Problem 1. Let (M, d) be a metric space, and let $f: M \rightarrow \mathbb{R}$ and $g: M \rightarrow \mathbb{R}$ be two functions from M to \mathbb{R} (where \mathbb{R} has its usual metric). Let $a \in M$. Suppose f and g are continuous at a. Show that the function $f+g$ is continuous at a, where $(f+g)(x)=$ $f(x)+g(x)$ for $x \in M$. [Hint: Just imitate the proof for functions from \mathbb{R} to \mathbb{R}.]

Answer:

Let $\varepsilon>0$. Since f is continuous at a, there is a $\delta_{1}>0$ such that for all $x \in B_{\delta_{1}}^{d}(a)$, $|f(x)-f(a)|<\frac{\varepsilon}{2}$. And since f is continuous at a, there is a $\delta_{2}>0$ such that for all $x \in B_{\delta_{2}}^{d}(a),|g(x)-g(a)|<\frac{\varepsilon}{2}$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. We want to show that for all $x \in B_{\delta}^{d}(a),|(f+g)(x)-(f+g)(a)|<\varepsilon$. Let $x \in B_{\delta}^{d}(a)$. Since $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$, we have both $x \in B_{\delta_{1}}^{d}(a)$ and $x \in B_{\delta_{2}}^{d}(a)$. From that, we get both $|f(x)-f(a)|<\frac{\varepsilon}{2}$ and $|g(x)-g(a)|<\frac{\varepsilon}{2}$, and therefore,

$$
\begin{aligned}
|(f+g)(x)-(f+g)(a)| & =|f(x)+g(x)-f(a)-g(a)| \\
& =|(f(x)-f(a))+(g(x)-g(a))| \\
& \leq|f(x)-f(a)|+|g(x)-g(a)| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

Problem 2. Let X be any set. Consider the metric space (X, δ) where δ is the discrete metric, $\delta: X \times X \rightarrow \mathbb{R}$ by $\delta(a, b)=\left\{\begin{array}{ll}0 & \text { if } a=b \\ 1 & \text { if } a \neq b\end{array}\right.$. Suppose that $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a convergent sequence in the metric space (X, δ). Show that there is a number N such that $x_{N}=x_{N+1}=$ $x_{N+2}=\cdots$. (We say that the sequence is "eventually constant.")

Answer:

Suppose that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to z. Let $\varepsilon=\frac{1}{2}$. Since $\lim _{n \rightarrow \infty} x_{n}=z$, there is a $N \in \mathbb{N}$ such that for all $n \geq N, x_{n} \in B_{\varepsilon}(z)$; that is, $x_{n} \in B_{1 / 2}(z)$. But in the discrete metrix, every point other than z is at distance 1 from z, so $B_{1 / 2}(z)=\{z\}$. Since $x_{n} \in B_{1 / 2}(z)$ for $n \geq N$, it must be that $x_{n}=z$ for $n \geq N$.

Problem 3. Let (M, d) be a metric space and let $X \subseteq M$. The closure, \bar{X} of X can be defined as the set containing all the points of X plus all the accumulation points of X. Show that the closure of X can be characterized as follows: For $z \in M, z \in \bar{X}$ if and only if there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points of X such that $\lim _{n \rightarrow \infty} x_{n}=z$. [Hint: Treat separately the cases where $z \in X$ and where z is an accumulation point of X.]

Answer:

$\Longrightarrow)$ Let $z \in \bar{X}$. We want to find a sequence, $\left\{x_{n}\right\}_{n=1}^{\infty}$, of points of X that convereges to z. Since $z \in \bar{X}$, we know that $z \in X$ or z is an accumulation point of X.

Consider the case $z \in X$. In that case, we can let $x_{n}=z$ for all n, since the constant sequence $\{z\}_{n=1}^{\infty}$ is a sequence of points of X that converges to z.

Now consider the case z is an accumulation point of z. Then, for any $\varepsilon>0$, we know that there is some $a \in X$ such that $d(z, a)<\varepsilon$. For $n \in \mathbb{N}$, let x_{n} be a point of X such that $d\left(z, x_{n}\right)<\frac{1}{n}$. Then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of points of X that converges to z. (To prove convergence, let $\varepsilon>0$. There is an $N \in \mathbb{N}$ such that $\frac{1}{N}<\varepsilon$, by Archimedes' Principle. So for $n \geq N$, we have $d\left(x_{n}, z\right)<\frac{1}{n} \leq \frac{1}{N}<\varepsilon$. That is, for $n \geq N, x_{n} \in B_{\varepsilon}(z)$.)
$\Longleftarrow)$ Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of points of X that coverges to $z \in M$. We want to show that $z \in \bar{X}$.

If there is an $N \in \mathbb{N}$ such that $x_{n}=z$ for all $n>N$, then $z \in X$ because all elements of the sequence are in X, and $z \in \bar{X}$ because $X \subseteq \bar{X}$.

Suppose that no such N exists. We show that in that case, z is an accumulation point of X, which implies $z \in \bar{X}$. To show z is an accumulation point, let $\varepsilon>0$. We must find an $a \in X$ such that $d(z, a)<\varepsilon$ and $a \notin X$. Since $\lim _{n \rightarrow \infty} x_{n}=z$, there is an $N \in \mathbb{N}$ such that $d\left(x_{n}, z\right)<\varepsilon$ for all $n \geq N$. But we have assumed that the sequence is not eventually constant, so there must be some $n_{o}>N$ for which $x_{n_{o}} \neq z$. Let a be that $x_{n_{o}}$. Then we know $d(a, z)<\varepsilon$, and we know $a \in X$ since all terms of the sequence are in X.
(Improved proof for \Longleftarrow : Suppose thatat $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of points of X that coverges to $z \in M$. We want to show that $z \in \bar{X}$.

