This homework is due by **noon** on Thursday, October 1, There is a **test** on Friday, October 2. Because of the test, this homework will not be accepted late, and there will be no rewrites. Solutions for Homeworks 4 an 5 will be published at noon on October 1.

Problem 1. Decide whether each set of vectors is a basis for \mathbb{R}^3 . Give a reason for your answer. In some cases, the reason can be very short. In other cases, a calculation is required.

(a)
$$\left\{ \begin{pmatrix} 1\\3\\7 \end{pmatrix}, \begin{pmatrix} 2\\0\\4 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 8\\5\\1 \end{pmatrix}, \begin{pmatrix} 4\\7\\5 \end{pmatrix} \right\}$$

(c)
$$\left\{ \begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} 2\\6\\4 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

(d)
$$\left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\3 \end{pmatrix}, \begin{pmatrix} 3\\4\\5 \end{pmatrix} \right\}$$

Problem 2. Suppose that $(V, +, \cdot)$ is a vector space and \mathcal{U} is a basis of V, where $\mathcal{U} = \langle \vec{\beta_1}, \vec{\beta_2}, \ldots, \vec{\beta_n} \rangle$. Let $\mathcal{D} = \langle \vec{\beta_n}, \vec{\beta_{n-1}}, \ldots, \vec{\beta_1} \rangle$. (Then \mathcal{D} is also a basis of V. It is a different basis, since these bases are ordered.) For a vector $\vec{v} \in V$, how does $\operatorname{Rep}_{\mathcal{U}}(\vec{v})$ compare to $\operatorname{Rep}_{\mathcal{D}}(\vec{v})$? Justify your answer.

Problem 3. The sequence
$$\mathcal{B} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle$$
 is a basis for \mathbb{R}^3 . Let $\vec{v} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$. Find

 $\operatorname{Rep}_{\mathcal{B}}(\vec{v})$. (You do **not** need to prove that \mathcal{B} is a basis.)

Problem 4. Using the basis, \mathcal{B} , from problem 3, suppose that $\operatorname{Rep}_{\mathcal{B}}(\vec{v}) = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$. Find \vec{v} .

Problem 5. Let \mathscr{P}_3 be the vector space of polynomials of degree less than or equal to 3. Let \mathscr{B} be the basis of \mathscr{P}_3 given by

$$\mathcal{B} = \langle 1+x, x-x^2, 1+x^3, 2x-x^2+x^3 \rangle$$

Find $\operatorname{Rep}_{\mathcal{B}}(3-4x+4x^2+x^3)$. (You do **not** have to prove that \mathcal{B} is a basis.)