Math 135, Fall 2019, Sample Answers to Homework 7

7.2 Suppose that x is an odd integer. We must show that $3 x+6$ is odd. Sinde x is odd, $x=3 k+1$ for some integer k. Then, $3 k+6=3(2 k+1)+6=6 k+3+6=6 k+8+1=$ $2(3 k+4)+1$. Since $3 k+4$ is an integer, $3 k+6$ is odd.

Conversely, we must prove that if $3 x+6$ is odd, then x is odd. We prove the contrapositive: If x is even, then $3 x+6$ is even. Suppose that x is an even integer. Then $x=2 k$ for some integer k, and $3 x+6=6 k+6=2(3 k+3)$. Since $3 k+3$ is an integer, this shows that $3 x+6$ is even.
7.8 Suppose that a and b are integers, and suppose that $a \equiv b(\bmod 10)$. We must show that $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 5)$. Since $a \equiv b(\bmod 10)$, we know that $10 \mid(a-b)$. Since $2 \mid 10$ and $10 \mid(a-b)$, we know from a previous result that $2 \mid(a-b)$, which means $a \equiv b(\bmod 2)$. Similarly, since $5 \mid 10, a \equiv b(\bmod 10)$.

Conversely, we must show that if $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 5)$, then $a \equiv(a-b)$ $(\bmod 10)$. Since $a \equiv b(\bmod 2)$, we have that $2 \mid(a-b)$, and $a-b=2 k$ for some integer k. This means that $a-b$ is even. Similarly, $a-b=5 \ell$ for some integer ℓ. Since $a-b$ is even and 5 is odd, ℓ must be even (because if ℓ were odd, the product of 5 and ℓ would be odd). So $\ell=2 j$ for some integer j, and $a-b=5 \cdot 2 j=10 j$. This shows $10 \mid(a-b)$, which means that $a \equiv b(\bmod 10)$.
7.12 Let $x=1 / 4$. Then $x^{2}=1 / 16$ and $\sqrt{x}=1 / 2$, so $x^{2}<\sqrt{x}$.
7.16 Suppose that a and b are integers and $a b$ is odd. Then both a and b must be odd, since if one of them were even, then their product $a b$ would be even. We know that the square of an odd number is odd, so a^{2} and b^{2} are both odd. We know that the sum of two odd numbers is even, so $a^{2}+b^{2}$ is even.
7.32 Let $n \in \mathbb{Z}$. We want to show that $\operatorname{gcd}(n, n+2)$ is either 1 or 2 . Let $d=\operatorname{gcd}(a, b)$. Then d is a common divisor of n and $n+2$, so $d \mid n$ and $d \mid(n+2)$. This implies that n divides the difference, $(n+2)-2$, which is 2 . So d is a divisor of 2 . The only divisors of 2 are ± 1 and ± 2. Since a greatest common divisor is positive, d is either 1 or 2 .
8.4 Let $a \in\{x \in \mathbb{Z}: m n \mid x\}$. We want to show $a \in\{x \in \mathbb{Z}: m \mid x\} \cap\{x \in \mathbb{Z}: n \mid x\}$. Since $m n \mid a$ and $m \mid m n$, it follows that $m \mid a$. This means $a \in\{x \in \mathbb{Z}: m \mid x\}$. Similarly, since $n \mid m n, a \in\{x \in \mathbb{Z}: n \mid x\}$. Because a is an element of both $a \in\{x \in \mathbb{Z}: m \mid x\}$ and $a \in\{x \in \mathbb{Z}: n \mid x\}$, it is by definition an element of their intersection.
8.10 For any $x \in U$, we must show that $x \in \overline{A \cap B}$ if and only if $x \in \bar{A} \cup \bar{B}$. But for any such x, we have

$$
\begin{aligned}
x \in \overline{A \cap B} & \Leftrightarrow \sim(x \in A \cap B) \\
& \Leftrightarrow \sim(x \in A \wedge x \in B) \\
& \Leftrightarrow(\sim(x \in A)) \vee(\sim(x \in B)) \\
& \Leftrightarrow x \in \bar{A} \vee x \in \bar{B} \\
& \Leftrightarrow x \in \bar{A} \cup \bar{B}
\end{aligned}
$$

8.16 The elements of the sets in question are ordered pairs. We must show that for any pair $(x, y),(x, y) \in A \times(B \cup C) \Leftrightarrow(x, y) \in(A \times B) \cup(A \times C)$. But for any x,

$$
\begin{aligned}
(x, y) \in A \times(B \cup C) & \Leftrightarrow(x \in A) \wedge(y \in B \cup C) \\
& \Leftrightarrow(x \in A) \wedge(y \in B \vee y \in C) \\
& \Leftrightarrow(x \in A \wedge y \in B) \vee(x \in A \wedge y \in B) \\
& \Leftrightarrow((x, y) \in A \times B) \vee((x, y) \in A \times B) \\
& \Leftrightarrow(x, y) \in(A \times B) \cup(A \times C)
\end{aligned}
$$

8.22 Let A and B be sets and assume that $A \subseteq B$. We want to show $A \cap B=A$. For any sets A and B, it is true by the definition of intersection that $A \cap B \subseteq A$, so we only need to show that $A \subseteq A \cap B$. Let $a \in A$. Since $A \subseteq B$, it is also true that $a \in B$. Since $a \in A$ and $a \in B$, then $a \in A \cap B$. We have shown that element of A is an element of $A \cap B$; that is, $A \subseteq A \cap B$.

Conversely, assume that $A \cap B=A$. We want to show that $A \subseteq B$. Let $a \in A$. Since $A \cap B=A$, this means that $a \in A \cap B$. By definition of intersection, it follows that $a \in B$. We have shown every element of A is an element of B; that is, $A \subseteq B$.

