This homework is due by 11:59 PM on Thursday, October 28
Problem 1. Let A be the matrix $A=\left(\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0\end{array}\right)$. Put the matrix A into reduced echelon form. This can be done with four row operations. Now, based on your row reduction, write the matrix A as a product of 3×3 matrices, where each matrix in the product is an elementary matrix.

Answer:

First, we put the matrix into reduced echelon form:

$$
\left.\begin{array}{rlll}
\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) & \xrightarrow{-2 \rho_{1}+\rho_{3}}\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & 0 & 1 \\
0 & -5 & 0
\end{array}\right) & \xrightarrow{\rho_{2} \leftrightarrow \rho_{3}} \\
& \xrightarrow{-\frac{1}{5} \rho_{2}}\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & -5 & 0 \\
0 & 0 & 1
\end{array}\right) \\
0 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{\xrightarrow{-3 \rho_{2}+\rho_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}
$$

We can convert the steps of the row reduction into matrix multiplication, writing the identity as A multiplied on the left by one elementary matrix corresponding to each row operation:

$$
\left(\begin{array}{ccc}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{5} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

By multiplying this equation on the left by the inverse of each of the four elementary matrices, we get A wirtten as a product of elementary matrices:

$$
\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Problem 2. The $n \times n$ identity matrix, I_{n}, has the property that it is its own inverse. That is, the product $I_{n} I_{n}$ is equal to I_{n}. There are other $n \times n$ matrices that have the same property; that is, $A A=I_{n}$.
(a) Describe all diagonal $n \times n$ matrices D that have the property $D D=I_{n}$.
(b) Let S be the 2×2 matrix $S=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Calculate the matrix product $S S$ to see that S is its own inverse.
(c) The matrix S from the previous part is a permutation matrix; multiplying a $2 \times n$ matrix on the left by S will swap the two rows of that matrix, so $S S$ is the matrix that you get by swapping the rows of S, producing the identity matrix. Find two different 3×3 permutation matrices A and B that are their own inverses. That is, $A A=I_{3}$ and $B B=I_{3}$.
(d) Find a 3×3 permutation matrix A that has the property $A A A=I_{3}$.

Answer:

(a) Suppose that D is an $n \times n$ diagonal matrix and the $i^{\text {th }}$ diagonal entry is d_{i}, for $i=1,2, \ldots, n$. Then the $i^{\text {th }}$ diagonal entry in the matrix $D D$ is d_{i}^{2}. We want to have $D D=I_{n}$, which means that that the $i^{\text {th }}$ diagonal entry must be 1 . That is, we want $d_{i}^{2}=1$. The only solutions of this equation are $d_{i}=1$ and $d_{i}=-1$. So, a diagonal matrix D satisfies $D D=I_{n}$ if and only if every diagonal entry in D is either 1 or -1 . (There are 2^{n} such matrices.)
(b) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \cdot\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 \cdot 0+1 \cdot 1 & 0 \cdot 1+1 \cdot 0 \\ 1 \cdot 0+0 \cdot 1 & 1 \cdot 1+0 \cdot 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(c) Any elementary matrix that swaps two rows is a permuation matrix and is its own inverse. So, for example, using the notation introduced in class, we can use

$$
\begin{array}{r}
R_{\rho_{1} \leftrightarrow \rho_{2}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } R_{\rho_{1} \leftrightarrow \rho_{3}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
\text { (d) }\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Problem 3. Let $d: \mathscr{P}_{4} \rightarrow \mathscr{P}_{3}$ be the derivative, $d(p(x))=p^{\prime}(x)$. Find the matrix $\operatorname{Rep}_{B, D}(d)$ where B and D are the usual bases for \mathscr{P}_{4} and $\mathscr{P}_{3}, B=\left\langle 1, x, x^{2}, x^{3}\right\rangle$ and $D=\left\langle 1, x, x^{2}\right\rangle$.

