Problem 1. Prove using only the definition of real numbers as Dedekind cuts and the definitions of + and $<$ in terms of Dedekind cuts: If $\alpha, \beta, \delta \in \mathbb{R}$ and $\alpha<\beta$, then $\alpha+\delta<\beta+\delta$.

Suppose $\alpha, \beta, \delta \in \mathbb{R}$ and $\alpha<\beta$. To show $\alpha+\delta<\beta+\delta$, we must show $\alpha+\delta \subset \beta+\delta$. Let $p \in \alpha+\delta$. We must show $p \in \beta+\delta$. By definition of addition of Dedekind cuts, $p=a+c$ where $a \in \alpha$ and $c \in \delta$. Since $\alpha<\beta$ and $a \in \alpha$, then $a \in \beta$. Since $a \in \beta$ and $c \in \delta$, then $a+c \in \beta+\delta$. Since $p=a+c$, we have shown $p \in \beta+\delta$.

My answer is, in fact, incomplete. To show $\alpha+\delta<\beta+\delta$, we must show that $\alpha+\delta$ is a proper subset of $\beta+\delta$. I have shown $\alpha+\delta \subset \beta+\delta$, but it remains to show $\alpha+\delta \neq \beta+\delta$.

Problem 2 (From Problem 1.3.7 in the textbook). [From Problem 1.3.7 in the textbook] Suppose that $(\mathbb{F},+, \cdot)$ is a field, and $S \subseteq \mathbb{F}$. We say that S is a subfield of \mathbb{F} if it is a field under the same addition and multiplication as \mathbb{F}. To show that S is a subfield of \mathbb{F}, it is enough to show that $0 \in S, 1 \in S$, and S is closed under addition, multiplication, taking additive inverses, and taking multiplicative inverses..

Let $\mathbb{Q}[\sqrt{2}]=\{r+s \sqrt{2} \mid r, s \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R}. (Note: Remember that r and s can be zero in $r+s \sqrt{2}$.)

Let $S=\mathbb{Q}[\sqrt{2}]$.

1. $0 \in S$, since it can be written as $0=0+0 \sqrt{2}$, and $1 \in S$ because $1=1+0 \sqrt{2}$.
2. Let $a, b \in S$. Then $a=r+s \sqrt{2}$ and $b=p+q \sqrt{2}$ for some $r, s, p, q \in \mathbb{Q}$. Then $a+b=(r+s \sqrt{2})+(p+q \sqrt{2})=(r+p)+(s+q) \sqrt{2}$, and $r+p$ and $s+q$ are in \mathbb{Q} because \mathbb{Q} is closed under addition. So, $a+b \in S$. Thus, S is closed under addition.
3. With a and b as in item $2, a b=(r+s \sqrt{2})(p+q \sqrt{2})=\left(r p+r q \sqrt{2}+p s \sqrt{2}+q s(\sqrt{2})^{2}=\right.$ $(r p+2 q s)+(r q+p s) \sqrt{2}$, which is in S because \mathbb{Q} is closed under multiplication and addition. Thus, S is closed under multiplication.
4. Let $a \in S$, where $a=r+s \sqrt{2}$. Then $-a=(-r)+(-s) \sqrt{2}$, which is in S. So, the additive inverse of an element of S is in S.
5. Finally, let $r+s \sqrt{2} \in S$ be a non-zero element of S. Saying it is non-zero means at least one of r or s is non-zero. Note that $r^{2}-2 s^{2} \neq 0$. (Suppose $r^{2}-2 s^{2}=0$. Then $r^{2}=2 s^{2}$. Since one of r and s is non-zero and $r^{2}=2 s^{2}$, they both must be non-zero. But then we have $2=\frac{r^{2}}{s^{2}}$, and $\sqrt{2}=\frac{|r|}{|s|}$, which is impossible because $\sqrt{2}$ is not rational.) We have $(r+s \sqrt{2})\left(\frac{r-s \sqrt{2}}{r^{2}-2 s^{2}}\right)=\frac{r^{2}-2 s^{2}}{r^{2}-2 s^{2}}=1$. So the multiplicative inverse of $r+s \sqrt{2}$ is $\frac{r-s \sqrt{2}}{r^{2}-2 s^{2}}$, which can be written as $\frac{r}{r^{2}-2 s^{2}}+\frac{-s}{r^{2}-2 s^{2}} \sqrt{2}$, which is in S. Thus, the multiplicative inverse of any non-zero element of S is in S.

