Problem 1. A few problems on complex numbers...

- (a) Recall that for a complex number z = a + bi, |z| is defined to be $|z| = \sqrt{a^2 + b^2}$. Verify that for two complex numbers z and w, $|zw| = |z| \cdot |w|$.
- (b) Suppose that $w_0 = a + bi$ is some complex number. Recall that the conjugate of w_0 is defines as $\overline{w_0} = a - bi$. Let p(z) be the polynomial $p(z) = (z - w_0)(z - \overline{w_0})$. Verify that when p(z)is written in standard form as $p(z) = c_0 + c_1 z + c_2 z^2$, all of the coefficients c_0 , c_1 , and c_2 are real.
- (c) Use the identity $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ and the fact that $(e^{i\theta})^2 = e^{2i\theta}$ to derive the usual double angle formulas: $\cos(2\theta) = \cos^2(\theta) \sin^2(\theta)$ and $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$.

Answer:

(a) Write z = a + bi and w = c + di. Then zw = (ac - bd) + (ad + bc)i, and

$$\begin{aligned} |zw| &= \sqrt{(ac - bd)^2 + (ad + bc)^2} \\ &= \sqrt{(a^2c^2 - 2abcd + b^2d^2) + (a^2d^2 + 2abcd + b^2c^2)} \\ &= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2} \\ &= \sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2} \\ &= \sqrt{a^2)(c^2 + d^2) + b^2(c^2 + d^2)} \\ &= \sqrt{(a^2 + b^2)(c^2 + d^2)} \\ &= \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} \\ &= |z| \cdot |w| \end{aligned}$$

- (b) $(z w_0)(z \overline{w_0}) = z^2 (w_0 + \overline{w_0})z + w_0\overline{w_0}$. Now, $w_0 + \overline{w_0} = (a + bi) + (a bi) = 2a$, which is real, and $w_0\overline{w_0} = (a + b_i)(a b_i) = a^2 (bi)^2 = a^2 + b^2$, which is also real.
- (c) We have $e^{2i\theta} = \cos(2\theta) + i\sin(2\theta)$. But also,

$$e^{2i\theta} = (e^{i\theta})^2$$

= $(\cos(\theta) + i\sin(\theta))^2$
= $(\cos^2(\theta) - \sin(\theta)) + (2\cos(\theta)\sin(\theta))i$

Equating the real and imaginary parts of the two formulas for $e^{2i\theta}$ gives the formulas stated in the problem.

Problem 2. Find all the eigenvalues, real or complex, of the following matrices. (Note that one of these is really easy.)

(a)
$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3+i & 0 & 5 \\ 0 & 2 & 7 \\ 0 & 0 & -i \end{pmatrix}$ (c) $\begin{pmatrix} 5 & 0 & 0 \\ -2 & 3 & 6 \\ 0 & 1 & -2 \end{pmatrix}$

Answer:

- (a) $\begin{vmatrix} 1-x & 2\\ -2 & 1-x \end{vmatrix} = (1-x)^2 + 4 = x^2 2x + 1 + 4 = x^2 2x + 5$. The eigenvalues are the roots of this polynomial. Using the quadratic formula, the roots are $\frac{2\pm\sqrt{(-2)^2 4*1*5}}{2} = \frac{2\pm\sqrt{-16}}{2} = \frac{2\pm4i}{2} = 1\pm2i$.
- (b) The eigenvalues of an echelon form matrix are simply the diagonal entries, so the eigenvalues of this matrix are 3 + i, 2, and -i.
- (c) $\begin{vmatrix} 5-x & 0 & 0 \\ -2 & 3-x & 6 \\ 0 & 1 & -2-x \end{vmatrix}$ = $(5-x)\begin{vmatrix} 3-x & 6 \\ 1 & -2-x \end{vmatrix}$ = $(5-x)((3-x)(-2-x)-6) = (5-x)(-6-x+x^2-6)$ = $(5-x)(x^2-x-12) = (5-x)(x-4)(x+3).$

The eigenvalues are the roots of this polynomial, 5, 4, and -3.

Problem 3. Suppose that A is an $n \times n$ matrix, and λ is an eigenvalue for A. Show that λ^2 is an eigenvalue for AA. [Hint: Let \vec{v} be an eigenvector for A with eigenvalue λ .]

