This homework is due by noon on Tuesday, October 13,
Problem 1. Find the rank of each matrix:
(a) $\quad\left(\begin{array}{cccc}1 & 3 & -2 & 4 \\ 2 & 1 & 1 & 3 \\ -1 & 2 & -3 & 1\end{array}\right)$
(b) $\quad\left(\begin{array}{ccccc}1 & 0 & 3 & 5 & 2 \\ -1 & 2 & 1 & -2 & 3 \\ 2 & 4 & 0 & 1 & 1 \\ 3 & 4 & 3 & 6 & 3 \\ 1 & 6 & 1 & -1 & 4\end{array}\right)$

Problem 2. Suppose that $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism that satisfies

$$
h\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \quad h\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right), \quad \text { and } \quad h\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(a) Find $h\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)$. (Remember that h is a homomorphism.)
(b) For any vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$, find $h\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, writing the answer in terms of a, b, and c.
(c) Find a specific vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$ such that $h\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$.

Problem 3. In class, we showed that the function from \mathscr{P}_{3} to \mathscr{P}_{3} that maps the polynomial $p(x)$ to the polynomial $p(x-1)$ is an automorphism of \mathscr{P}_{3}. Define the homomorphism $h: \mathscr{P}_{2} \rightarrow \mathscr{P}_{2}$ by $h(p(x))=p(2 x+5)$. (You do not have to show that this function is a homomorphism. Note that it is defined on \mathscr{P}_{2}, not \mathscr{P}_{3}.)
(a) Show that h is bijective by finding an inverse function.
(b) Write out $h\left(a+b x+c x^{2}\right)$ as a polynomial in standard form $\left(d+e x+f x^{2}\right)$, where d, e, f are expressed in terms of $a, b, c)$.

Problem 4. Define $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by $f\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)=\left(\begin{array}{l}d \\ c \\ b \\ a\end{array}\right)$. Show by direct calculation that f is a homomorphism, and show that it is in fact an automorphism by finding its inverse.

Problem 5. Suppose that V, W, and X are vector spaces and that $f: V \rightarrow W$ and $g: W \rightarrow X$ are homomoprhisms. Recall that the compostion, $g \circ f$, of g and f is defined to be the function from V to X given by $g \circ f(\vec{v}=g(f(\vec{v}))$ for $\vec{v} \in V$. Show that $g \circ f$ is a homomorphism. (This is easy! Just check the two conditions for a function to be a homomorphism.)

