Exercise 10.1. Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \in \mathbb{N}$.
Proof. We use proof by induction. For the base case, $n=1$, the formula becomes $1^{2}=\frac{1(2)(3)}{6}$, which is true.

For the inductive case, let $k \in \mathbb{N}$, and suppose that we already know that $1^{2}+2^{2}+3^{2}+\cdots+k^{2}=$ $\frac{k(k+1)(2 k+1)}{6}$. We must that that the formula also holds for $k+1: 1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=$ $\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$. The left hand side of this formula can be written

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2} & =\left(1^{2}+2^{2}+3^{2}+\cdots+k^{2}\right)+(k+1)^{2} \\
& =\left(\frac{k(k+1)(2 k+1)}{6}\right)+(k+1)^{2} \\
& =\left(\frac{2 k^{3}+3 k^{2}+k}{6}\right)+\left(k^{2}+2 k+1\right) \\
& =\frac{2 k^{3}+3 k^{2}+k+6 k^{2}+12 k+6}{6} \\
& =\frac{2 k^{3}+9 k^{2}+13 k+6}{6}
\end{aligned}
$$

while the right hand side can be written

$$
\begin{aligned}
\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} & =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{\left(k^{2}+3 k+2\right)(2 k+3)}{6} \\
& =\frac{2 k^{3}+6 k^{2}+4 k+3 k^{2}+9 k+6}{6} \\
& =\frac{2 k^{3}+9 k^{2}+13 k+6}{6}
\end{aligned}
$$

Since the two sides of the formula are equal, we have proved that it holds for $k+1$.

Exercise 10.8. Prove $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$ for all $n \in N$.
Proof. We use proof by induction. For the base case, $n=1$, the formula becomes $\frac{1}{2!}=1-\frac{1}{(1+1)!}$. This is equivalent to $\frac{1}{2}=1-\frac{1}{2}$, which is true.

For the inductive case, let $k \in \mathbb{N}$, and suppose that we already know that $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k}{(k+1)!}=$ $1-\frac{1}{(k+1)!}$. We must show that the same formula holds for $k+1$. But

$$
\begin{aligned}
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k+1}{((k+1)+1)!} & =\left(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k}{(k+1)!}\right)+\frac{k+1}{(k+2)!} \\
& =\left(1-\frac{1}{(k+1)!}\right)+\frac{k+1}{(k+2)!} \\
& =1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2) \cdot(k+1)!}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\frac{k+2}{(k+2) \cdot(k+1)!}+\frac{k+1}{(k+2) \cdot(k+1)!} \\
& =1+\frac{-(k+2)+(k+1)}{(k+2) \cdot(k+1)!} \\
& =1+\frac{-1}{(k+2) \cdot(k+1)!} \\
& =1-\frac{1}{(k+2)!} \\
& =1-\frac{1}{((k+1)+1)!}
\end{aligned}
$$

so the formula holds for $k+1$.

Exercise 10.10. Prove that $3 \mid\left(5^{2 n}-1\right)$ for every integer $n>0$.
Proof. We use proof by induction. For the base case, $n=0$, we musth show that $3 \mid\left(5^{0}-1\right)$. Since $5^{0}=1$, this is equivalent to $3 \mid(1-1)$, which is true because every non-zero integer divides 0 .

For the inductive case, let $k=0$, and suppose that $3 \mid\left(5^{2 k}-1\right)$. We must show that $3 \mid$ $\left(5^{2(k+1)}-1\right)$. But

$$
\begin{aligned}
5^{2(k+1)}-1 & =5^{2 k+2}-1 \\
& =\left(5^{2 k} \cdot 5^{2}\right)-1 \\
& =\left(25 \cdot 5^{2 k}\right)-1 \\
& =\left(25 \cdot 5^{2 k}-25\right)+25-1 \\
& =25\left(5^{2 k}-1\right)+24
\end{aligned}
$$

Since $3 \mid\left(5^{2 k}-1\right)$ by the induction hypothesis and $3 \mid 24$, it follows that $3 \mid\left(25\left(5^{2 k}-1\right)+24\right)$. That is, $3 \mid\left(5^{2(k+1)}-1\right)$. So the theorem holds for $k+1$.

Exercise 10.18. We consider subsets of some universal set U. Prove that $\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=$ $\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}}$ for all $n \geq 2$ and all subsets $A_{1}, A_{2}, \ldots, A_{n}$ of U.

Proof. We use proof by induction.
Base Case, $n=2$: We want to show $\overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cap \overline{A_{2}}$ for all subsets A_{1} and A_{2} of U. But this is just DeMorgan's law for sets, which we have already proved.

