Problem 1 (Textbook problem 1.4.12a). Suppose that λ is the least upper bound of some set S, and that λ is not in S. Prove that λ is an accumulation point of S. [Hint: For any $\varepsilon>0$, there is a point $s \in S$ such that $\lambda-\varepsilon<s<\lambda$. Now use the definition of accumulation point to finish the proof.]

Answer:

Suppose that S is a set with least upper bound λ, and $\lambda \notin S$. To show that λ is an accumulation point of S, we need to show that for every $\varepsilon>0$, there is some $s \in S$ with $0<|\lambda-s|<\varepsilon$. Since $\lambda=\operatorname{lub}(S)$, we know that there is some $s \in S$ such that $s>\lambda-\varepsilon$, since otherwise, $\lambda-\varepsilon$ would be a smaller upper bound for S. (This result was also previously proved as a theorem.) Since $s \in S$ and $\lambda \notin S$, we know that $s \neq \lambda$. So in fact, $\lambda-\varepsilon<s<\lambda$, which means $|\lambda-s|>0$ and $|\lambda-s|<\varepsilon$.

Problem 2 (Textbook problems 1.4.9 and 1.4.10). (a) Prove lemma 1.4.5: If x is an accumulation point of a set S and if $\varepsilon>0$, then there is an infinite number of points of S within distance ε of S. [Hint: Suppose that for some $\varepsilon>0$, there were only a finite number of points, $s_{1}, s_{2}, \ldots, s_{k}$, of S within ε of x, but not equal to x. Let $\varepsilon^{\prime}=\min \left(\left|s_{1}-x\right|,\left|s_{2}-x\right|, \ldots,\left|s_{k}-x\right|\right)$. Now, show that no $s \in S$ satisfies $0<|s-x|<\varepsilon^{\prime}$.] (b) Deduce that if S is a finite subset of \mathbb{R}, then S has no accumulation points. [This is trivially a corollary of the lemma.]

Answer:

(a) Suppose x is an accumulation point of S and $\varepsilon>0$. Suppose, for the sake of contradiction, that there are only finitely many points of S within distance ε of x. Let those points be $s_{1}, s_{2}, \ldots, s_{k}$ (where we omit x from the list if it happens to be in S). Let $\varepsilon^{\prime}=\min \left(\left|x-s_{1}\right|,\left|x-s_{2}\right|, \ldots,\left|x-s_{k}\right|\right)$. Note that $\varepsilon^{\prime}>0$. Take any point z that satisfies $0<|x-z|<\varepsilon^{\prime}$. Since $|x-z|<\varepsilon^{\prime}$, while for $i=1,2, \ldots, k,\left|x-s_{i}\right| \geq \varepsilon^{\prime}$, we see that z cannot be one of the points $s_{1}, s_{2}, \ldots, s_{k}$. This means that z is not in S. So, there are no points of S within ε^{\prime} of x (except possibly x itself). This means x is not an accumulation point of S, which is a contradiction. So, there must be infinitely many points of S within ε of x.
(b) If a set S has an accumulation point, then by part (a), there must be infinitely many points of S within distance 1 of x (letting $\varepsilon=1$ in (a)). But that means S is infinite, not finite.

Problem 3. Prove directly from the epsilon-delta definition of limits, that $\lim _{x \rightarrow 5} \frac{2 x+4}{7}=2$.

Answer:

Let $\varepsilon>0$. We want to find $\delta>0$ such that $0<|x-5|<\delta$ implies $\left|\frac{2 x+4}{7}-2\right|<\varepsilon$. Let $\delta=\frac{7 \varepsilon}{2}$. Then for any x satisfying $|x-5|<\delta$, we have $\left|\frac{2 x+4}{7}-2\right|=\left|\frac{(2 x+4)-14}{7}\right|=\left|\frac{2 x-10}{7}\right|=$ $\frac{2}{7}|x-5|<\frac{2}{7} \cdot \frac{7 \varepsilon}{2}=\varepsilon$.

Problem 4. Show directly, without using the product rule for limits, that $\lim _{x \rightarrow 3} x^{3}=27$. (Note that $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.)

