
Math 331, Fall 2022 Sample Answers for Homework 5

Problem 1. Let (M,d) be a metric space, and let A be a subset of M . Prove that A is
open if and only if A is equal to a union of open balls.

Answer:

=⇒) Suppose thatA is an open set in the metric space (M,d). Then for any x ∈ A, there

is an εx > 0 such that Bεx(x) ⊆ A. We claim that
⋃
x∈A

Bεx(x) = A. But since Bεx(x) ⊆ A,

it is also true that
⋃
x∈A

Bεx(x) ⊆ A. And for a ∈ A, we have a ∈ Bεx(a) ⊆
⋃
x∈A

Bεx(x), so

A ⊆
⋃
x∈A

Bεx(x).

⇐=) Suppose that A is a union of open balls, say A =
⋃
α∈B

Bεα(xα). Since Bεα(xα) is

an open set, A is a union of open sets, and we know that any union of open sets is open.

Problem 2. Consider the metric space (R, d), where d is the usual metric on R For each
n = 1, 2, 3, . . . , let On be the open set On =

(
1, 1 + 1

n

)
. Show that {On |n = 1, 2, . . . } is an

infinite collection of open sets whose intersection is not open. And find an infinite collection
of closed subsets of (R, d) whose union is not closed.

Answer:

In fact, the intersection of all the On is the empty set, which is open. So the problem is
incorrect.

If On =
(
1− 1

n
, 1 + 1

n

)
, then

∞⋂
n=1

On = {1}, because 1 is a member of each of the intervals,

and for any number x > 1, there is an n ∈ N such that 1
n
< x− 1, and therefore 1 + 1

n
< x

and x 6∈
(
1− 1

n
, 1 + 1

n

)
, and similarly, if x < 0, then x is not in the intersection. The set {1}

is not open because it does not contain any open ball about 1.
For another example, if On =

(
0, 1 + 1

n

)
, then the intersection is (0, 1], which is not open.

For an infinite collection of closed sets whose union is not closed, we can use
⋃

x∈(0,1)

{x}.

We have shown that any singleton set, {x}, is closed. This union is clearly equal to the
interval (0, 1), which is not closed since it does not include 1, which is an accumulation point

of the set. (For a more traditional example, use
∞⋃
n=1

[
0, 1− 1

n

]
. This union is equal to [0, 1),

which is not closed.)

Problem 3. Let X be any non-empty, bounded subset of R, and let λ be the least upper
bound of X. Show that λ ∈ X. That is, the least upper bound of any set is an element of
the closure of that set. [Hint: Use the definition of closure of X as the set of all points of X
plus all accumulation points of X, and use Problem 1 from Homework 3.]



Answer:

Let X be a bounded non-empty subset of R, and let λ = lub(X). We want to show
λ ∈ X. The closure, X, is defined to be the set of all points of X plus all accumulation
points of X. We consider two cases: either λ ∈ X or λ 6∈ X. In the case λ ∈ X, then λ ∈ X
by definition. Consider the case λ 6∈ X. We have shown that when the least upper bound
of a set is not a member of the set, then it is an accumulation point of that set. So in this
case, λ is an accumulation point of X, and that means λ ∈ X by definition.

Problem 4. Let (A, σ), (B, τ), and (C, η) be metric spaces. Let f : A→ B and g : B → C.
Suppose that f and g are continuous functions. Prove that their composition, g ◦ f , is a
continuous function.

Answer:

Let (A, σ), (B, τ), and (C, η) be metric spaces. Let f : A→ B and g : B → C. Suppose
that f and g are continuous functions. We want to show that g ◦f is continuous. Let a ∈ A,
and let ε > 0. We want to find δ > 0 such that Bδ(a) ⊆ Bε(g(f(a)).

Since g is continuous at f(a), there is a η > 0 such that Bη(f(a)) ⊆ Bε(g(f(a)). Since
f is continuous at a, there is a δ > 0 such that Bδ(a) ⊆ Bη(f(a). So, we have that
Bδ(a) ⊆ Bη(f(a)) ⊆ Bε(g(f(a)), and therefore for this δ, Bδ(a) ⊆ Bε(g(f(a)).

(Alternative proof: Let O be open in C. We want to show (g ◦ f)−1(O} is open in A.
Now, (g ◦ f)−1(O} = f−1

(
g−1(O)

)
. Since g is continuous, g−1(O) is open in B. Since f is

continuous, f−1
(
g−1(O)

)
is open in A. So we are done.)

(Another alternative proof: Let {xn}∞n=1 converge to a inA. We want to show {g(f(xn))}∞n=1

converges in C to g(f(a)). Since f is continuous, {f(xn)}∞n=1 converges to f(a) in B. Then
since g is continuous, {g(f(xn))}∞n=1 converges to g(f(a)) in C. So we are done.)

Problem 5. Let {xn}∞n=1 be a convergent sequence in a metric space. Show that its limit
is unique. That is, prove the following statement: if {xn}∞n=1 converges to y and {xn}∞n=1

converges to z, then y = z.

Answer:

Suppose that lim
n→∞

xn = x and also lim
n→∞

xn = y. We want to show x = y. Suppose, for

the sake of contradiction, that x 6= y.
Let ε = d(x, y)/2, which is greater than zero since x 6= y. There is an N1 ∈ N such that

for n ≥ N1, d(xn, x) < ε. And there is an N2 ∈ N such that for n ≥ N2, d(xn, y) < ε. Let
N = max(N1, N2). We then have both d(xN , x) < ε and d(xN , y) < ε. But that means that

d(x, y) ≤ d(x, xN) + d(xN , y) < ε+ ε = d(x, y)/2 + d(x, y)/2 = d(x, y)

The contradiction d(x, y) < d(x, y) proves that x 6= y cannot be the case.
(Alternative direct proof: Show that d(x, y) < ε for all ε > 0, which will prove d(x, y) = 0

and hence x = y. Let ε > 0. There is an N1 ∈ N such that for n ≥ N1, d(xn, x) < ε
2
. And

there is an N2 ∈ N such that for n ≥ N2, d(xn, y) < ε
2
. Let N = max(N1, N2). Then

d(x, y) ≤ d(x, xN) + d(xN , y) < ε
2

+ ε
2

= ε.)


