d+c b}{b d}$. Since $a d+c b$ and $b d$ are integers and $b d \neq 0$, we see that $r+s$ is rational.

Theorem 5. For any real number x, one of the numbers x and $x-\pi$ is irrational.
Proof: Suppose, for the sake of contradiction, that both x and $x-\pi$ are rational. Since the negative of a rational number is rational, $\pi-x$ is also rational. By the previous theorem, $x+(\pi-x)$ is rational, because it is the sum of two rational numbers. But $x+(\pi-x)$ is π, which we know to be irrational. This contradiction proves that at least one of x and $\pi-x$ must be irrational.

Homework 6:

1. Prove: If a and b are integers, then $(a+b)^{3} \equiv a^{3}+b^{3}(\bmod 3)$.

Proof: Note that $(a+b)^{3}-\left(a^{3}+b^{3}\right)=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}-a^{3}-b^{3}=3\left(a^{2} b+a b^{2}\right)$. So $3 \mid$ $\left((a+b)^{3}-\left(a^{3}+b^{3}\right)\right)$, which means by definition that $(a+b)^{3} \equiv a^{3}+b^{3}(\bmod 3)$.
2. Prove using the contrapositive method: If the product of two integers is odd, then both of the numbers are odd.
Proof: We prove the contrapositive: If it is not the case that both integers are odd, then the product of the two numbers is not odd.

Let a and b be two integers that are not both odd. Then at least one of the integers is even. Say, without loss of generality, that a is even. Then $a=2 k$ for some integer k, and $a b=2 k b$. This shows that $a b$ is even. That is, $a b$ is not odd.
3. Prove using proof by contradiction: If a is a rational number and b is an irrational number, then $a+b$ is an irrational number.

Proof: Assume, for the sake of contradiction, that $a+b$ is rational. Since a is rational, $-a$ is also rational [since $-\frac{p}{q}=\frac{-p}{q}$]. We have previously proved that the sum of two rational numbers is rational. So $(a+b)+(-a)$ is rational. But $(a+b)+(-a)=b$, and b is irrational, not rational. This contradiction shows that $a+b$ cannot be rational.
4. Prove using the contrapositive method: If n is an integer and $n \equiv 2(\bmod 3)$, then n is not a square. (Saying that n is not a square means that there is no integer a such that $n=a^{2}$.)

Proof: We prove the contrapositive: If n is a square, then $n \not \equiv 2(\bmod 3)$. Let n be an integer that is a square, and let $a \in \mathbb{Z}$ such that $n=a^{2}$. We need to show that $a^{2} \not \equiv 2(\bmod 3)$. Since every integer is congruent to exactly one of 0,1 , or $2(\bmod 3)$, we can show that for any integer a, either $a^{2} \equiv 0(\bmod 3)$ or $a^{2} \equiv 1(\bmod 3)$. We use a proof by cases. Using the Division Algorithm, we can write $a=3 q+r$ where q and r are integers and r is 0,1 , or 2 .

In the case $a=3 q+0$, we have that $a^{2}=(3 q)^{2}=3 \cdot 3 q^{2}$. This means $3 \mid a^{2}$, and $a^{2} \equiv 0(\bmod 3)$.
In the case $a=3 q+1$, we have that $a^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1=3 \cdot\left(3 q^{2}+2 q\right)+1$. This means $3 \mid\left(a^{2}-1\right)$, and $a^{2} \equiv 1(\bmod 3)$.

In the case $a=3 q+2$, we have that $a^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4=3 \cdot\left(3 q^{2}+4 q+1\right)+1$. This means $3 \mid\left(a^{2}-1\right)$, and $a^{2} \equiv 1(\bmod 3)$.

So, in any case, one of $a^{2} \equiv 0(\bmod 3)$ or $a^{2} \equiv 1(\bmod 3)$ is true, as we wanted to show.
5. Prove using proof by contradiction: No rational number is a solution of the equation $x^{3}+x+1=0$. (Outline of proof: Suppose $x=\frac{p}{q}$ is a solution, where p and q are not both even. Substitute $\frac{p}{q}$ into the equation, and multiply by q^{3} to clear the denominator. Now show that the left side of the equation is odd, which means that it cannot be zero. To show the left side is odd, use a proof by cases.)
Proof: Suppose, for the sake of contradiction, that there is a rational number $x=\frac{p}{q}$ such that $x^{3}+x+1=$ 0 . We can assume that the fraction is in lowest terms so that, in particular, p and q are not both even. We have $\left(\frac{p}{q}\right)^{3}+\left(\frac{p}{q}\right)+1=0$. Multiplying this equation by q^{3} to clear the denominators gives us $p^{3}+p q^{2}+q^{3}=0$. We show that the left-hand side of this equation is an odd number, and so cannot be equal to zero. This contradiction will complete the proof.

To show $p^{3}+p q^{2}+q^{3}$ is odd, we use a proof by cases. Since we know that p and q are not both even, the cases are: both p and q are odd, p is odd and q is even, or p is even and q is odd.

In the case where p and q are both odd, then, because the product of odd numbers is odd, we know that $p^{3}, p q^{2}$, and q^{3} are all odd. Since the sum of odd numbers is odd, it follows that $p^{3}+p q^{2}+q^{3}$ is odd.

In the case where p is odd and q is even, we have that p^{3} is odd and $p q^{2}+q^{3}=q\left(p q+q^{2}\right)$ is even. Since the sum of an odd number and an even number is odd, $p^{3}+p q^{2}+q^{3}$ is odd.

Finally, in the case where p is even and q is odd, we have that q^{3} is odd and $p^{3}+p q^{2}=p\left(p^{2}+q^{2}\right)$ is even. Since the sum of an odd number and an even number is odd, $p^{3}+p q^{2}+q^{3}$ is odd.