Inductive Case. Let $k \geq 2$ and suppose we already know that $\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k}}=\overline{A_{1}} \cap \overline{A_{2}} \cap$ $\cdots \cap \overline{A_{k}}$ for any k subsets of U. Consider any $k+1$ subsets $A_{1}, A_{2}, \ldots A_{k+1}$. Then we have

$$
\begin{aligned}
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k+1}} & =\overline{\left(A_{1} \cup A_{2} \cup \cdots A_{k}\right) \cup A_{k+1}} \\
& =\overline{A_{1} \cup A_{2} \cup \cdots A_{k}} \cap \overline{A_{k+1}} \\
& =\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{k}} \cap \overline{A_{k+1}}
\end{aligned} \quad \text { by the inductive hypothesis }
$$

so the theorem is true for any $k+1$ subsets of U.

Exercise 10.34. Prove that $3^{1}+3^{2}+3^{3}+\cdots+3^{n}=\frac{3^{n+1}-3}{2}$ for every $n \in \mathbb{N}$.
Proof. We use proof by induction.
Base Case, $n=1$: For $n=1$, the statement becomes $3^{1}=\frac{3^{2}-3}{2}$. Since $\frac{3^{2}-3}{2}=\frac{9-3}{2}=\frac{6}{2}=3$, the statement is true for $n=1$.

Inductive case. Let $k \geq 1$, and suppose that $3^{1}+3^{2}+3^{3}+\cdots+3^{k}=\frac{3^{k+1}-3}{2}$. We must show that $3^{1}+3^{2}+3^{3}+\cdots+3^{k+1}=\frac{3^{k+2}-3}{2}$ But

$$
\begin{aligned}
3^{1}+3^{2}+3^{3}+\cdots+3^{k+1} & =\left(3^{1}+3^{2}+3^{3}+\cdots+3^{k}\right)+3^{k+1} \\
& =\left(\frac{3^{k+1}-3}{2}\right)+3^{k+1} \\
& =\frac{3^{k+1}-3+2 \cdot 3^{k+1}}{2} \\
& =\frac{3 \cdot 3^{k+1}-3}{2} \\
& =\frac{3^{k+2}-3}{2}
\end{aligned}
$$

so the statement is true for $n=k+1$.

Extra Exercise 1. Prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ for all $n \in \mathbb{N}$.
(a) Proof by induction. Base Case: When $n=1$, the statement becomes $\frac{1}{1(1+1)}=\frac{1}{1+1}$, so the statement is true for $n=1$.

Inductive case: Let $k \in \mathbb{N}$, and suppose that $\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}$. we must show $\sum_{i=1}^{k+1} \frac{1}{i(i+1)}=$ $\frac{k+1}{k+2}$. But

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{i(i+1)} & =\left(\sum_{i=1}^{k} \frac{1}{i(i+1)}\right)+\frac{1}{(k+1)(k+1+1)} \\
& =\left(\frac{k}{k+1}\right)+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

so the statement is true for $n=k+1$.
(a) Direct proof. Note that $\frac{1}{i}-\frac{1}{i+1}=\frac{(i+1)-i}{i(i+1)}=\frac{1}{i(i+1)}$, so we can write

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n \cdot(n+1)}
$$

$$
\begin{aligned}
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1)}\right) \\
& =\frac{1}{1}-\frac{1}{n+1} \\
& =\frac{(n+1)-1}{n+1} \\
& =\frac{n}{n+1}
\end{aligned}
$$

Extra Exercise 1. Prove that $\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}$ for all integers $n \geq 0$.
(a) Proof by induction. Base Case: When $n=0$, the statement becomes $r^{0}=\frac{1-r^{1}}{1-r}$, which reduces to $1=1$. So the statement is true for $n=1$.

Inductive Case: Let $k \geq 0$, and suppose that $\sum_{i=0}^{k} r^{i}=\frac{1-r^{k+1}}{1-r}$. We must show $\sum_{i=0}^{k+1} r^{i}=\frac{1-r^{k+2}}{1-r}$ But

$$
\begin{aligned}
\sum_{i=0}^{k+1} r^{i} & =\left(\sum_{i=0}^{k} r^{i}\right)+r^{k+1} \\
& =\frac{1-r^{k+1}}{1-r}+r^{k+1} \\
& =\frac{1-r^{k+1}+(1-r) r^{k+1}}{1-r} \\
& =\frac{1-r^{k+1}+r^{k+1}-r^{k+2}}{1-r} \\
& =\frac{1-r^{k+2}}{1-r}
\end{aligned}
$$

so the statement holds for $n=k+1$.
(a) Direct proof. Let $S=\sum_{i=0}^{n} r^{i}=1+r+r^{2}+r^{3}+\cdots+r^{n}$. Then $r S=r+r^{2}+r^{3}+r^{4} \cdots+r^{n+1}$, and $S-r S=1-r^{n+1}$. Factoring $S-r S=S(1-r)$ and dividing by $1-r$ gives $S=\frac{1-r^{n+1}}{1-r}$, as we wanted to show.

