Four linear systems consisting of four equations in three variables:

$$
\begin{aligned}
x+2 y-z & =2 \\
y+z & =3 \\
z & =1 \\
0 & =7
\end{aligned}
$$

$$
\begin{aligned}
x+2 y-z & =2 \\
y+z & =3 \\
z & =1 \\
0 & =0
\end{aligned}
$$

$x+2 y-z=2$
$y+z=3$
$0=0$
$0=0$
$x+2 y-z=2$
$z=1$
$0=0$
$0=0$

Solutions:

NO SOLUTION

$$
\begin{aligned}
& z=1 \\
& y=3-z \\
& =2 \quad y=3-z \\
& x=2-2 y+z \\
& x=2-2 y+z \\
& =-4+3 z \\
& z=1 \\
& y \text { is free } \\
& x=2-2 y+z \\
& =2-2 y+1 \\
& =3-2 y
\end{aligned}
$$

Solution sets:
\varnothing

$$
\begin{array}{ll}
\left\{\left(\begin{array}{c}
-4+3 z \\
3-z \\
z
\end{array}\right): z \in \mathbb{R}\right\} & \left\{\left(\begin{array}{c}
3-2 y \\
y \\
1
\end{array}\right): y \in \mathbb{R}\right\} \\
=\left\{\left(\begin{array}{c}
-4 \\
3 \\
0
\end{array}\right)+z\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right): z \in \mathbb{R}\right\} \quad=\left\{\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right)+y\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right): y \in \mathbb{R}\right\}
\end{array}
$$

And a system with two free variables...
$x+2 y-z=2$, so $x=2-2 y+z$ where y and z are free

Solution set: $\left\{\left(\begin{array}{c}2-2 y+z \\ y \\ z\end{array}\right): y, z \in \mathbb{R}\right\}=\left\{\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)+y\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right): y, z \in \mathbb{R}\right\}$

