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Exercise 10.1. Prove that 12 + 22 + 32 + · · ·+ n2 = n(n+1)(2n+1)
6 for all n ∈ N.

Proof. We use proof by induction. For the base case, n = 1, the formula becomes 12 = 1(2)(3)
6 ,

which is true.
For the inductive case, let k ∈ N, and suppose that we already know that 12+22+32+· · ·+k2 =

k(k+1)(2k+1)
6 . We must that that the formula also holds for k + 1: 12 + 22 + 32 + · · · + (k + 1)2 =

(k+1)((k+1)+1)(2(k+1)+1)
6 . The left hand side of this formula can be written

12 + 22 + 32 + · · ·+ (k + 1)2 = (12 + 22 + 32 + · · ·+ k2) + (k + 1)2

=

(
k(k + 1)(2k + 1)

6

)
+ (k + 1)2

=

(
2k3 + 3k2 + k

6

)
+ (k2 + 2k + 1)

=
2k3 + 3k2 + k + 6k2 + 12k + 6

6

=
2k3 + 9k2 + 13k + 6

6

while the right hand side can be written

(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
=

(k + 1)(k + 2)(2k + 3)

6

=
(k2 + 3k + 2)(2k + 3)

6

=
2k3 + 6k2 + 4k + 3k2 + 9k + 6

6

=
2k3 + 9k2 + 13k + 6

6

Since the two sides of the formula are equal, we have proved that it holds for k + 1.

Exercise 10.8. Prove 1
2! +

2
3! +

3
4! + · · ·+

n
(n+1)! = 1− 1

(n+1)! for all n ∈ N .

Proof. We use proof by induction. For the base case, n = 1, the formula becomes 1
2! = 1− 1

(1+1)! .

This is equivalent to 1
2 = 1− 1

2 , which is true.

For the inductive case, let k ∈ N, and suppose that we already know that 1
2!+

2
3!+

3
4!+· · ·+

k
(k+1)! =

1− 1
(k+1)! . We must show that the same formula holds for k + 1. But

1

2!
+

2

3!
+

3

4!
+ · · ·+ k + 1

((k + 1) + 1)!
=

(
1

2!
+

2

3!
+

3

4!
+ · · ·+ k

(k + 1)!

)
+

k + 1

(k + 2)!

=

(
1− 1

(k + 1)!

)
+

k + 1

(k + 2)!

= 1− 1

(k + 1)!
+

k + 1

(k + 2) · (k + 1)!



= 1− k + 2

(k + 2) · (k + 1)!
+

k + 1

(k + 2) · (k + 1)!

= 1 +
−(k + 2) + (k + 1)

(k + 2) · (k + 1)!

= 1 +
−1

(k + 2) · (k + 1)!

= 1− 1

(k + 2)!

= 1− 1

((k + 1) + 1)!

so the formula holds for k + 1.

Exercise 10.10. Prove that 3 | (52n − 1) for every integer n > 0.

Proof. We use proof by induction. For the base case, n = 0, we musth show that 3 | (50− 1). Since
50 = 1, this is equivalent to 3|(1− 1), which is true because every non-zero integer divides 0.

For the inductive case, let k = 0, and suppose that 3 | (52k − 1). We must show that 3 |
(52(k+1) − 1). But

52(k+1) − 1 = 52k+2 − 1

= (52k · 52)− 1

= (25 · 52k)− 1

= (25 · 52k − 25) + 25− 1

= 25(52k − 1) + 24.

Since 3 | (52k − 1) by the induction hypothesis and 3 | 24, it follows that 3 | (25(52k − 1) + 24).
That is, 3 | (52(k+1) − 1). So the theorem holds for k + 1.

Exercise 10.18. We consider subsets of some universal set U . Prove that A1 ∪A2 ∪ · · · ∪An =
A1 ∩A2 ∩ · · · ∩An for all n ≥ 2 and all subsets A1, A2, . . . , An of U .