Answer:

Let $\varepsilon>0$. We want to find $\delta>0$ such that $0<|x-3|<\delta$ implies $\left|x^{3}-27\right|<\varepsilon$. Let $\delta=\min \left(1, \frac{\varepsilon}{37}\right)$. Then for any x satisfying $|x-3|<\delta$, we have $|x-3|<1$, which means $-1<x-3<1$ or $2<x<4$. So, in particular, $|x|=x<4$. We then have

$$
\begin{aligned}
\left|x^{3}-27\right| & =\left|\left(x^{2}+3 x+9\right)(x-3)\right|=\left|x^{2}+3 x+9\right||x-3| \\
& \leq\left(\left|x^{2}\right|+|3 x|+|9|\right)|x-3| \\
& =\left(|x|^{2}+3|x|+9\right)|x-3| \\
& <\left(4^{2}+3 \cdot 4+9\right)|x-3| \\
& <37 \cdot \frac{\varepsilon}{37} \\
& =\varepsilon
\end{aligned}
$$

Problem 5 (Textbook problem 2.2.9). Suppose that $f(x) \leq 0$ for all x in some open interval containing a, except possibly at a. Suppose that $\lim _{x \rightarrow a} f(x)=L$. Show that $L \leq 0$. [Hint: Assume instead that $L>0$. Let $\varepsilon=L / 2$ and derive a contradiction.]

Answer:

Suppose, for the sake of contradiction, that $\lim _{x \rightarrow a}=L$ where $L>0$. Then $\frac{L}{2}>0$, so we can find $\delta>0$ such that for all x satisfying $0<|x-a|<\delta,|f(x)-L|<\frac{L}{2}$. That is, $-\frac{L}{2}<f(x)-L<\frac{L}{2}$. Adding $\frac{L}{2}, \frac{L}{2}<f(x)<\frac{3 L}{2}$. In particular, we see that for any x satisfying $0<|x-a|<\delta, f(x)>\frac{L}{2}>0$. This contradicts the fact that $f(x) \leq 0$ for all x near enough to a.

Problem 6. This problem gives an alternative proof of the product rule.
(a) Suppose $\lim _{x \rightarrow a} f(x)=L$. Show directly from the definition of limit (without using the product rule) that $\lim _{x \rightarrow a} f(x)^{2}=L^{2}$.
(b) Verify algebraically, by expanding the right-hand side, that $a b=\frac{1}{4}\left((a+b)^{2}-(a-b)^{2}\right)$.
(c) Let's say that the sum, difference, and constant multiple rules for limits have already been proved, in addition to parts (a) and (b) of this problem. Using all that (and not the definition of derivative), prove the product rule for limits.

Answer:

(a) Suppose $\lim _{x \rightarrow a} f(x)=L$. Let $\varepsilon>0$. We want to find $\delta>0$ such that for all x, $0<|x-a|<\delta$ implies $\left|f(x)^{2}-L^{2}\right|<\varepsilon$.
Since $\lim _{x \rightarrow a} f(x)=L$, there is a $\delta_{1}>0$ such that for $0<|x-a|<\delta_{1},|f(x)-L|<1$ and therefore $|f(x)|<|L|+1$. And there is a $\delta_{2}>0$ such that for $0<|x-a|<\delta_{1}$, $|f(x)-L|<\frac{\varepsilon}{2|L|+1}$.
Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Take any x satisfying $0<|x-a|<\delta$. Then we have both $|f(x)| \leq|L|+1$, and $|f(x)-L|<\frac{\varepsilon}{2|L|+1}$. So

$$
\begin{aligned}
\left|f(x)^{2}-L^{2}\right| & =|f(x)+L||f(x)-L| \\
& \leq(|f(x)+|L|)|f(x)-L| \\
& <((|L|+1)+|L|)|f(x)-L| \\
& <(2|L|+1) \frac{\varepsilon}{2|L|+1} \\
& =\varepsilon
\end{aligned}
$$

(b) This is a simple calculation:

$$
\begin{aligned}
\frac{1}{4}\left((a+b)^{2}-(a-b)^{2}\right) & =\frac{1}{4}\left(\left(a^{2}+2 a b+b^{2}\right)-\left(a^{2}-2 a b+b^{2}\right)\right) \\
& =\frac{1}{4}(4 a b) \\
& =a b
\end{aligned}
$$

(c) Suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Then, by part (a) and the sum rule,

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)+g(x))^{2} & =\left(\lim _{x \rightarrow a}(f(x)+(g(x)))^{2}\right. \\
& =\left(\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)\right)^{2} \\
& =(L+M)^{2}
\end{aligned}
$$

Similarly, by part (a) and the difference rule,

$$
\lim _{x \rightarrow a}(f(x)-g(x))^{2}=(L-M)^{2}
$$

And then by the constant multiple and difference rules,

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) g(x) & =\lim _{x \rightarrow a} \frac{1}{4}\left((f(x)+g(x))^{2}-\left(f(x)-g(x)^{2}\right)\right. \\
& =\frac{1}{4}\left((L+M)^{2}-(L-M)^{2}\right) \\
& =L M
\end{aligned}
$$

