This homework is due by noon on Tuesday, October 13,
Problem 1. Find the rank of each matrix:
(a) $\quad\left(\begin{array}{cccc}1 & 3 & -2 & 4 \\ 2 & 1 & 1 & 3 \\ -1 & 2 & -3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccccc}1 & 0 & 3 & 5 & 2 \\ -1 & 2 & 1 & -2 & 3 \\ 2 & 4 & 0 & 1 & 1 \\ 3 & 4 & 3 & 6 & 3 \\ 1 & 6 & 1 & -1 & 4\end{array}\right)$

Answer:

If we put the matrix into echelon form, the rank of the original matrix is just the number of non-zero rows in the echelon form matrix.
(a)

$$
\begin{aligned}
&\left(\begin{array}{cccc}
1 & 3 & -2 & 4 \\
2 & 1 & 1 & 3 \\
-1 & 2 & -3 & 1
\end{array}\right) \xrightarrow{\begin{array}{l}
-2 \rho_{1}+\rho_{2} \\
\rho_{1}+\rho_{3}
\end{array}} \xrightarrow{ } \xrightarrow{\xrightarrow{\rho_{2}+\rho_{3}}}\left(\begin{array}{cccc}
1 & 3 & -2 & 4 \\
0 & -5 & 5 & -5 \\
0 & 5 & -5 & 5
\end{array}\right) \\
&\left(\begin{array}{cccc}
1 & 3 & -2 & 4 \\
0 & -5 & 5 & -5 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Since there are two non-zero rows, the rank is 2 .
(b)

$$
\begin{aligned}
\left(\begin{array}{ccccc}
1 & 0 & 3 & 5 & 2 \\
-1 & 2 & 1 & -2 & 3 \\
2 & 4 & 0 & 1 & 1 \\
3 & 4 & 3 & 6 & 3 \\
1 & 6 & 1 & -1 & 4
\end{array}\right)
\end{aligned} \begin{aligned}
& \begin{array}{l}
\rho_{1}+\rho_{2} \\
-2 \rho_{1}+\rho_{3} \\
-3 \rho_{1}+\rho_{4} \\
-\rho_{1}+\rho_{5}
\end{array} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& -2 \rho_{2}+\rho_{3} \\
& -2 \rho_{2}+\rho_{4}+\rho_{5}+\rho_{4}
\end{aligned}\left(\begin{array}{ccccc}
1 & 0 & 3 & 5 & 2 \\
0 & 2 & 4 & 3 & 5 \\
0 & 4 & -6 & -9 & -3 \\
0 & 4 & -6 & -9 & -3 \\
0 & 6 & -2 & -6 & 2
\end{array}\right)\left(\begin{array}{ccccc}
1 & 0 & 3 & 5 & 2 \\
0 & 2 & 4 & 3 & 5 \\
0 & 0 & -14 & -15 & -13 \\
0 & 0 & -14 & -15 & -13 \\
0 & 0 & -14 & -15 & -13
\end{array}\right)\left(\begin{array}{ccccc}
1 & 0 & 3 & 5 & 2 \\
0 & 2 & 4 & 3 & 5 \\
0 & 0 & -14 & -15 & -13 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Since there are three non-zero rows, the rank is 3 .

Problem 2. Suppose that $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism that satisfies

$$
h\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \quad h\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right), \quad \text { and } \quad h\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(a) Find $h\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)$. (Remember that h is a homomorphism.)
(b) For any vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$, find $h\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, writing the answer in terms of a, b, and c.
(c) Find a specific vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$ such that $h\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$.

