Problem 1. A few problems on complex numbers...
(a) Recall that for a complex number $z=a+b i,|z|$ is defined to be $|z|=\sqrt{a^{2}+b^{2}}$. Verify that for two complex numbers z and $w,|z w|=|z| \cdot|w|$.
(b) Suppose that $w_{0}=a+b i$ is some complex number. Recall that the conjugate of w_{0} is defines as $\overline{w_{0}}=a-b i$. Let $p(z)$ be the polynomial $p(z)=\left(z-w_{0}\right)\left(z-\overline{w_{0}}\right)$. Verify that when $p(z)$ is written in standard form as $p(z)=c_{0}+c_{1} z+c_{2} z^{2}$, all of the coefficients c_{0}, c_{1}, and c_{2} are real.
(c) Use the identity $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ and the fact that $\left(e^{i \theta}\right)^{2}=e^{2 i \theta}$ to derive the usual double angle formulas: $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$ and $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$.

Answer:

(a) Write $z=a+b i$ and $w=c+d i$. Then $z w=(a c-b d)+(a d+b c) i$, and

$$
\begin{aligned}
|z w| & =\sqrt{(a c-b d)^{2}+(a d+b c)^{2}} \\
& =\sqrt{\left(a^{2} c^{2}-2 a b c d+b^{2} d^{2}\right)+\left(a^{2} d^{2}+2 a b c d+b^{2} c^{2}\right)} \\
& =\sqrt{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}} \\
& =\sqrt{a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}} \\
& =\sqrt{\left.a^{2}\right)\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)} \\
& =\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)} \\
& =\sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \\
& =|z| \cdot|w|
\end{aligned}
$$

(b) $\left(z-w_{0}\right)\left(z-\overline{w_{0}}\right)=z^{2}-\left(w_{0}+\overline{w_{0}}\right) z+w_{0} \overline{w_{0}}$. Now, $w_{0}+\overline{w_{0}}=(a+b i)+(a-b i)=2 a$, which is real, and $w_{0} \overline{w_{0}}=\left(a+b_{i}\right)\left(a-b_{i}\right)=a^{2}-(b i)^{2}=a^{2}+b^{2}$, which is also real.
(c) We have $e^{2 i \theta}=\cos (2 \theta)+i \sin (2 \theta)$. But also,

$$
\begin{aligned}
e^{2 i \theta} & =\left(e^{i \theta}\right)^{2} \\
& =(\cos (\theta)+i \sin (\theta))^{2} \\
& =\left(\cos ^{2}(\theta)-\sin (\theta)\right)+(2 \cos (\theta) \sin (\theta)) i
\end{aligned}
$$

Equating the real and imaginary parts of the two formulas for $e^{2 i \theta}$ gives the formulas stated in the problem.

Problem 2. Find all the eigenvalues, real or complex, of the following matrices. (Note that one of these is really easy.)
(a) $\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}3+i & 0 & 5 \\ 0 & 2 & 7 \\ 0 & 0 & -i\end{array}\right)$
(c) $\left(\begin{array}{ccc}5 & 0 & 0 \\ -2 & 3 & 6 \\ 0 & 1 & -2\end{array}\right)$

Answer:

(a) $\left|\begin{array}{cc}1-x & 2 \\ -2 & 1-x\end{array}\right|=(1-x)^{2}+4=x^{2}-2 x+1+4=x^{2}-2 x+5$. The eigenvalues are the roots of this polynomial. Using the quadratic formula, the roots are $\frac{2 \pm \sqrt{(-2)^{2}-4 * 1 * 5}}{2}=\frac{2 \pm \sqrt{-16}}{2}=$ $\frac{2 \pm 4 i}{2}=1 \pm 2 i$.
(b) The eigenvalues of an echelon form matrix are simply the diagonal entries, so the eigenvalues of this matrix are $3+i, 2$, and $-i$.
(c) $\left|\begin{array}{ccc}5-x & 0 & 0 \\ -2 & 3-x & 6 \\ 0 & 1 & -2-x\end{array}\right|$
$=(5-x)\left|\begin{array}{cc}3-x & 6 \\ 1 & -2-x\end{array}\right|=(5-x)((3-x)(-2-x)-6)=(5-x)\left(-6-x+x^{2}-6\right)$
$=(5-x)\left(x^{2}-x-12\right)=(5-x)(x-4)(x+3)$.
The eigenvalues are the roots of this polynomial, 5,4 , and -3 .