Answer:

To get column 1 of the matrix: $d(1)=0=0 \cdot 1+0 \cdot x+0 \cdot x^{2}$
To get column 2 of the matrix: $d(x)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2}$
To get column 3 of the matrix: $d\left(x^{2}\right)=2 x=0 \cdot 1+2 \cdot x+0 \cdot x^{2}$
To get column 4 of the matrix: $d\left(x^{3}\right)=3 x^{2}=0 \cdot 1+0 \cdot x+3 \cdot x^{2}$
So, $\operatorname{Rep}_{B, D}(d)=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$
Problem 4. Let h be the homomorphism $h: \mathscr{P}_{2} \rightarrow \mathscr{P}_{2}$ given by

$$
h\left(a+b x+c x^{2}\right)=(a+b)+(b+c) x+(c+a) x^{2}
$$

Let B be the basis of \mathscr{P}_{2} given by $B=\left\langle 1,1+x, 1+x+x^{2}\right\rangle$. Find the matrix $\operatorname{Rep}_{B, B}(h)$.

Answer:

To get column 1 of the matrix: $h(1)=1+x^{2}=1 \cdot(1)+(-1) \cdot(1+x)+1 \cdot\left(1+x+x^{2}\right)$
To get column 2 of the matrix: $h(1+x)=2+x+x^{2}=1 \cdot(1)+0 \cdot(1+x)+1 \cdot\left(1+x+x^{2}\right)$
To get column 3 of the matrix: $h\left(1+x+x^{2}\right)=2+2 x+2 x^{2}=0 \cdot(1)+0 \cdot(1+x)+2 \cdot\left(1+x+x^{2}\right)$
So, $\operatorname{Rep}_{B, B}(h)=\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 2\end{array}\right)$

Problem 5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the homomorphism given by $f\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\binom{3 a+b}{2 b-c}$. Find the matrix $\operatorname{Rep}_{B, D}$ where the bases B and D of \mathbb{R}^{2} and \mathbb{R}^{2} are given by

$$
B=\left\langle\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle \quad \text { and } \quad D=\left\langle\binom{ 1}{3},\binom{0}{-1}\right\rangle
$$

Answer:

To get column 1 of the matrix: $f\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\binom{4}{1}=4 \cdot\binom{1}{3}+11 \cdot\binom{0}{-1}$
To get column 2 of the matrix: $f\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\binom{1}{1}=1 \cdot\binom{1}{3}+2 \cdot\binom{0}{-1}$
To get column 3 of the matrix: $f\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{0}{-1}=0 \cdot\binom{1}{3}+1 \cdot\binom{0}{-1}$
So, $\operatorname{Rep}_{B, D}(f)=\left(\begin{array}{ccc}4 & 1 & 0 \\ 11 & 2 & 1\end{array}\right)$
Problem 6. Let V be a vector space with basis $B=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\rangle$. Let $g: V \rightarrow V$ is a homomorphism. Suppose that there are numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $g\left(\vec{\beta}_{1}\right)=\lambda_{1} \cdot \vec{\beta}_{1}, g\left(\vec{\beta}_{2}\right)=\lambda_{2} \cdot \vec{\beta}_{2}$, $\ldots, g\left(\vec{\beta}_{n}\right)=\lambda_{n} \cdot \vec{\beta}_{n}$. What is $\operatorname{Rep}_{B, B}(g) ?$
(Preview: If $h: V \rightarrow V$ is a homomorphism and $h(\vec{v})=\lambda \cdot \vec{v}$ for some $\lambda \in \mathbb{R}$ and $\vec{v} \in V$, then λ is called an eigenvalue for h, and \vec{v} is called an eigenvector for h with eigenvalue λ. The homomorphism g in this problem admits a basis of eigenvectors, but this is not the usual case.)

Answer:

If we write $g\left(\vec{\beta}_{i}\right.$ in terms of the basis B, we just have $g\left(\vec{\beta}_{i}\right)=\lambda_{i} \cdot \vec{\beta}_{i}$. That is, the coefficient of $\vec{\beta}_{i}$ is λ_{i}, and the coefficients of all the other basis vectors are zero. So the $i^{\text {th }}$ column of $\operatorname{Rep}_{B, B}(g)$ has λ_{i} in row i and 0 in all the other rows. This makes $\operatorname{Rep}_{B, B}(g)$ a diagonal matrix, with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

$$
\operatorname{Rep}_{B, B}(g)=\left(\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