Problem 3 (Problem 1.3.11 from the textbook). Let $(F,+, \cdot)$ be an ordered field. Use the definition of $x<y$ and the order axioms to prove the transitive property of $<$. That is, show that for any $a, b, c \in \mathbb{F}$, if $a<b$ and $b<c$, then $a<c$. [Note: Since \mathbb{F} is not necessarily \mathbb{R}, you can't use common facts that you know about \mathbb{R}. You can only use the actual definition and axioms.]

Let $a, b, c \in \mathbb{F}$. Suppose $a<b$ and $b<c$. Let P be the set of positive elements of \mathbb{F}. Since $a<b$, then by definition, $b-a \in P$. Similarly, $c-b \in P$. Since P is closed under addition, $(b-a)+(c-b) \in P$. Using properties of addition and additive inverse, this becomes $c-a \in P$. And then, by definition of "less than," $a<c$.

Problem 4. (a) Let $\mathcal{O}_{1}, \mathcal{O}_{2} \ldots, \mathcal{O}_{k}$ be some finite number of open subsets of \mathbb{R}. Prove that their intersection, $\bigcap_{i=1}^{k} \mathcal{O}_{i}$, is open. (Hint: Use the characterization of open that involves $\varepsilon>0$. Start by taking arbitrary $x \in \bigcap_{i=1}^{k} \mathcal{O}_{i}$.)
(b) Show that the intersection of an infinite number of open sets is not necessarily open by finding $\bigcap_{n=1}^{\infty}\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right)$. (Justify your answer!)
(a) A set G is open if for all $x \in G$, there is an $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq G$. Let $x \in \bigcap_{i=1}^{k} \mathcal{O}_{i}$. We must find some $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq \bigcap_{i=1}^{k} \mathcal{O}_{i}$. By definition of intersection, $x \in \mathcal{O}_{i}$ for every i. Since \mathcal{O}_{i} is open, then by definition, we can find $\varepsilon_{i}>0$ such that $\left(x-\varepsilon_{i}, x+\varepsilon_{i}\right) \subseteq \mathcal{O}_{i}$. Let $\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}\right)$. Then $\varepsilon>0$ and for each i, $(x-\varepsilon, x+\varepsilon) \subseteq\left(x-\varepsilon_{i}, x+\varepsilon_{i}\right) \subseteq \mathcal{O}_{i}$. Since this is true for $i=1,2, \ldots, k$, we see that $(x-\varepsilon, x+\varepsilon) \subseteq \bigcap_{i=1}^{k} \mathcal{O}_{i}$.
(b) The intervals $\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right)$ are open sets, but $\bigcap_{n=1}^{\infty}\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right)=[-1,1]$, which is not open, so the intersection of infinitely many open sets does not have to be open. To see that the intersection is $[-1,1]$, note that $[-1,1] \subset\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right)$ for all n, so $[-1,1]$ is a subset of their intersection. On the other hand, if $x>1$, then $x<1+\frac{1}{n}$ for some $n \in \mathbb{N}$, so x is not in the intersection. That is, no number bigger than 1 is in the intersection. Similarly, no number less than -1 is in the intersection. So the intersection is exactly $[-1,1]$.

Problem 5. Consider the unbounded closed interval $[0, \infty)$. Find an open cover of this interval that has no finite subcover. (This problem shows that the hypothesis that the interval is bounded cannot be removed from the Heine-Borel Theorem. Use a simple example, but justify your answer!)

One possible answer $\{(-1, n) \mid n=0,1,2, \ldots\}$. Consider any finite subset, $\left\{\left(-1, n_{i}\right) \mid i=\right.$ $1,2, \ldots, k\}$. Let $N=1+\max \left(n_{1}, n_{2}, \ldots, n_{k}\right)$ Then N is not in any of the sets $\left(-1, n_{i}\right)$, so those sets do not cover all of $[0, \infty]$. That is, there is no finite subset of the open cover that is itself a cover.