Answer:

(a) $h\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)=-2 h\left(\vec{e}_{1}\right)+3 h\left(\vec{e}_{2}\right)+h\left(\vec{e}_{3}\right)=-2\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+3\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)+\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}10 \\ -5 \\ 1\end{array}\right)$
(b) $h\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=a h\left(\vec{e}_{1}\right)+b h\left(\vec{e}_{2}\right)+\operatorname{ch}\left(\vec{e}_{3}\right)=a\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+b\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)+c\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}3 b+c \\ 2 a-b+2 c \\ a+3 c\end{array}\right)$
(c) We just need to solve $\left(\begin{array}{c}3 b+c \\ 2 a-b+2 c \\ a+3 c\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$. This is a system of equations that can be solved using row reduction.

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
0 & 3 & 1 & -1 \\
2 & -1 & 2 & 0 \\
1 & 0 & 3 & 2
\end{array}\right) \xrightarrow{\xrightarrow{\rho_{1} \leftrightarrow \rho_{3}}} \begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 0 & 3 & 2 \\
2 & -1 & 2 & 0 \\
0 & 3 & 1 & -1
\end{array}\right) \\
& \xrightarrow{-2 \rho_{1}+\rho_{2}}{ }^{\left(\begin{array}{ccc|c}
1 & 0 & 3 & 2 \\
0 & -1 & -4 & -4 \\
0 & 3 & 1 & -1
\end{array}\right)} \\
& \xrightarrow{3 \rho_{2}+\rho_{3}} \\
& \xrightarrow{-\frac{1}{11} \rho_{3}}\left(\begin{array}{ccc|c}
1 & 0 & 3 & 2 \\
0 & -1 & -4 & -4 \\
0 & 0 & -11 & -13
\end{array}\right) \\
& \left(\begin{array}{ccc|c|}
1 & 0 & 3 & 2 \\
0 & 1 & 4 & 4 \\
0 & 0 & 1 & \frac{13}{11}
\end{array}\right)
\end{aligned}
\end{aligned}
$$

$$
\xrightarrow{-3 \rho_{3}+\rho_{1}}-4 \rho_{3}+\rho_{2} \text { 估 } \quad\left(\begin{array}{lll|c}
1 & 0 & 0 & -\frac{17}{11} \\
0 & 1 & 0 & -\frac{8}{11} \\
0 & 0 & 1 & \frac{13}{11}
\end{array}\right)
$$

So the solution is $a=-\frac{17}{11}, b=-\frac{8}{11}, c=\frac{13}{11}$, or $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\frac{1}{11}\left(\begin{array}{c}-17 \\ -8 \\ 13\end{array}\right)$

Problem 3. In class, we showed that the function from \mathscr{P}_{3} to \mathscr{P}_{3} that maps the polynomial $p(x)$ to the polynomial $p(x-1)$ is an automorphism of \mathscr{P}_{3}. Define the homomorphism $h: \mathscr{P}_{2} \rightarrow \mathscr{P}_{2}$ by $h(p(x))=p(2 x+5)$. (You do not have to show that this function is a homomorphism. Note that it is defined on \mathscr{P}_{2}, not \mathscr{P}_{3}.)
(a) Show that h is bijective by finding an inverse function.
(b) Write out $h\left(a+b x+c x^{2}\right)$ as a polynomial in standard form $\left(d+e x+f x^{2}\right)$, where d, e, f are expressed in terms of $a, b, c)$.

Answer:

(a) $h^{-1}(q(x))=q\left(\frac{1}{2}(x-5)\right)$, because $h\left(h^{-1}(q(x))=h\left(q\left(\frac{1}{2}(x-5)\right)\right)=q\left(2\left(\frac{1}{2}(x-5)+5\right)=q(x)\right.\right.$ and $h^{-1}\left(h(p(x))=h^{-1}(p(2 x+5))=p\left(\frac{1}{2}((2 x+5)-5)\right)=p(x)\right.$.
(b) $\left.h\left(a+b x+c x^{2}\right)=a+b(2 x+5)+c(2 x+5)^{2}\right)=a+b(2 x+5)+c\left(4 x^{2}+20 x+25\right)=$ $(a+5 b+25 c)+(2 b+20 c) x+4 c x^{2}$.

