7.2 Suppose that x is an odd integer. We must show that 3x + 6 is odd. Sinde x is odd, x = 3k + 1 for some integer k. Then, 3k + 6 = 3(2k + 1) + 6 = 6k + 3 + 6 = 6k + 8 + 1 = 2(3k + 4) + 1. Since 3k + 4 is an integer, 3k + 6 is odd.

Conversely, we must prove that if 3x+6 is odd, then x is odd. We prove the contrapositive: If x is even, then 3x+6 is even. Suppose that x is an even integer. Then x = 2k for some integer k, and 3x+6 = 6k+6 = 2(3k+3). Since 3k+3 is an integer, this shows that 3x+6is even.

7.8 Suppose that a and b are integers, and suppose that $a \equiv b \pmod{10}$. We must show that $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$. Since $a \equiv b \pmod{10}$, we know that $10 \mid (a - b)$. Since $2 \mid 10$ and $10 \mid (a - b)$, we know from a previous result that $2 \mid (a - b)$, which means $a \equiv b \pmod{2}$. Similarly, since $5 \mid 10$, $a \equiv b \pmod{10}$.

Conversely, we must show that if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$, then $a \equiv (a - b) \pmod{10}$. (mod 10). Since $a \equiv b \pmod{2}$, we have that $2 \mid (a - b)$, and a - b = 2k for some integer k. This means that a - b is even. Similarly, $a - b = 5\ell$ for some integer ℓ . Since a - b is even and 5 is odd, ℓ must be even (because if ℓ were odd, the product of 5 and ℓ would be odd). So $\ell = 2j$ for some integer j, and $a - b = 5 \cdot 2j = 10j$. This shows $10 \mid (a - b)$, which means that $a \equiv b \pmod{10}$.

7.12 Let x = 1/4. Then $x^2 = 1/16$ and $\sqrt{x} = 1/2$, so $x^2 < \sqrt{x}$.

7.16 Suppose that a and b are integers and ab is odd. Then both a and b must be odd, since if one of them were even, then their product ab would be even. We know that the square of an odd number is odd, so a^2 and b^2 are both odd. We know that the sum of two odd numbers is even, so $a^2 + b^2$ is even.

7.32 Let $n \in \mathbb{Z}$. We want to show that gcd(n, n + 2) is either 1 or 2. Let d = gcd(a, b). Then d is a common divisor of n and n+2, so d|n and d|(n+2). This implies that n divides the difference, (n+2) - 2, which is 2. So d is a divisor of 2. The only divisors of 2 are ± 1 and ± 2 . Since a greatest common divisor is positive, d is either 1 or 2.

8.4 Let $a \in \{x \in \mathbb{Z} : mn \mid x\}$. We want to show $a \in \{x \in \mathbb{Z} : m \mid x\} \cap \{x \in \mathbb{Z} : n \mid x\}$. Since $mn \mid a$ and $m \mid mn$, it follows that $m \mid a$. This means $a \in \{x \in \mathbb{Z} : m \mid x\}$. Similarly, since $n \mid mn$, $a \in \{x \in \mathbb{Z} : n \mid x\}$. Because a is an element of both $a \in \{x \in \mathbb{Z} : m \mid x\}$ and $a \in \{x \in \mathbb{Z} : n \mid x\}$, it is by definition an element of their intersection.

8.10 For any $x \in U$, we must show that $x \in \overline{A \cap B}$ if and only if $x \in \overline{A} \cup \overline{B}$. But for any such x, we have

$$\begin{aligned} x \in A \cap B \Leftrightarrow &\sim (x \in A \cap B) \\ \Leftrightarrow &\sim (x \in A \wedge x \in B) \\ \Leftrightarrow (\sim (x \in A)) \lor (\sim (x \in B)) \\ \Leftrightarrow x \in \overline{A} \lor x \in \overline{B} \\ \Leftrightarrow x \in \overline{A} \cup \overline{B} \end{aligned}$$

8.16 The elements of the sets in question are ordered pairs. We must show that for any pair $(x, y), (x, y) \in A \times (B \cup C) \Leftrightarrow (x, y) \in (A \times B) \cup (A \times C)$. But for any x,

$$\begin{aligned} (x,y) \in A \times (B \cup C) \Leftrightarrow (x \in A) \land (y \in B \cup C) \\ \Leftrightarrow (x \in A) \land (y \in B \lor y \in C) \\ \Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in B) \\ \Leftrightarrow ((x,y) \in A \times B) \lor ((x,y) \in A \times B) \\ \Leftrightarrow (x,y) \in (A \times B) \cup (A \times C) \end{aligned}$$

8.22 Let A and B be sets and assume that $A \subseteq B$. We want to show $A \cap B = A$. For any sets A and B, it is true by the definition of intersection that $A \cap B \subseteq A$, so we only need to show that $A \subseteq A \cap B$. Let $a \in A$. Since $A \subseteq B$, it is also true that $a \in B$. Since $a \in A$ and $a \in B$, then $a \in A \cap B$. We have shown that element of A is an element of $A \cap B$; that is, $A \subseteq A \cap B$.

Conversely, assume that $A \cap B = A$. We want to show that $A \subseteq B$. Let $a \in A$. Since $A \cap B = A$, this means that $a \in A \cap B$. By definition of intersection, it follows that $a \in B$. We have shown every element of A is an element of B; that is, $A \subseteq B$.