Problem 1. Suppose that $f(x)$ is defined and bounded on an open interval containing 0 , except possibly at 0 itself. (That is, there is a number B such that $|f(x)|<B$ for all x in that interval, except possibly $x=0$.) Show that $\lim _{x \rightarrow 0} x f(x)=0$. [Hint: The product rule does not apply here. Use the Squeeze Theorem and the fact that $|x|$ is a continuous function.]

Answer:

On the open interval where f is defined, we have that $|x f(x)|=|x||f(x)|<|x| B$. (Note that B must be greater than zero, or else $|f(x)|<B$ would be impossible.) This inequality is equivalent to $-B|x|<x f(x)<B|x|$. Since $|x|$ is a coninuous function of x and any constant multiple of a continuous function is continuous, we know that the functions $-B|x|$ and $B|x|$ are both continous. So, $\lim _{x \rightarrow 0}(-B|x|)=\lim _{x \rightarrow 0} B|x|=B|0|=0$. Applying the Squeeze Theorem to $-B|x|<x f(x)<B|x|$, we see that $\lim _{x \rightarrow 0} x f(x)=0$.

Problem 2. If $f(x)$ is a continuous function, then we know that $|f(x)|$ is also continuous, since it is a composition of continuous functions. Give a counterexample to show that the converse does not hold. That is, find a function $f(x)$ such that $|f(x)|$ is continuous, but $f(x)$ is not continuous.

Answer:

Let $E(x)=D(x)-\frac{1}{2}$, where $D(x)$ is the Dirichlet function. That is,

$$
E(x)= \begin{cases}1 / 2 & \text { if } x \text { is rational } \\ -1 / 2 & \text { if } x \text { is irrational }\end{cases}
$$

$E(x)$ is not continuous anywhere. But $|E(x)|$ is the constant function, $|E(x)|=\frac{1}{2}$, which is continuous everywhere.

For a simpler example, define

$$
f(x)= \begin{cases}1 & \text { if } x \neq 0 \\ -1 & \text { if } x=0\end{cases}
$$

Then f is not continuous at 0 , but $|f(x)|=1$ for all x and so is continuous.
Problem 3 (Textbook problem 2.5.7). Suppose that f is continuous at a and that $f(a)>0$. Prove that there is a $\delta>0$ such that $f(x)>0$ for all x in the interval $(a-\delta, a+\delta)$.

Answer:

Suppose that f is continuous at $x=a$. Let $\varepsilon=f(a)$, which is greater than zero by assumption. From the definition of continuity, we can find a a $\delta>0$ such that for any x, if $|x-a|<\delta$, then $|f(x)-f(a)|<\varepsilon=f(a)$. This inequality is equivalent to $-f(a)<f(x)-f(a)<f(a)$. Adding $f(a)$ to the inequality $-f(a)<f(x)-f(a)$ gives $0<f(x)$. So for any $x \in(a-\delta, a+\delta)$, we have $f(x)>0$.

Problem 4 (Textbook problem 2.4.10). Prove: If $\lim _{x \rightarrow a^{+}} f(x)=L$ and if $c(x)$ is a function such that $a<c(x)<x$ for all x in some interval (a, b), then $\lim _{x \rightarrow a^{+}} f(c(x))=L$. [Hint: This is confusing but actually easy.]

Answer:

Let $\varepsilon>0$. We must find $\delta>0$ such that for any x, if $0<x-a<\delta$, then $|f(c(x))-L|<\varepsilon$. Since $\lim _{x \rightarrow a^{+}} f(x)=L$, we know that there is a δ such that for any y, if $0<y-a<\delta$, then $|f(y)-L|<\varepsilon\left(^{*}\right)$. We can take $\delta \leq b-a$, so that we know that $a<c(x)<x$ for all x satisfying $a<x<a+\delta$.

Using the same δ, suppose that $0<x-a<\delta$. That is $a<x<a+\delta$, so we know by our assumption that $a<c(x)<x$. So we get that $a<c(x)<x<a+\delta$, which gives $a<c(x)<a+\delta$ and then $0<c(x)-a<\delta$. Applying (*) with $y=c(x)$, we get $|f(c(x))-L|<\varepsilon$, which is what we needed to show.

Problem 5. Let f be a continuous function on the interval $[a, b]$, and suppose that $f(x) \in \mathbb{Q}$ for all $x \in[a, b]$. Show that f is constant on $[a, b]$. [Hint: Use the Intermediate Value Theorem.]

Answer:

Suppose, for the sake of contradiction, that $f(x)$ is not constant. Then there are points x_{1} and x_{2} in $[a, b]$ such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Without loss of generality, we can take $x_{1}<x_{2}$. Now, f is continuous on the interval $\left[x_{1}, x_{2}\right]$, and so satisfies the Intermediate Value Theorem there. Since $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, we know by the density of the irrational numbers that there is some irrational number y between $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$. By the IVT, there must exist some $c \in\left[x_{1}, x_{2}\right]$ such that $f(c)=y$. But this contradicts the assumption that $f(x) \in \mathbb{Q}$ for all $x \in[a, b]$. So, in fact, f must be constant.

