This homework is due by 11:59 PM on Tuesday, December 1
Problem 1. A few problems on complex numbers...
(a) Recall that for a complex number $z=a+b i,|z|$ is defined to be $|z|=\sqrt{a^{2}+b^{2}}$. Verify that for two complex numbers z and $w,|z w|=|z| \cdot|w|$.
(b) Suppose that $w_{0}=a+b i$ is some complex number. Recall that the conjugate of w_{0} is defines as $\overline{w_{0}}=a-b i$. Let $p(z)$ be the polynomial $p(z)=\left(z-w_{0}\right)\left(z-\overline{w_{0}}\right)$. Verify that when $p(z)$ is written in standard form as $p(z)=c_{0}+c_{1} z+c_{2} z^{2}$, all of the coefficients c_{0}, c_{1}, and c_{2} are real.
(c) Use the identity $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ and the fact that $\left(e^{i \theta}\right)^{2}=e^{2 i \theta}$ to derive the usual double angle formulas: $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$ and $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$.

Problem 2. Find all the eigenvalues, real or complex, of the following matrices. (Note that one of these is really easy.)
(a) $\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}3+i & 0 & 5 \\ 0 & 2 & 7 \\ 0 & 0 & -i\end{array}\right)$
(c) $\left(\begin{array}{ccc}5 & 0 & 0 \\ -2 & 3 & 6 \\ 0 & 1 & -2\end{array}\right)$

Problem 3. Suppose that A is an $n \times n$ matrix, and λ is an eigenvalue for A. Show that λ^{2} is an eigenvalue for $A A$. [Hint: Let \vec{v} be an eigenvector for A with eigenvalue λ.]

Problem 4. Let $h: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a homomorphism that has eigenvalues $1-i$ and $1+i$. Suppose that $\binom{1}{-2}$ is an eigenvector with eigenvalue $1-i$, and that $\binom{1}{1}$ is an eigenvector with eigenvalue $1+i$. Find the matrix for h in the standard basis, $\left\langle\vec{e}_{i}, \vec{e}_{2}\right\rangle$. [Hint: You need to find $h\left(\vec{e}_{1}\right)$ and $h\left(\vec{e}_{2}\right)$.]

Problem 5. Let \mathscr{D} be the vector space of differentiable functions from \mathbb{R} to \mathbb{R}. That is, \mathscr{D} is the set $\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f^{\prime}(x)\right.$ exists for all $\left.x\right\}$, with the usual addition and scalar multiplication for real-valued functions. Let $\partial: \mathscr{D} \rightarrow \mathscr{D}$ be the derivative function, $\partial(f)=f^{\prime}$. Show that every real number λ is an eigenvalue for ∂, and find an eigenvector for eigenvalue λ. [Hint: What is the derivative of $e^{a x}$? Once you remember that derivative, this question is trivial.]

