This homework is due by 11:59 PM on Thursday, October 29

Problem 1. Let A be the matrix $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$. Put the matrix A into reduced echelon form.

This can be done with four row operations. Now, based on your row reduction, write the matrix A as a product of 3×3 matrices, where each matrix in the product is an elementary matrix.

Problem 2. The $n \times n$ identity matrix, I_n , has the property that it is its own inverse. That is, the product $I_n I_n$ is equal to I_n . There are other $n \times n$ matrices that have the same property; that is, $AA = I_n$.

- (a) Describe all diagonal $n \times n$ matrices D that have the property $DD = I_n$.
- (b) Let S be the 2 × 2 matrix $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Calculate the matrix product SS to see that S is its
- (c) The matrix S from the previous part is a **permutation matrix**; multiplying a $2 \times n$ matrix on the left by S will swap the two rows of that matrix, so SS is the matrix that you get by swapping the rows of S, producing the identity matrix. Find two different 3×3 permutation matrices A and B that are their own inverses. That is, $AA = I_3$ and $BB = I_3$.
- (d) Find a 3×3 permutation matrix A that has the property $AAA = I_3$.

Problem 3. Let $d: \mathscr{P}_4 \to \mathscr{P}_3$ be the derivative, d(p(x)) = p'(x). Find the matrix $\operatorname{Rep}_{B,D}(d)$ where B and D are the usual bases for \mathscr{P}_4 and \mathscr{P}_3 , $B = \langle 1, x, x^2, x^3 \rangle$ and $D = \langle 1, x, x^2 \rangle$.

Problem 4. Let h be the homomorphism $h: \mathscr{P}_2 \to \mathscr{P}_2$ given by

$$h(a + bx + cx^{2}) = (a + b) + (b + c)x + (c + a)x^{2}$$

Let B be the basis of \mathscr{P}_2 given by $B = \langle 1, 1 + x, 1 + x + x^2 \rangle$. Find the matrix $\operatorname{Rep}_{B,B}(h)$.

Problem 5. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be the homomorphism given by $f\begin{pmatrix}a\\b\\c\end{pmatrix} = \begin{pmatrix}3a+b\\2b-c\end{pmatrix}$. Find the matrix $\operatorname{Rep}_{B,D}$ where the bases B and D of \mathbb{R}^2 and \mathbb{R}^2 are given by

$$B = \left\langle \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\rangle \quad \text{and} \quad D = \left\langle \begin{pmatrix} 1\\3 \end{pmatrix}, \begin{pmatrix} 0\\-1 \end{pmatrix} \right\rangle$$

Problem 6. Let V be a vector space with basis $B = \langle \vec{\beta_1}, \vec{\beta_2}, \dots, \vec{\beta_n} \rangle$. Let $g: V \to V$ is a homomorphism. Suppose that there are numbers $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ such that $g(\vec{\beta}_1) = \lambda_1 \cdot \vec{\beta}_1, g(\vec{\beta}_2) = \lambda_2 \cdot \vec{\beta}_2$, ..., $g(\vec{\beta}_n) = \lambda_n \cdot \vec{\beta}_n$. What is $\operatorname{Rep}_{B,B}(g)$?

(Preview: If $h: V \to V$ is a homomorphism and $h(\vec{v}) = \lambda \cdot \vec{v}$ for some $\lambda \in \mathbb{R}$ and $\vec{v} \in V$, then λ is called an **eigenvalue** for h, and \vec{v} is called an **eigenvector** for h with eigenvalue λ . The homomorphism q in this problem admits a **basis of eigenvectors**, but this is not the usual case.)