Problem 3. Suppose that A is an $n \times n$ matrix, and λ is an eigenvalue for A. Show that λ^{2} is an eigenvalue for $A A$. [Hint: Let \vec{v} be an eigenvector for A with eigenvalue λ.]

Answer:

Let \vec{v} be an eigenvector for A with eigenvalue λ. Then $A \vec{v}=\lambda v$. We then have $(A A) \vec{v}=$ $A(A \vec{v})=A(\lambda \vec{v})=\lambda \cdot A \vec{v}=\lambda \cdot \lambda \vec{v}=(\lambda \cdot \lambda) \vec{v}=\lambda^{2} \vec{v}$. So λ^{2} is an eigenvalue for the matrix $A A$ (and \vec{v} is an eigenvector for $A A$ with eigenvalue λ^{2}.

Problem 4. Let $h: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a homomorphism that has eigenvalues $1-i$ and $1+i$. Suppose that $\binom{1}{-2}$ is an eigenvector with eigenvalue $1-i$, and that $\binom{1}{1}$ is an eigenvector with eigenvalue $1+i$. Find the matrix for h in the standard basis, $\left\langle\vec{e}_{i}, \vec{e}_{2}\right\rangle$. [Hint: You need to find $h\left(\vec{e}_{1}\right)$ and $h\left(\vec{e}_{2}\right)$.]

Answer:

The matrix for h in the standard basis is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $h\binom{1}{0}=\binom{a}{c}$ and $h\binom{0}{1}=\binom{b}{d}$. So we just need to compute those values.

$$
\begin{aligned}
h\binom{1}{0} & =h\left((1 / 3) \cdot\binom{1}{-2}+(2 / 3) \cdot\binom{1}{1}\right) \\
& =(1 / 3) \cdot h\binom{1}{-2}+(2 / 3) \cdot h\binom{1}{1} \\
& =(1 / 3) \cdot(1-i) \cdot\binom{1}{-2}+(2 / 3) \cdot(1+i)\binom{1}{1} \\
& =\binom{1+\frac{1}{3} i}{\frac{4}{3} i}
\end{aligned}
$$

and

$$
\begin{aligned}
h\binom{0}{1} & =h\left(-(1 / 3) \cdot\binom{1}{-2}+(1 / 3) \cdot\binom{1}{1}\right) \\
& =-(1 / 3) \cdot h\binom{1}{-2}+(1 / 3) \cdot h\binom{1}{1} \\
& =-(1 / 3) \cdot(1-i) \cdot\binom{1}{-2}+(1 / 3) \cdot(1+i)\binom{1}{1} \\
& =\binom{\frac{2}{3} i}{1-\frac{1}{3} i}
\end{aligned}
$$

So the matrix in the standard basis is $\left(\begin{array}{cc}1+\frac{1}{3} i & \frac{2}{3} i \\ \frac{4}{3} i & 1-\frac{1}{3} i\end{array}\right)$.

Problem 5. Let \mathscr{D} be the vector space of differentiable functions from \mathbb{R} to \mathbb{R}. That is, \mathscr{D} is the set $\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f^{\prime}(x)\right.$ exists for all $\left.x\right\}$, with the usual addition and scalar multiplication for real-valued functions. Let $\partial: \mathscr{D} \rightarrow \mathscr{D}$ be the derivative function, $\partial(f)=f^{\prime}$. Show that every real number λ is an eigenvalue for ∂, and find an eigenvector for eigenvalue λ. [Hint: What is the derivative of $e^{a x}$? Once you remember that derivative, this question is trivial.]

Answer:

Let $\lambda \in \mathbb{R}$. For $\lambda=0$, the function $f(x)=1$ is an eigenvector for ∂ with eigenvalue 0 , because $\partial(f)=0=0 \cdot f$. For $\lambda \neq 0$, let $g(x)=e^{\lambda x}$. Then $g^{\prime}(x)=\frac{d}{d x} e^{\lambda x}=\lambda e^{\lambda x}=\lambda g(x)$. That is, $\partial(g)=\lambda g$. So, $g(x)=e^{\lambda x}$ is an eigenvector for ∂ with eigenvalue λ. [Note that the last statement is true even for $\lambda=0$ since $e^{0 x}=e^{0}=1$.]