Problem 6 (Textbook problem 2.6.7b). Show that $p(x)=x^{4}-x^{3}+x^{2}+x-1$ has at least two roots in the interval $[-1,1]$.

Answer:

Since p is a polynomial, it is continuous everywhere, and the Intermediate Value Theorem will apply to p on any closed, bounded interval. Note that $p(-1)=1, p(0)=-1$, and $p(1)=1$. Since $p(-1)>0>p(0)$, then by the IVT applied to p on the interval $[-1,0]$, $p(a)=0$ for some $a \in(-1,0)$. Since $p(0)<0<p(1)$, then by the IVT applied to p on the interval $[0,1], p(b)=0$ for some $b \in(-1,0)$. So p has at least the roots a and b in the interval $[-1,1]$.

Problem 7. Show that any linear function $f(x)=m x+b$ is uniformly continuous on \mathbb{R}.

Answer:

Let $\varepsilon>0$. We must find $\delta>0$ such that for all $x, y \in \mathbb{R}$, if $|x-y|<\delta$ it follows that $|(m x+b)-(m y+b)|<\varepsilon$. In the case $m \neq 0$, we can let $\delta=\frac{\varepsilon}{|m|}$. Then when $|x-y|<\delta$, we have $|(m x+b)-(m y+b)|=|m x-m y|=|m(x-y)|=|m| \mid x-y]<|m| \delta=|m| \frac{\varepsilon}{|m|}=\varepsilon$. In the case $m=0,|(m x+b)-(m y-b)|=0$, which is alwasy less than ε, so any δ will work.

Problem 8. Let $f(x)=\frac{1}{x}$.
(a) Show that for any $c>0, f(x)$ is uniformly continuous on $[c, \infty)$,
(b) Show that $f(x)$ is not uniformly continuous on $(0, \infty)$.

Answer:

(a) Let $c>0$. To show that $\frac{1}{x}$ is uniformly continuous on $[c, \infty)$, let $\varepsilon>0$. We must show that there is a $\delta>0$ such that for all $x \in[c, \infty)$, if $|x-y|<\delta$, then $\left|\frac{1}{x}-\frac{1}{y}\right|<\varepsilon$. Let $\delta=c^{2} \varepsilon$. Let $x, y \in[c, \infty)$ with $|x-y|<\delta$. Note that since $x \geq c>0$, we have $\frac{1}{x} \leq \frac{1}{c}$. Similarly, $\frac{1}{y} \leq \frac{1}{c}$. So, $\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right|=\frac{1}{x} \cdot \frac{1}{y} \cdot|x-y|<\frac{1}{c} \cdot \frac{1}{c} \cdot \delta=\frac{1}{c^{2}}\left(c^{2} \varepsilon\right)=\varepsilon$.
(b) Letting $\varepsilon=1$ in the definition of uniform continuity, we must show that for any $\delta>0$ there exist $x, y \in(0, \infty)$ such that $|x-y|<\delta$ but $\left|\frac{1}{x}-\frac{1}{y}\right| \geq 1$. In the case $\delta \geq 1$, we can let $x=\frac{1}{2}, y=1$. Then $|x-y|=\frac{1}{2}<\delta$, but $\left|\frac{1}{x}-\frac{2}{x}\right| \geq 1$ since it is in fact $|2-1|=1$. In the case $\delta<1$, let $x=\delta, y=\frac{1}{2} \delta$. Then $|x-y|=\left|\delta-\frac{1}{2} \delta\right|=\frac{1}{2} \delta<\delta=1$, but $\left|\frac{1}{x}-\frac{2}{x}\right|=\left|\frac{1}{\delta}-\frac{2}{\delta}\right|=\frac{1}{\delta}>1$.
[Easier proof, based on student response: Let $\varepsilon=1$. Given $\delta>0$, choose any n with $\frac{1}{n^{2}}<\delta$. Let $x=\frac{1}{n}, y=\frac{1}{n+1}$. Then $|x-y|=\left|\frac{1}{n}-\frac{1}{n+1}\right|=\frac{1}{n^{2}+n}<\frac{1}{n^{2}}<\delta$, and $\left|\frac{1}{x}-\frac{1}{y}\right|=|n-(n+1)|=1$, which is not less than ε.]

Problem 9 (Textbook problem 2.6.12ab). We say that a function f satisfies a Lipschitz condition if there is a positive real number M such that for all $x, y \in \mathbb{R},|f(x)-f(y)|<$ $M|x-y|$. We say that a function f satisfies a Lipschitz condition if there is a positive real number M such that for all $x, y \in \mathbb{R},|f(x)-f(y)|<M|x-y|$. Show that if f satisfies a Lipschitz condition, then f is uniformly continuous on $(-\infty, \infty)$.

Answer:

Suppose that f satisfies the Lipschitz condition $|f(x)-f(y)|<M|x-y|$ for all $x, y \in \mathbb{R}$. Note that M must be strictly positive. Let $\varepsilon>0$. We must find $\delta>0$ such that for all $x, y \in \mathbb{R}$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon$. Let $\delta=\frac{\varepsilon}{M}$. Then if $|x-y|<\delta$, we have that $|f(x)-f(y)|<M|x-y|<M \delta=M \frac{\varepsilon}{M}=\varepsilon$.

