Problem 1. Let (M, d) be a metric space, and let A be a subset of M. Prove that A is open if and only if A is equal to a union of open balls.

Answer:

$\Longrightarrow)$ Suppose that A is an open set in the metric space (M, d). Then for any $x \in A$, there is an $\varepsilon_{x}>0$ such that $B_{\varepsilon_{x}}(x) \subseteq A$. We claim that $\bigcup_{x \in A} B_{\varepsilon_{x}}(x)=A$. But since $B_{\varepsilon_{x}}(x) \subseteq A$, it is also true that $\bigcup_{x \in A} B_{\varepsilon_{x}}(x) \subseteq A$. And for $a \in A$, we have $a \in B_{\varepsilon_{x}}(a) \subseteq \bigcup_{x \in A} B_{\varepsilon_{x}}(x)$, so $A \subseteq \bigcup_{x \in A} B_{\varepsilon_{x}}(x)$.
$\Longleftarrow)$ Suppose that A is a union of open balls, say $A=\bigcup_{\alpha \in B} B_{\varepsilon_{\alpha}}\left(x_{\alpha}\right)$. Since $B_{\varepsilon_{\alpha}}\left(x_{\alpha}\right)$ is an open set, A is a union of open sets, and we know that any union of open sets is open.

Problem 2. Consider the metric space (\mathbb{R}, d), where d is the usual metric on \mathbb{R} For each $n=1,2,3, \ldots$, let \mathcal{O}_{n} be the open set $\mathcal{O}_{n}=\left(1,1+\frac{1}{n}\right)$. Show that $\left\{\mathcal{O}_{n} \mid n=1,2, \ldots\right\}$ is an infinite collection of open sets whose intersection is not open. And find an infinite collection of closed subsets of (\mathbb{R}, d) whose union is not closed.

Answer:

In fact, the intersection of all the \mathcal{O}_{n} is the empty set, which is open. So the problem is incorrect.

If $\mathcal{O}_{n}=\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)$, then $\bigcap_{n=1}^{\infty} \mathcal{O}_{n}=\{1\}$, because 1 is a member of each of the intervals, and for any number $x>1$, there is an $n \in \mathbb{N}$ such that $\frac{1}{n}<x-1$, and therefore $1+\frac{1}{n}<x$ and $x \notin\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)$, and similarly, if $x<0$, then x is not in the intersection. The set $\{1\}$ is not open because it does not contain any open ball about 1 .

For another example, if $\mathcal{O}_{n}=\left(0,1+\frac{1}{n}\right)$, then the intersection is $(0,1]$, which is not open.
For an infinite collection of closed sets whose union is not closed, we can use $\bigcup_{x \in(0,1)}\{x\}$. We have shown that any singleton set, $\{x\}$, is closed. This union is clearly equal to the interval $(0,1)$, which is not closed since it does not include 1 , which is an accumulation point of the set. (For a more traditional example, use $\bigcup_{n=1}^{\infty}\left[0,1-\frac{1}{n}\right]$. This union is equal to $[0,1)$, which is not closed.)

Problem 3. Let X be any non-empty, bounded subset of \mathbb{R}, and let λ be the least upper bound of X. Show that $\lambda \in \bar{X}$. That is, the least upper bound of any set is an element of the closure of that set. [Hint: Use the definition of closure of X as the set of all points of X plus all accumulation points of X, and use Problem 1 from Homework 3.]

Answer:

Let X be a bounded non-empty subset of \mathbb{R}, and let $\lambda=\operatorname{lub}(X)$. We want to show $\lambda \in \bar{X}$. The closure, \bar{X}, is defined to be the set of all points of X plus all accumulation points of X. We consider two cases: either $\lambda \in X$ or $\lambda \notin X$. In the case $\lambda \in X$, then $\lambda \in \bar{X}$ by definition. Consider the case $\lambda \notin X$. We have shown that when the least upper bound of a set is not a member of the set, then it is an accumulation point of that set. So in this case, λ is an accumulation point of X, and that means $\lambda \in \bar{X}$ by definition.