If $z \in X$, there is nothing to prove, since $X \subseteq \bar{X}$ and so $z \in X$ implies $x \in \bar{X}$.
So suppose $z \notin X$. We show z is an accumulation point of X, which means it is in \bar{X}. To show z is an accumulation point, let $\varepsilon>0$. We must find an $x \in X$ such that $0<d(x, z)<\varepsilon$. Since all of the elements of the sequence are in X, and z is not in X, we know that for all $n, x_{n} \neq z$ and $d\left(x_{n}, z\right)>0$. And since the sequence converges to z, there must be an x_{N} such that $d\left(x_{N}, z\right)<\varepsilon$. Since $x_{N} \in X$, we have found an element x_{N} of X such that $0<d\left(z, x_{N}\right)<\varepsilon$.)

Problem 4 (From textbook problem 3.1.3a). Even though $|x|$ is not differentiable at 0, show that the function $g(x)=\frac{1}{2} x|x|$ is differentiable at 0 , and show that $g^{\prime}(x)=|x|$ for all x. (Thus, $|x|$ has antiderivative $\frac{1}{2} x|x|$.)

Answer:

For $a<0, g^{\prime}(a)=\left.\frac{d}{d x}\right|_{x=a} \frac{1}{2} x|x|=\left.\frac{d}{d x}\right|_{x=a} \frac{1}{2} x(-x)=\left.\frac{d}{d x}\right|_{x=a}\left(-\frac{1}{2} x^{2}\right)=-\frac{1}{2} \cdot 2 a=-a=|a|$. So $g^{\prime}(x)=|x|$ in the case $a<0$.

For $a>0, g^{\prime}(a)=\left.\frac{d}{d x}\right|_{x=a} \frac{1}{2} x|x|=\left.\frac{d}{d x}\right|_{x=a} \frac{1}{2} x(x)=\left.\frac{d}{d x}\right|_{x=a}\left(\frac{1}{2} x^{2}\right)=\frac{1}{2} \cdot 2 a=a=|a|$. So $g^{\prime}(x)=|x|$ in the case $a>0$.

Finally, for the case $a=0$, we must show that $g^{\prime}(0)=\frac{1}{2} 0|0|$, that is $g^{\prime}(0)=0$. But in this case we can calculate

$$
\begin{aligned}
g^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{2} x|x|-0}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{2} x|x|}{x} \\
& =\lim _{x \rightarrow 0} \frac{1}{2}|x|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}|0|, \text { since }|x| \text { is continuous at } 0 \\
& =0
\end{aligned}
$$

Problem 5 (Textbook problem 3.3.10). A fixed point of a function is a point d such that $f(d)=d$. Suppose that f is differentiable everywhere and that $f^{\prime}(x)<1$ for all x. Show that there can be at most one fixed point for f. [Hint: Suppose that a and b are two fixed points of f. Apply the Mean Value Theorem to obtain a contradiction.]

Answer:

Let f be differentiable everywhere and suppose that $f^{\prime}(x)<1$ for all x. We want to show that f has at most one fixed point. Suppose, for the sake of contradiction, that f has more than one fixed point. Let a and b be distinct fixed points of f. That is $a \neq b$, and $f(a)=a$, and $f(b)=b$. By the Mean Value Theorem, there is a c between a and b such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. But $f(b)=b$ and $f(a)=a$, so $f^{\prime}(c)=\frac{b-a}{b-a}=1$. But that contradicts the assumption that $f^{\prime}(x)<1$ for all x.

Problem 6 (From textbook problem 3.3.2). Recall that f satisfies a Lipschitz condition if there is a constant M such that $|f(b)-f(a)| \leq M|b-a|$ for all a, b. Problem \#9 on Homework \#4 proved that any function that satisfies a Libschitz condition is uniformly continuous. Let f be a function that is differentiable on some interval I (not necessarily bouned or closed), and suppose $\left|f^{\prime}(x)\right| \leq M$ for all x, where M is some constant. Use the Mean Value Theorem to prove that $|f(b)-f(a)| \leq M|a-b|$ for all a, b. Conclude that f is uniformly continuous.

Answer:

Suppose f is differentiable on an interval I and $\left|f^{\prime}(x)\right|<M$ for all $x \in I$. Let a and b be distinct points in I, where we can assume witout loss of generality that $a<b$. Since I is an interval, it contains the entire interval $[a, b]$. Since f is continuous on $[a, b]$ and differentiable on (a, b), the Mean Value Theorem applies. That is, there is a $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. Since $c \in I$, we know by assumption that $\left|f^{\prime}(c)\right| \leq M$. That is, $\left|\frac{f(b)-f(a)}{b-a}\right|<M$. Since $|b-a|>0$, this implies $|f(b)-f(a)| \leq M|b-a|$. That is, f satisfies a Lipschitz condition on the interval I with Lipshitz constant M. We conclude by Problem $\# 9$ on Homework \#4 that f is uniformly continuous on I.
(Note: The problem originally assumed, incorrectly, only that $f^{\prime}(c)<M$. If we only have $f^{\prime}(c)<M$, that leaves open the possibility that $f^{\prime}(c)$ is some large negative number, and in that case the statement is not true. For example, if $f(x)=\frac{1}{x}$ for $x>0$, then $f^{\prime}(c)<1$ for all $c>0$, but f is not uniformly continuous on ($0, \infty$). So, we assume that $\left|f^{\prime}(c)\right|<M$ (which implies $M>0$).)