Proof. We use proof by induction.
Base Case, n = 2: We want to show A1 ∪A2 = A1 ∩ A2 for all subsets A1 and A2 of U . But

this is just DeMorgan’s law for sets, which we have already proved.
Inductive Case. Let k ≥ 2 and suppose we already know that A1 ∪A2 ∪ · · · ∪Ak = A1 ∩ A2 ∩

· · · ∩Ak for any k subsets of U . Consider any k + 1 subsets A1, A2, . . . Ak+1. Then we have

A1 ∪A2 ∪ · · · ∪Ak+1 = (A1 ∪A2 ∪ · · ·Ak) ∪Ak+1

= A1 ∪A2 ∪ · · ·Ak ∩Ak+1 by the n = 2 case

= A1 ∩A2 ∩ · · · ∩Ak ∩Ak+1 by the inductive hypothesis

so the theorem is true for any k + 1 subsets of U .



Exercise 10.34. Prove that 31 + 32 + 33 + · · ·+ 3n = 3n+1−3
2 for every n ∈ N.

Proof. We use proof by induction.
Base Case, n = 1: For n = 1, the statement becomes 31 = 32−3

2 . Since 32−3
2 = 9−3

2 = 6
2 = 3,

the statement is true for n = 1.
Inductive case. Let k ≥ 1, and suppose that 31 + 32 + 33 + · · · + 3k = 3k+1−3

2 . We must show

that 31 + 32 + 33 + · · ·+ 3k+1 = 3k+2−3
2 But

31 + 32 + 33 + · · ·+ 3k+1 =
(
31 + 32 + 33 + · · ·+ 3k

)
+ 3k+1

=

(
3k+1 − 3

2

)
+ 3k+1

=
3k+1 − 3 + 2 · 3k+1

2

=
3 · 3k+1 − 3

2

=
3k+2 − 3

2

so the statement is true for n = k + 1.

Extra Exercise 1. Prove that
n∑

i=1

1

i(i+ 1)
=

n

n+ 1
for all n ∈ N.

(a) Proof by induction. Base Case: When n = 1, the statement becomes 1
1(1+1) = 1

1+1 , so
the statement is true for n = 1.

Inductive case: Let k ∈ N, and suppose that
∑k

i=1
1

i(i+1) = k
k+1 . we must show

∑k+1
i=1

1
i(i+1) =

k+1
k+2 . But

k+1∑
i=1

1

i(i+ 1)
=

(
k∑

i=1

1

i(i+ 1)

)
+

1

(k + 1)(k + 1 + 1)

=

(
k

k + 1

)
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

so the statement is true for n = k + 1.

(a) Direct proof. Note that 1
i −

1
i+1 = (i+1)−i

i(i+1) = 1
i(i+1) , so we can write

n∑
i=1

1

i(i+ 1)
=

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)



=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1)

)
=

1

1
− 1

n+ 1

=
(n+ 1)− 1

n+ 1

=
n

n+ 1

Extra Exercise 1. Prove that
n∑

i=0

ri =
1− rn+1

1− r
for all integers n ≥ 0.

(a) Proof by induction. Base Case: When n = 0, the statement becomes r0 = 1−r1

1−r , which
reduces to 1 = 1. So the statement is true for n = 1.

Inductive Case: Let k ≥ 0, and suppose that
∑k

i=0 r
i = 1−rk+1

1−r . We must show
∑k+1

i=0 ri = 1−rk+2

1−r
But

k+1∑
i=0

ri =

(
k∑

i=0

ri

)
+ rk+1

=
1− rk+1

1− r
+ rk+1

=
1− rk+1 + (1− r)rk+1

1− r

=
1− rk+1 + rk+1 − rk+2

1− r

=
1− rk+2

1− r

so the statement holds for n = k + 1.

(a) Direct proof. Let S =
∑n

i=0 r
i = 1+r+r2+r3+· · ·+rn. Then rS = r+r2+r3+r4 · · ·+rn+1,

and S − rS = 1 − rn+1. Factoring S − rS = S(1 − r) and dividing by 1 − r gives S = 1−rn+1

1−r , as
we wanted to show.