Problem 4. Let $(A, \sigma),(B, \tau)$, and (C, η) be metric spaces. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Suppose that f and g are continuous functions. Prove that their composition, $g \circ f$, is a continuous function.

Answer:

Let $(A, \sigma),(B, \tau)$, and (C, η) be metric spaces. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Suppose that f and g are continuous functions. We want to show that $g \circ f$ is continuous. Let $a \in A$, and let $\varepsilon>0$. We want to find $\delta>0$ such that $B_{\delta}(a) \subseteq B_{\varepsilon}(g(f(a))$.

Since g is continuous at $f(a)$, there is a $\eta>0$ such that $B_{\eta}(f(a)) \subseteq B_{\varepsilon}(g(f(a))$. Since f is continuous at a, there is a $\delta>0$ such that $B_{\delta}(a) \subseteq B_{\eta}(f(a)$. So, we have that $B_{\delta}(a) \subseteq B_{\eta}(f(a)) \subseteq B_{\varepsilon}\left(g(f(a))\right.$, and therefore for this $\delta, B_{\delta}(a) \subseteq B_{\varepsilon}(g(f(a))$.
(Alternative proof: Let \mathcal{O} be open in C. We want to show $(g \circ f)^{-1}(\mathcal{O}\}$ is open in A. Now, $(g \circ f)^{-1}(\mathcal{O}\}=f^{-1}\left(g^{-1}(\mathcal{O})\right)$. Since g is continuous, $g^{-1}(\mathcal{O})$ is open in B. Since f is continuous, $f^{-1}\left(g^{-1}(\mathcal{O})\right)$ is open in A. So we are done.)
(Another alternative proof: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ converge to a in A. We want to show $\left\{g\left(f\left(x_{n}\right)\right)\right\}_{n=1}^{\infty}$ converges in C to $g(f(a))$. Since f is continuous, $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(a)$ in B. Then since g is continuous, $\left\{g\left(f\left(x_{n}\right)\right)\right\}_{n=1}^{\infty}$ converges to $g(f(a))$ in C. So we are done.)

Problem 5. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence in a metric space. Show that its limit is unique. That is, prove the following statement: if $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to y and $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to z, then $y=z$.

Answer:

Suppose that $\lim _{n \rightarrow \infty} x_{n}=x$ and also $\lim _{n \rightarrow \infty} x_{n}=y$. We want to show $x=y$. Suppose, for the sake of contradiction, that $x \neq y$.

Let $\varepsilon=d(x, y) / 2$, which is greater than zero since $x \neq y$. There is an $N_{1} \in \mathbb{N}$ such that for $n \geq N_{1}, d\left(x_{n}, x\right)<\varepsilon$. And there is an $N_{2} \in \mathbb{N}$ such that for $n \geq N_{2}, d\left(x_{n}, y\right)<\varepsilon$. Let $N=\max \left(N_{1}, N_{2}\right)$. We then have both $d\left(x_{N}, x\right)<\varepsilon$ and $d\left(x_{N}, y\right)<\varepsilon$. But that means that

$$
d(x, y) \leq d\left(x, x_{N}\right)+d\left(x_{N}, y\right)<\varepsilon+\varepsilon=d(x, y) / 2+d(x, y) / 2=d(x, y)
$$

The contradiction $d(x, y)<d(x, y)$ proves that $x \neq y$ cannot be the case.
(Alternative direct proof: Show that $d(x, y)<\varepsilon$ for all $\varepsilon>0$, which will prove $d(x, y)=0$ and hence $x=y$. Let $\varepsilon>0$. There is an $N_{1} \in \mathbb{N}$ such that for $n \geq N_{1}, d\left(x_{n}, x\right)<\frac{\varepsilon}{2}$. And there is an $N_{2} \in \mathbb{N}$ such that for $n \geq N_{2}, d\left(x_{n}, y\right)<\frac{\varepsilon}{2}$. Let $N=\max \left(N_{1}, N_{2}\right)$. Then $d(x, y) \leq d\left(x, x_{N}\right)+d\left(x_{N}, y\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.)