Answer:

Let \vec{v} be an eigenvector for A with eigenvalue λ . Then $A\vec{v} = \lambda v$. We then have $(AA)\vec{v} = A(A\vec{v}) = A(\lambda\vec{v}) = \lambda \cdot A\vec{v} = \lambda \cdot \lambda\vec{v} = (\lambda \cdot \lambda)\vec{v} = \lambda^2\vec{v}$. So λ^2 is an eigenvalue for the matrix AA (and \vec{v} is an eigenvector for AA with eigenvalue λ^2 .

Problem 4. Let $h: \mathbb{C}^2 \to \mathbb{C}^2$ be a homomorphism that has eigenvalues 1 - i and 1 + i. Suppose that $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ is an eigenvector with eigenvalue 1 - i, and that $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector with eigenvalue 1 + i. Find the matrix for h in the standard basis, $\langle \vec{e_i}, \vec{e_2} \rangle$. [Hint: You need to find $h(\vec{e_1})$ and $h(\vec{e_2})$.]

Answer:

The matrix for h in the standard basis is $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $h \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$ and $h \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$. So we just need to compute those values.

$$h\begin{pmatrix}1\\0\end{pmatrix} = h\left((1/3) \cdot \begin{pmatrix}1\\-2\end{pmatrix} + (2/3) \cdot \begin{pmatrix}1\\1\end{pmatrix}\right)$$
$$= (1/3) \cdot h\begin{pmatrix}1\\-2\end{pmatrix} + (2/3) \cdot h\begin{pmatrix}1\\1\end{pmatrix}$$
$$= (1/3) \cdot (1-i) \cdot \begin{pmatrix}1\\-2\end{pmatrix} + (2/3) \cdot (1+i)\begin{pmatrix}1\\1\end{pmatrix}$$
$$= \begin{pmatrix}1+\frac{1}{3}i\\\frac{4}{3}i\end{pmatrix}$$

and

$$h\begin{pmatrix} 0\\1 \end{pmatrix} = h\left(-(1/3) \cdot \begin{pmatrix} 1\\-2 \end{pmatrix} + (1/3) \cdot \begin{pmatrix} 1\\1 \end{pmatrix}\right)$$
$$= -(1/3) \cdot h\begin{pmatrix} 1\\-2 \end{pmatrix} + (1/3) \cdot h\begin{pmatrix} 1\\1 \end{pmatrix}$$
$$= -(1/3) \cdot (1-i) \cdot \begin{pmatrix} 1\\-2 \end{pmatrix} + (1/3) \cdot (1+i)\begin{pmatrix} 1\\1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{2}{3}i\\1 - \frac{1}{3}i \end{pmatrix}$$

So the matrix in the standard basis is $\begin{pmatrix} 1 + \frac{1}{3}i & \frac{1}{3}i \\ \frac{4}{3}i & 1 - \frac{1}{3}i \end{pmatrix}$.

Problem 5. Let \mathscr{D} be the vector space of differentiable functions from \mathbb{R} to \mathbb{R} . That is, \mathscr{D} is the set $\{f : \mathbb{R} \to \mathbb{R} \mid f'(x) \text{ exists for all } x\}$, with the usual addition and scalar multiplication for real-valued functions. Let $\partial : \mathscr{D} \to \mathscr{D}$ be the derivative function, $\partial(f) = f'$. Show that every real number λ is an eigenvalue for ∂ , and find an eigenvector for eigenvalue λ . [Hint: What is the derivative of e^{ax} ? Once you remember that derivative, this question is trivial.]

Answer:

Let $\lambda \in \mathbb{R}$. For $\lambda = 0$, the function f(x) = 1 is an eigenvector for ∂ with eigenvalue 0, because $\partial(f) = 0 = 0 \cdot f$. For $\lambda \neq 0$, let $g(x) = e^{\lambda x}$. Then $g'(x) = \frac{d}{dx}e^{\lambda x} = \lambda e^{\lambda x} = \lambda g(x)$. That is, $\partial(g) = \lambda g$. So, $g(x) = e^{\lambda x}$ is an eigenvector for ∂ with eigenvalue λ . [Note that the last statement is true even for $\lambda = 0$ since $e^{0x} = e^0 = 1$.]