This homework is due by 11:59 PM on Tuesday, November 10
Problem 1. Remember that the change of basis matrix for bases B and D of the same vector space V is defined to be $\operatorname{Rep}_{B, D}(i d)$, where $i d: V \rightarrow V$ is the identity map.

Suppose that B and D are bases for \mathscr{P}_{2}, where $D=\left\langle x+x^{2}, 1-2 x+x^{2}, 2-x\right\rangle$. Find the basis B if the change of basis matrix is $\operatorname{Rep}_{B, D}(i d)=\left(\begin{array}{ccc}-1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & 1 & 4\end{array}\right)$. (This problem is very easy!)

Problem 2. Consider the bases B and D for \mathbb{R}^{3}, as given here:

$$
B=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right),\left(\begin{array}{c}
-2 \\
4 \\
-3
\end{array}\right)\right\rangle \quad D=\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)\right\rangle
$$

(a) Find the change of basis matrix $\operatorname{Rep}_{B, D}(i d)$.
(b) Check that $\operatorname{Rep}_{B}\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$. (You're not asked to find the representation, just check it.)
(c) The change of basis matrix must satisfy $\operatorname{Rep}_{B, D}(i d) \cdot \operatorname{Rep}_{B}(\vec{v})=\operatorname{Rep}_{D}(\vec{v})$. Verify that in fact

$$
\operatorname{Rep}_{B, D}(i d) \cdot \operatorname{Rep}_{B}\left(\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right)=\operatorname{Rep}_{D}\left(\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right)
$$

Problem 3. Find an affine transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
f\binom{0}{0}=\binom{-2}{3} \quad f\binom{1}{0}=\binom{1}{1} \quad f\binom{0}{1}=\binom{2}{5}
$$

Hint: It's easy to find the translation part of the affine map! Recall that f can be represented in the form $f\binom{x}{y}=\binom{a x+b y+e}{c x+d y+f}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}+\binom{e}{f}$.

Problem 4. The cross product of two vectors $\vec{v}, \vec{w} \in \mathbb{R}^{3}$ is a vector, $\vec{v} \times \vec{w}$, that is orthogonal to both \vec{v} and \vec{w}. The cross product can be computed as the "formal determinant"

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Find $\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right) \times\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)$ by writing out the formal determinant $\left|\begin{array}{ccc}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ 3 & -1 & 2 \\ 1 & 4 & -2\end{array}\right|$, using the formula for the determinant of a 3×3 matrix, and show that the result is, in fact, orthogonal to both vectors.

Problem 5. We looked at a formula for computing the determinant of a 3×3 matrix. That formula can be derived using Laplace's expansion for the determinant. Apply Laplace's expansion to the general 3×3 determinant

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

to derive the formula for the determinant of a 3×3 matrix. (You only need to apply Laplace's expansion for the first step of the computation, not for the resulting 2×2 matrices.)

Problem 6. Compute each of the following determinants. Some of them are very easy, using properties of the determinant, and you should check for that before doing a complex computation. For any problem where you use a property of the determinant to find the answer, state the property that you use.
(a) $\left|\begin{array}{cc}3 & 5 \\ 2 & -1\end{array}\right|$
(b) $\left|\begin{array}{lll}5 & 7 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right|$
(c) $\left|\begin{array}{ccc}1 & 3 & -2 \\ 2 & 1 & 1 \\ 3 & 2 & 4\end{array}\right|$
(d) $\left|\begin{array}{ccc}0 & 0 & 3 \\ 0 & 2 & -3 \\ 4 & 5 & -1\end{array}\right|$
(e) $\left|\begin{array}{cccc}1 & 2 & 4 & -1 \\ 3 & 5 & -3 & 7 \\ 1 & 2 & 4 & -1 \\ 6 & 2 & 3 & 7\end{array}\right|$
(f) $\left|\begin{array}{cccc}1 & 2 & 3 & -1 \\ 0 & -1 & 2 & 3 \\ 2 & 5 & 6 & 1 \\ -1 & 1 & 1 & 3\end{array}\right|$

