
Math 331 Sample Answers to Homework 4

Problem 1. Suppose that f(x) is defined and bounded on an open interval containing 0,
except possibly at 0 itself. (That is, there is a number B such that |f(x)| < B for all x
in that interval, except possibly x = 0.) Show that lim

x→0
xf(x) = 0. [Hint: The product

rule does not apply here. Use the Squeeze Theorem and the fact that |x| is a continuous
function.]

Answer:

On the open interval where f is defined, we have that |xf(x)| = |x||f(x)| < |x|B. (Note
that B must be greater than zero, or else |f(x)| < B would be impossible.) This inequality is
equivalent to −B|x| < xf(x) < B|x|. Since |x| is a coninuous function of x and any constant
multiple of a continuous function is continuous, we know that the functions −B|x| and B|x|
are both continous. So, lim

x→0
(−B|x|) = lim

x→0
B|x| = B|0| = 0. Applying the Squeeze Theorem

to −B|x| < xf(x) < B|x|, we see that lim
x→0

xf(x) = 0.

Problem 2. If f(x) is a continuous function, then we know that |f(x)| is also continuous,
since it is a composition of continuous functions. Give a counterexample to show that the
converse does not hold. That is, find a function f(x) such that |f(x)| is continuous, but f(x)
is not continuous.

Answer:

Let E(x) = D(x)− 1
2
, where D(x) is the Dirichlet function. That is,

E(x) =

{
1/2 if x is rational

−1/2 if x is irrational

E(x) is not continuous anywhere. But |E(x)| is the constant function, |E(x)| = 1
2
, which is

continuous everywhere.
For a simpler example, define

f(x) =

{
1 if x 6= 0

−1 if x = 0

Then f is not continuous at 0, but |f(x)| = 1 for all x and so is continuous.

Problem 3 (Textbook problem 2.5.7). Suppose that f is continuous at a and that f(a) > 0.
Prove that there is a δ > 0 such that f(x) > 0 for all x in the interval (a− δ, a+ δ).

Answer:

Suppose that f is continuous at x = a. Let ε = f(a), which is greater than zero
by assumption. From the definition of continuity, we can find a a δ > 0 such that for
any x, if |x − a| < δ, then |f(x) − f(a)| < ε = f(a). This inequality is equivalent to
−f(a) < f(x) − f(a) < f(a). Adding f(a) to the inequality −f(a) < f(x) − f(a) gives
0 < f(x). So for any x ∈ (a− δ, a+ δ), we have f(x) > 0.



Problem 4 (Textbook problem 2.4.10). Prove: If lim
x→a+

f(x) = L and if c(x) is a function

such that a < c(x) < x for all x in some interval (a, b), then lim
x→a+

f(c(x)) = L. [Hint: This

is confusing but actually easy.]

Answer:

Let ε > 0. We must find δ > 0 such that for any x, if 0 < x−a < δ, then |f(c(x))−L| < ε.
Since lim

x→a+
f(x) = L, we know that there is a δ such that for any y, if 0 < y − a < δ, then

|f(y) − L| < ε (*). We can take δ ≤ b − a, so that we know that a < c(x) < x for all x
satisfying a < x < a+ δ.

Using the same δ, suppose that 0 < x − a < δ. That is a < x < a + δ, so we know
by our assumption that a < c(x) < x. So we get that a < c(x) < x < a + δ, which
gives a < c(x) < a + δ and then 0 < c(x) − a < δ. Applying (*) with y = c(x), we get
|f(c(x))− L| < ε, which is what we needed to show.

Problem 5. Let f be a continuous function on the interval [a, b], and suppose that f(x) ∈ Q
for all x ∈ [a, b]. Show that f is constant on [a, b]. [Hint: Use the Intermediate Value
Theorem.]

Answer:

Suppose, for the sake of contradiction, that f(x) is not constant. Then there are points
x1 and x2 in [a, b] such that f(x1) 6= f(x2). Without loss of generality, we can take x1 < x2.
Now, f is continuous on the interval [x1, x2], and so satisfies the Intermediate Value Theorem
there. Since f(x1) 6= f(x2), we know by the density of the irrational numbers that there
is some irrational number y between f(x1) and f(x2). By the IVT, there must exist some
c ∈ [x1, x2] such that f(c) = y. But this contradicts the assumption that f(x) ∈ Q for all
x ∈ [a, b]. So, in fact, f must be constant.

