This homework is due by 11:59 PM on Thursday, October 29
Problem 1. Let A be the matrix $A=\left(\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0\end{array}\right)$. Put the matrix A into reduced echelon form. This can be done with four row operations. Now, based on your row reduction, write the matrix A as a product of 3×3 matrices, where each matrix in the product is an elementary matrix.

Problem 2. The $n \times n$ identity matrix, I_{n}, has the property that it is its own inverse. That is, the product $I_{n} I_{n}$ is equal to I_{n}. There are other $n \times n$ matrices that have the same property; that is, $A A=I_{n}$.
(a) Describe all diagonal $n \times n$ matrices D that have the property $D D=I_{n}$.
(b) Let S be the 2×2 matrix $S=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Calculate the matrix product $S S$ to see that S is its own inverse.
(c) The matrix S from the previous part is a permutation matrix; multiplying a $2 \times n$ matrix on the left by S will swap the two rows of that matrix, so $S S$ is the matrix that you get by swapping the rows of S, producing the identity matrix. Find two different 3×3 permutation matrices A and B that are their own inverses. That is, $A A=I_{3}$ and $B B=I_{3}$.
(d) Find a 3×3 permutation matrix A that has the property $A A A=I_{3}$.

Problem 3. Let $d: \mathscr{P}_{4} \rightarrow \mathscr{P}_{3}$ be the derivative, $d(p(x))=p^{\prime}(x)$. Find the matrix $\operatorname{Rep}_{B, D}(d)$ where B and D are the usual bases for \mathscr{P}_{4} and $\mathscr{P}_{3}, B=\left\langle 1, x, x^{2}, x^{3}\right\rangle$ and $D=\left\langle 1, x, x^{2}\right\rangle$.

Problem 4. Let h be the homomorphism $h: \mathscr{P}_{2} \rightarrow \mathscr{P}_{2}$ given by

$$
h\left(a+b x+c x^{2}\right)=(a+b)+(b+c) x+(c+a) x^{2}
$$

Let B be the basis of \mathscr{P}_{2} given by $B=\left\langle 1,1+x, 1+x+x^{2}\right\rangle$. Find the matrix $\operatorname{Rep}_{B, B}(h)$.
Problem 5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the homomorphism given by $f\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\binom{3 a+b}{2 b-c}$. Find the matrix $\operatorname{Rep}_{B, D}$ where the bases B and D of \mathbb{R}^{2} and \mathbb{R}^{2} are given by

$$
B=\left\langle\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle \quad \text { and } \quad D=\left\langle\binom{ 1}{3},\binom{0}{-1}\right\rangle
$$

Problem 6. Let V be a vector space with basis $B=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\rangle$. Let $g: V \rightarrow V$ is a homomorphism. Suppose that there are numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $g\left(\vec{\beta}_{1}\right)=\lambda_{1} \cdot \vec{\beta}_{1}, g\left(\vec{\beta}_{2}\right)=\lambda_{2} \cdot \vec{\beta}_{2}$, $\ldots, g\left(\vec{\beta}_{n}\right)=\lambda_{n} \cdot \vec{\beta}_{n}$. What is $\operatorname{Rep}_{B, B}(g)$?
(Preview: If $h: V \rightarrow V$ is a homomorphism and $h(\vec{v})=\lambda \cdot \vec{v}$ for some $\lambda \in \mathbb{R}$ and $\vec{v} \in V$, then λ is called an eigenvalue for h, and \vec{v} is called an eigenvector for h with eigenvalue λ. The homomorphism g in this problem admits a basis of eigenvectors, but this is not the usual case.)

