This homework is due by noon on Thursday, October 1,
There is a test on Friday, October 2.
Because of the test, this homework will not be accepted late, and there will be no rewrites.
Solutions for Homeworks 4 an 5 will be published at noon on October 1.
Problem 1. Decide whether each set of vectors is a basis for \mathbb{R}^{3}. Give a reason for your answer. In some cases, the reason can be very short. In other cases, a calculation is required.
(a) $\left\{\left(\begin{array}{l}1 \\ 3 \\ 7\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}8 \\ 5 \\ 1\end{array}\right),\left(\begin{array}{l}4 \\ 7 \\ 5\end{array}\right)\right\}$
(c) $\left\{\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 6 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$
(d) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)\right\}$

Problem 2. Suppose that $(V,+, \cdot)$ is a vector space and \mathcal{U} is a basis of V, where $\mathcal{U}=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\rangle$. Let $\mathcal{D}=\left\langle\vec{\beta}_{n}, \vec{\beta}_{n-1}, \ldots, \vec{\beta}_{1}\right\rangle$. (Then \mathcal{D} is also a basis of V. It is a different basis, since these bases are ordered.) For a vector $\vec{v} \in V$, how does $\operatorname{Rep}_{\mathcal{U}}(\vec{v})$ compare to $\operatorname{Rep}_{\mathcal{D}}(\vec{v})$? Justify your answer.

Problem 3. The sequence $\mathcal{B}=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\rangle$ is a basis for \mathbb{R}^{3}. Let $\vec{v}=\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)$. Find
$\operatorname{Rep}_{\mathcal{B}}(\vec{v})$. (You do not need to prove that \mathcal{B} is a basis.)
Problem 4. Using the basis, \mathcal{B}, from problem 3, suppose that $\operatorname{Rep}_{\mathcal{B}}(\vec{v})=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Find \vec{v}.

Problem 5. Let \mathscr{P}_{3} be the vector space of polynomials of degree less than or equal to 3 . Let \mathcal{B} be the basis of \mathscr{P}_{3} given by

$$
\mathcal{B}=\left\langle 1+x, x-x^{2}, 1+x^{3}, 2 x-x^{2}+x^{3}\right\rangle
$$

Find $\operatorname{Rep}_{\mathcal{B}}\left(3-4 x+4 x^{2}+x^{3}\right)$. (You do not have to prove that \mathcal{B} is a basis.)