Problem 6 (Textbook problem 2.6.7b). Show that p(x) = x4− x3 + x2 + x− 1 has at least
two roots in the interval [−1, 1].

Answer:

Since p is a polynomial, it is continuous everywhere, and the Intermediate Value Theorem
will apply to p on any closed, bounded interval. Note that p(−1) = 1, p(0) = −1, and
p(1) = 1. Since p(−1) > 0 > p(0), then by the IVT applied to p on the interval [−1, 0],
p(a) = 0 for some a ∈ (−1, 0). Since p(0) < 0 < p(1), then by the IVT applied to p on
the interval [0, 1], p(b) = 0 for some b ∈ (−1, 0). So p has at least the roots a and b in the
interval [−1, 1].

Problem 7. Show that any linear function f(x) = mx+ b is uniformly continuous on R.

Answer:

Let ε > 0. We must find δ > 0 such that for all x, y ∈ R, if |x − y| < δ it follows that
|(mx+ b)− (my+ b)| < ε. In the case m 6= 0, we can let δ = ε

|m| . Then when |x− y| < δ, we

have |(mx+ b)− (my + b)| = |mx−my| = |m(x− y)| = |m||x− y] < |m|δ = |m| ε|m| = ε. In

the case m = 0, |(mx+ b)− (my − b)| = 0, which is alwasy less than ε, so any δ will work.



Problem 8. Let f(x) = 1
x
.

(a) Show that for any c > 0, f(x) is uniformly continuous on [c,∞),

(b) Show that f(x) is not uniformly continuous on (0,∞).

Answer:

(a) Let c > 0. To show that 1
x

is uniformly continuous on [c,∞), let ε > 0. We must show
that there is a δ > 0 such that for all x ∈ [c,∞), if |x− y| < δ, then

∣∣ 1
x
− 1

y

∣∣ < ε. Let

δ = c2ε. Let x, y ∈ [c,∞) with |x− y| < δ. Note that since x ≥ c > 0, we have 1
x
≤ 1

c
.

Similarly, 1
y
≤ 1

c
. So,

∣∣ 1
x
− 1

y

∣∣ =
∣∣y−x
xy

∣∣ = 1
x
· 1
y
· |x− y| < 1

c
· 1
c
· δ = 1

c2
(c2ε) = ε.

(b) Letting ε = 1 in the definition of uniform continuity, we must show that for any δ > 0
there exist x, y ∈ (0,∞) such that |x − y| < δ but

∣∣ 1
x
− 1

y

∣∣ ≥ 1. In the case δ ≥ 1,

we can let x = 1
2
, y = 1. Then |x − y| = 1

2
< δ, but | 1

x
− 2

x
| ≥ 1 since it is in fact

|2− 1| = 1. In the case δ < 1, let x = δ, y = 1
2
δ. Then |x− y| = |δ− 1

2
δ| = 1

2
δ < δ = 1,

but
∣∣ 1
x
− 2

x

∣∣ =
∣∣1
δ
− 2

δ

∣∣ = 1
δ
> 1.

[Easier proof, based on student response: Let ε = 1. Given δ > 0, choose any n
with 1

n2 < δ. Let x = 1
n
, y = 1

n+1
. Then |x − y| =

∣∣ 1
n
− 1

n+1

∣∣ = 1
n2+n

< 1
n2 < δ, and∣∣ 1

x
− 1

y

∣∣ = |n− (n+ 1)| = 1, which is not less than ε.]

Problem 9 (Textbook problem 2.6.12ab). We say that a function f satisfies a Lipschitz
condition if there is a positive real number M such that for all x, y ∈ R, |f(x) − f(y)| <
M |x − y|. We say that a function f satisfies a Lipschitz condition if there is a positive
real number M such that for all x, y ∈ R, |f(x)− f(y)| < M |x− y|. Show that if f satisfies
a Lipschitz condition, then f is uniformly continuous on (−∞,∞).

Answer:

Suppose that f satisfies the Lipschitz condition |f(x)− f(y)| < M |x− y| for all x, y ∈ R.
Note that M must be strictly positive. Let ε > 0. We must find δ > 0 such that for all
x, y ∈ R, if |x − y| < δ, then |f(x) − f(y)| < ε. Let δ = ε

M
. Then if |x − y| < δ, we have

that |f(x)− f(y)| < M |x− y| < Mδ = M ε
M

= ε.


