This homework is due on Monday, October 17.

Problem 1. Let (M, d) be a metric space, and let $f: M \rightarrow \mathbb{R}$ and $g: M \rightarrow \mathbb{R}$ be two functions from M to \mathbb{R} (where \mathbb{R} has its usual metric). Let $a \in M$. Suppose f and g are continuous at a. Show that the function $f+g$ is continuous at a, where $(f+g)(x)=$ $f(x)+g(x)$ for $x \in M$. [Hint: Just imitate the proof for functions from \mathbb{R} to \mathbb{R}.]

Problem 2. Let X be any set. Consider the metric space (X, δ) where δ is the discrete metric, $\delta: X \times X \rightarrow \mathbb{R}$ by $\delta(a, b)=\left\{\begin{array}{ll}0 & \text { if } a=b \\ 1 & \text { if } a \neq b\end{array}\right.$. Suppose that $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a convergent sequence in the metric space (X, δ). Show that there is a number N such that $x_{N}=x_{N+1}=$ $x_{N+2}=\cdots$. (We say that the sequence is "eventually constant.") [Hint: The number is the limit of the sequence.]

Problem 3. Let (M, d) be a metric space and let $X \subseteq M$. The closure, \bar{X} of X can be defined as the set containing all the points of X plus all the accumulation points of X. Show that the closure of X can be characterized as follows: For $z \in M, z \in \bar{X}$ if and only if there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points of X such that $\lim _{n \rightarrow \infty} x_{n}=z$. [Hint: Treat separately the cases where $z \in X$ and where z is an accumulation point of X.]

Problem 4 (From textbook problem 3.1.3a). Even though $|x|$ is not differentiable at 0, show that the function $g(x)=\frac{1}{2} x|x|$ is differentiable at 0 , and show that $g^{\prime}(x)=|x|$ for all x. (Thus, $|x|$ has antiderivative $\frac{1}{2} x|x|$.)

Problem 5 (Textbook problem 3.3.10). A fixed point of a function is a point d such that $f(d)=d$. Suppose that f is differentiable everywhere and that $f^{\prime}(x)<1$ for all x. Show that there can be at most one fixed point for f. [Hint: Suppose that a and b are two fixed points of f. Apply the Mean Value Theorem to obtain a contradiction.]

Problem 6 (From textbook problem 3.3.2). Recall that f satisfies a Lipschitz condition if there is a constant M such that $|f(b)-f(a)| \leq M|b-a|$ for all a, b. Problem \#9 on Homework \#4 proved that any function that satisfies a Libschitz condition is uniformly continuous. Let f be a function that is differentiable on some interval I (not necessarily bouned or closed), and suppose $f^{\prime}(x) \leq M$ for all x, where M is some constant. Use the Mean Value Theorem to prove that $|f(b)-f(a)| \leq M|a-b|$ for all a, b. Conclude that f is uniformly continuous.

