
Math 331 Sample Solutions for Homework 2

Problem 1. Prove using only the definition of real numbers as Dedekind cuts and the
definitions of + and < in terms of Dedekind cuts: If α, β, δ ∈ R and α < β, then α+δ < β+δ.

Suppose α, β, δ ∈ R and α < β. To show α+ δ < β+ δ, we must show α+ δ ⊂ β+ δ. Let
p ∈ α + δ. We must show p ∈ β + δ. By definition of addition of Dedekind cuts, p = a + c
where a ∈ α and c ∈ δ. Since α < β and a ∈ α, then a ∈ β. Since a ∈ β and c ∈ δ, then
a+ c ∈ β + δ. Since p = a+ c, we have shown p ∈ β + δ.

My answer is, in fact, incomplete. To show α+ δ < β + δ, we must show that α+ δ is a
proper subset of β + δ. I have shown α+ δ ⊂ β + δ, but it remains to show α+ δ 6= β + δ.

Problem 2 (From Problem 1.3.7 in the textbook). [From Problem 1.3.7 in the textbook]
Suppose that (F,+, ·) is a field, and S ⊆ F. We say that S is a subfield of F if it is a field
under the same addition and multiplication as F. To show that S is a subfield of F, it is
enough to show that 0 ∈ S, 1 ∈ S, and S is closed under addition, multiplication, taking
additive inverses, and taking multiplicative inverses..

Let Q[
√

2] = {r+ s
√

2 | r, s ∈ Q}. Show that Q[
√

2] is a subfield of R. (Note: Remember
that r and s can be zero in r + s

√
2.)

Let S = Q[
√

2].

1. 0 ∈ S, since it can be written as 0 = 0 + 0
√

2, and 1 ∈ S because 1 = 1 + 0
√

2.

2. Let a, b ∈ S. Then a = r + s
√

2 and b = p + q
√

2 for some r, s, p, q ∈ Q. Then
a + b = (r + s

√
2) + (p + q

√
2) = (r + p) + (s + q)

√
2, and r + p and s + q are in Q

because Q is closed under addition. So, a+ b ∈ S. Thus, S is closed under addition.

3. With a and b as in item 2, ab = (r+ s
√

2)(p+ q
√

2) = (rp+ rq
√

2 + ps
√

2 + qs(
√

2)2 =
(rp + 2qs) + (rq + ps)

√
2, which is in S because Q is closed under multiplication and

addition. Thus, S is closed under multiplication.

4. Let a ∈ S, where a = r + s
√

2. Then −a = (−r) + (−s)
√

2, which is in S. So, the
additive inverse of an element of S is in S.

5. Finally, let r + s
√

2 ∈ S be a non-zero element of S. Saying it is non-zero means
at least one of r or s is non-zero. Note that r2 − 2s2 6= 0. (Suppose r2 − 2s2 = 0.
Then r2 = 2s2. Since one of r and s is non-zero and r2 = 2s2, they both must be
non-zero. But then we have 2 = r2

s2
, and

√
2 = |r|

|s| , which is impossible because
√

2 is

not rational.) We have
(
r + s

√
2
)(

r−s
√
2

r2−2s2
)

= r2−2s2
r2−2s2 = 1. So the multiplicative inverse

of r + s
√

2 is r−s
√
2

r2−2s2 , which can be written as r
r2−2s2 + −s

r2−2s2
√

2, which is in S. Thus,
the multiplicative inverse of any non-zero element of S is in S.

Problem 3 (Problem 1.3.11 from the textbook). Let (F,+, ·) be an ordered field. Use the
definition of x < y and the order axioms to prove the transitive property of <. That is, show
that for any a, b, c ∈ F, if a < b and b < c, then a < c. [Note: Since F is not necessarily R,
you can’t use common facts that you know about R. You can only use the actual definition
and axioms.]



Let a, b, c ∈ F. Suppose a < b and b < c. Let P be the set of positive elements of F.
Since a < b, then by definition, b − a ∈ P . Similarly, c − b ∈ P . Since P is closed under
addition, (b−a)+(c−b) ∈ P . Using properties of addition and additive inverse, this becomes
c− a ∈ P . And then, by definition of “less than,” a < c.

Problem 4. (a) Let O1,O2 . . . ,Ok be some finite number of open subsets of R. Prove that
their intersection,

⋂k
i=1Oi, is open. (Hint: Use the characterization of open that involves

ε > 0. Start by taking arbitrary x ∈
⋂k
i=1Oi.)

(b) Show that the intersection of an infinite number of open sets is not necessarily open
by finding

⋂∞
n=1

(
− 1− 1

n
, 1 + 1

n

)
. (Justify your answer!)