Another possible answer is $\{(n-1, n+1) \mid n=0,1,2, \ldots\}$. Note that each of the intervals in this set covers exactly one integer. A subset containing k open intervals from the open cover will cover only k integers, so does not cover all of $[0, \infty)$.

Problem 6 (Problem 1.4.3 from the textbook). Suppose that $\left\{\mathcal{O}_{\alpha} \mid \alpha \in A\right\}$ is an open cover of the interval $[0,1)$. Suppose furthermore that $1 \in \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$. Prove that there is finite subcover of $[0,1)$ from $\left\{\mathcal{O}_{\alpha} \mid \alpha \in A\right\}$. [This question tests your understanding of the proof of the Heine-Borel Theorem.]

Since $1 \in \bigcup_{\alpha \in A} \mathcal{O}$, there is a $\beta \in A$ such that $1 \in \mathcal{O}_{\beta}$. Since \mathcal{O}_{β} is open, there is an $\varepsilon>0$ such that $(1-\varepsilon, 1+\varepsilon) \subseteq \mathcal{O}_{\beta}$. Choose any $b \in(0,1)$ such that $1-\varepsilon<b<1$. The bounded, closed interval $[0, b]$ is a subset of $[1,0)$, and so is covered by $\left\{\mathcal{O}_{\alpha} \mid \alpha \in A\right\}$. By the Heine-Borel Theorem, there is a finite subcover, $\left\{\mathcal{O}_{\alpha_{1}}, \mathcal{O}_{\alpha_{2}}, \ldots, \mathcal{O}_{\alpha_{k}}\right\}$, of $[0, b]$. But \mathcal{O}_{β} covers $[b, 1]$, so $\left\{\mathcal{O}_{\beta}, \mathcal{O}_{\alpha_{1}}, \mathcal{O}_{\alpha_{2}}, \ldots, \mathcal{O}_{\alpha_{k}}\right\}$ is a finite subcover for all of $[0,1)$.
[For an even easier proof, note that since $\left.[0,1) \subseteq \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}\right\}$ and $\left.1 \in \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}\right\}$, then in fact $\left\{\mathcal{O}_{\alpha} \mid \alpha \in A\right\}$ is an open cover of the closed, bounded interval $[0,1]$. By the HeineBorel theorem, there is a finite subcover of $[0,1]$, which is automatically a subcover for $[0,1$) because $[0,1) \subseteq[0,1]$.]

Problem 7. Let $f(x)$ be a real-valued function that is defined on an interval I. We say that f is bounded above on I if there is a number M such that $f(x)<M$ for all $x \in I$.

Suppose that $f(x)$ is defined on the bounded, closed interval $[a, b]$. Suppose that for every $x \in[a, b]$, there is an $\varepsilon>0$ such that f is bounded above on the interval $(x-\varepsilon, x+\varepsilon)$. Use the Heine-Borel theorem to prove that f is bounded above on $[a, b]$. (Hint: Compare this to an example about functions that was done in class.)

For each $x \in[a, b]$, let $\varepsilon_{x}>0$ such that f is bounded above on the inteval $\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right)$, and let M_{x} be an upper bound for x on that interval. That is, $f(t)<M_{x}$ for all t in the interval $\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right)$. The collection of open intervals $\left\{\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right) \mid x \in[a, b]\right\}$ is an open cover of $[a, b]$. By the Heine-Borel Theorem, there is a finite subcover, $\left\{\left(x-\varepsilon_{x_{i}}, x+\varepsilon_{x_{i}}\right) \mid i=\right.$ $1,2, \ldots, k\}$. Let $M=\max \left(M_{x_{1}}, M_{x_{2}}, \ldots, M_{x_{k}}\right)$. We claim that M is an upper bound for f on all of $[a, b]$. Let $t \in[a, b]$. We must show $f(t)<M$. But there is a j such that $t \in\left(x-\varepsilon_{x_{j}}, x+\varepsilon_{x_{j}}\right)$, and it follows that $f(t)<M_{x_{j}} \leq M$.