Problem 4. Define $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by $f\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)=\left(\begin{array}{l}d \\ c \\ b \\ a\end{array}\right)$. Show by direct calculation that f is a homomorphism, and show that it is in fact an automorphism by finding its inverse.

Answer:

(1) Show that $h\left(\vec{v}_{1}+\vec{v}_{2}\right)=h\left(\vec{v}_{1}\right)+h\left(\vec{v}_{2}\right)$:

$$
h\left(\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1} \\
d_{1}
\end{array}\right)+\left(\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2} \\
d_{2}
\end{array}\right)\right)=h\left(\begin{array}{l}
a_{1}+a_{2} \\
b_{1}+b_{2} \\
c_{1}+c_{2} \\
d_{1}+d_{2}
\end{array}\right)=\left(\begin{array}{c}
d_{1}+d_{2} \\
c_{1}+c_{2} \\
b_{1}+b_{2} \\
a_{1}+a_{2}
\end{array}\right)=\left(\begin{array}{l}
d_{1} \\
c_{1} \\
b_{1} \\
a_{1}
\end{array}\right)+\left(\begin{array}{l}
d_{2} \\
c_{2} \\
b_{2} \\
a_{2}
\end{array}\right)=h\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1} \\
d_{1}
\end{array}\right)+h\left(\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2} \\
d_{2}
\end{array}\right)
$$

(2) Show that $h(r \cdot \vec{v})=r \cdot h(\vec{v})$:

$$
h\left(r \cdot\left(\begin{array}{l}
1 \\
b \\
c \\
d
\end{array}\right)\right)=h\left(\begin{array}{l}
r a \\
r b \\
r c \\
r d
\end{array}\right)=\left(\begin{array}{l}
r d \\
r c \\
r b \\
r a
\end{array}\right)=r \cdot\left(\begin{array}{l}
d \\
c \\
b \\
a
\end{array}\right)=r \cdot h\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

(3) Show that h is an automorphism. In fact, $h^{-1}=h$ because $h\left(h\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)\right)=h\left(\begin{array}{l}d \\ c \\ b \\ a\end{array}\right)=\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$. Since h has an inverse, it is bijective, and hence is an automorphism.

Problem 5. Suppose that V, W, and X are vector spaces and that $f: V \rightarrow W$ and $g: W \rightarrow X$ are homomoprhisms. Recall that the compostion, $g \circ f$, of g and f is defined to be the function from V to X given by $g \circ f(\vec{v}=g(f(\vec{v}))$ for $\vec{v} \in V$. Show that $g \circ f$ is a homomorphism. (This is easy! Just check the two conditions for a function to be a homomorphism.)

Answer:

(1) Let $\vec{v}_{1}, \vec{v}_{2} \in V$. Show that $g \circ f\left(\vec{v}_{1}+\vec{v}_{2}\right)=g \circ f\left(\vec{v}_{1}\right)+g \circ f\left(\vec{v}_{2}\right)$:

$$
g \circ f\left(\vec{v}_{1}+\vec{v}_{2}\right)=g\left(f\left(\vec{v}_{1}+\vec{v}_{2}\right)\right)=g\left(f\left(\vec{v}_{1}\right)+f\left(\vec{v}_{2}\right)\right)=g\left(f\left(\vec{v}_{1}\right)\right)+g\left(f\left(\vec{v}_{2}\right)\right)=g \circ f\left(\vec{v}_{1}\right)+g \circ f\left(\vec{v}_{2}\right)
$$

(2) Let $\vec{v} \in V$ and $r \in \mathbb{R}$. Show that $g \circ f(r \cdot \vec{v})=r \cdot(g \circ f(\vec{v}))$:

$$
g \circ f(r \cdot \vec{v})=g(f(r \cdot \vec{v}))=g(r \cdot f(\vec{v}))=r \cdot g(f(\vec{v}))=r \cdot(g \circ f(\vec{v}))
$$