(a) A set G is open if for all x ∈ G, there is an ε > 0 such that (x− ε, x + ε) ⊆ G. Let
x ∈

⋂k
i=1Oi. We must find some ε > 0 such that (x − ε, x + ε) ⊆

⋂k
i=1Oi. By definition

of intersection, x ∈ Oi for every i. Since Oi is open, then by definition, we can find εi > 0
such that (x − εi, x + εi) ⊆ Oi. Let ε = min(ε1, ε2, . . . , εk). Then ε > 0 and for each i,
(x − ε, x + ε) ⊆ (x − εi, x + εi) ⊆ Oi. Since this is true for i = 1, 2, . . . , k, we see that
(x− ε, x+ ε) ⊆

⋂k
i=1Oi.

(b) The intervals
(
− 1 − 1

n
, 1 + 1

n

)
are open sets, but

⋂∞
n=1

(
− 1 − 1

n
, 1 + 1

n

)
= [−1, 1],

which is not open, so the intersection of infinitely many open sets does not have to be open.
To see that the intersection is [−1, 1], note that [−1, 1] ⊂

(
− 1 − 1

n
, 1 + 1

n

)
for all n, so

[−1, 1] is a subset of their intersection. On the other hand, if x > 1, then x < 1 + 1
n

for
some n ∈ N, so x is not in the intersection. That is, no number bigger than 1 is in the
intersection. Similarly, no number less than −1 is in the intersection. So the intersection is
exactly [−1, 1].

Problem 5. Consider the unbounded closed interval [0,∞). Find an open cover of this
interval that has no finite subcover. (This problem shows that the hypothesis that the interval
is bounded cannot be removed from the Heine-Borel Theorem. Use a simple example, but
justify your answer!)

One possible answer{(−1, n) |n = 0, 1, 2, . . . }. Consider any finite subset, {(−1, ni) | i =
1, 2, . . . , k}. Let N = 1 + max(n1, n2, . . . , nk) Then N is not in any of the sets (−1, ni), so
those sets do not cover all of [0,∞]. That is, there is no finite subset of the open cover that
is itself a cover.

Another possible answer is {(n−1, n+1) |n = 0, 1, 2, . . . }. Note that each of the intervals
in this set covers exactly one integer. A subset containing k open intervals from the open
cover will cover only k integers, so does not cover all of [0,∞).

Problem 6 (Problem 1.4.3 from the textbook). Suppose that {Oα |α ∈ A} is an open
cover of the interval [0, 1). Suppose furthermore that 1 ∈

⋃
α∈AOα. Prove that there is finite

subcover of [0, 1) from {Oα |α ∈ A}. [This question tests your understanding of the proof
of the Heine-Borel Theorem.]

Since 1 ∈
⋃
α∈AO, there is a β ∈ A such that 1 ∈ Oβ. Since Oβ is open, there is an

ε > 0 such that (1 − ε, 1 + ε) ⊆ Oβ. Choose any b ∈ (0, 1) such that 1 − ε < b < 1. The
bounded, closed interval [0, b] is a subset of [1, 0), and so is covered by {Oα |α ∈ A}. By
the Heine-Borel Theorem, there is a finite subcover, {Oα1 ,Oα2 , . . . ,Oαk

}, of [0, b]. But Oβ
covers [b, 1], so {Oβ,Oα1 ,Oα2 , . . . ,Oαk

} is a finite subcover for all of [0, 1).



[For an even easier proof, note that since [0, 1) ⊆
⋃
α∈AOα} and 1 ∈

⋃
α∈AOα}, then

in fact {Oα |α ∈ A} is an open cover of the closed, bounded interval [0, 1]. By the Heine-
Borel theorem, there is a finite subcover of [0, 1], which is automatically a subcover for [0, 1)
because [0, 1) ⊆ [0, 1].]

Problem 7. Let f(x) be a real-valued function that is defined on an interval I. We say that
f is bounded above on I if there is a number M such that f(x) < M for all x ∈ I.

Suppose that f(x) is defined on the bounded, closed interval [a, b]. Suppose that for every
x ∈ [a, b], there is an ε > 0 such that f is bounded above on the interval (x− ε, x+ ε). Use
the Heine-Borel theorem to prove that f is bounded above on [a, b]. (Hint: Compare this to
an example about functions that was done in class.)

For each x ∈ [a, b], let εx > 0 such that f is bounded above on the inteval (x−εx, x+εx),
and let Mx be an upper bound for x on that interval. That is, f(t) < Mx for all t in the
interval (x−εx, x+εx). The collection of open intervals {(x−εx, x+εx) |x ∈ [a, b]} is an open
cover of [a, b]. By the Heine-Borel Theorem, there is a finite subcover, {(x− εxi , x+ εxi) | i =
1, 2, . . . , k}. Let M = max(Mx1 ,Mx2 , . . . ,Mxk). We claim that M is an upper bound for
f on all of [a, b]. Let t ∈ [a, b]. We must show f(t) < M . But there is a j such that
t ∈ (x− εxj , x+ εxj), and it follows that f(t) < Mxj ≤M .


