This homework is due on Monday, October 17.

Problem 1. Let (M, d) be a metric space, and let $f: M \to \mathbb{R}$ and $g: M \to \mathbb{R}$ be two functions from M to \mathbb{R} (where \mathbb{R} has its usual metric). Let $a \in M$. Suppose f and gare continuous at a. Show that the function f + g is continuous at a, where (f + g)(x) =f(x) + g(x) for $x \in M$. [Hint: Just imitate the proof for functions from \mathbb{R} to \mathbb{R} .]

Problem 2. Let X be any set. Consider the metric space (X, δ) where δ is the discrete metric, $\delta: X \times X \to \mathbb{R}$ by $\delta(a, b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b \end{cases}$. Suppose that $\{x_i\}_{i=1}^{\infty}$ is a **convergent** sequence in the metric space (X, δ) . Show that there is a number N such that $x_N = x_{N+1} = x_{N+2} = \cdots$. (We say that the sequence is "eventually constant.") [Hint: The number is the limit of the sequence.]

Problem 3. Let (M, d) be a metric space and let $X \subseteq M$. The closure, \overline{X} of X can be defined as the set containing all the points of X plus all the accumulation points of X. Show that the closure of X can be characterized as follows: For $z \in M$, $z \in \overline{X}$ if and only if there is a sequence $\{x_n\}_{n=1}^{\infty}$ of points of X such that $\lim_{n \to \infty} x_n = z$. [Hint: Treat separately the cases where $z \in X$ and where z is an accumulation point of X.]

Problem 4 (From textbook problem 3.1.3a). Even though |x| is not differentiable at 0, show that the function $g(x) = \frac{1}{2}x|x|$ is differentiable at 0, and show that g'(x) = |x| for all x. (Thus, |x| has antiderivative $\frac{1}{2}x|x|$.)

Problem 5 (Textbook problem 3.3.10). A fixed point of a function is a point d such that f(d) = d. Suppose that f is differentiable everywhere and that f'(x) < 1 for all x. Show that there can be at most one fixed point for f. [Hint: Suppose that a and b are two fixed points of f. Apply the Mean Value Theorem to obtain a contradiction.]

Problem 6 (From textbook problem 3.3.2). Recall that f satisfies a Lipschitz condition if there is a constant M such that $|f(b) - f(a)| \leq M|b - a|$ for all a, b. Problem #9 on Homework #4 proved that any function that satisfies a Libschitz condition is uniformly continuous. Let f be a function that is differentiable on some interval I (not necessarily bouned or closed), and suppose $f'(x) \leq M$ for all x, where M is some constant. Use the Mean Value Theorem to prove that $|f(b) - f(a)| \leq M|a - b|$ for all a, b. Conclude that f is uniformly continuous.