Problem 1. We showed that if f is integrable on $[a, b]$, then $|f|$ is also integrable on $[a, b]$. Now, suppose we know that $|g|$ is integrable on $[a, b]$. Is it necessarily true that g is integrable on $[a, b]$? [Hint: Consider a simple modification of the Dirichlet function.]

Answer:

It is not necessarily true that if $|g|$ is integrable, then g is integrable. Recall that the Dirichlet function is defined as $D(x)=\left\{\begin{array}{ll}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{array}\right.$. We know that $D(x)$ is not integrable on $[0,1]$. Define $g(x)=D(x)-\frac{1}{2}=\left\{\begin{array}{ll}1 / 2 & \text { if } x \text { is rational } \\ -1 / 2 & \text { if } x \text { is irrational }\end{array}\right.$. Then $|g|$ is the constant function $\frac{1}{2}$, so $|g|$ is integrable. However, g is not integrable, since if it were then $D(x)=g(x)+\frac{1}{2}$ would also be integrable.

Problem 2. Suppose f is a continuous function on $[a, b]$ and $f(x)>0$ for $x \in[a, b]$. Define $F(x)=\int_{a}^{x} f$. Prove that F is strictly increasing on $[a, b]$. [Hint: This is trivial, using two facts that we have proved.]

Answer:

By the Second Fundamental Theorem of Calculus, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$. So saying $f(x)>0$ means $F^{\prime}(x)>0$. By a corollary to the Mean Value Theorem, F is strictly increasing.
[Or, to prove it directly, suppose $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$. We must show $F\left(x_{1}\right)<$ $F\left(x_{2}\right)$. By the MVT, there is a $c \in\left[x_{1}, x_{2}\right]$ such that $F^{\prime}(c)=\frac{F\left(x_{2}\right)-F\left(x_{1}\right)}{x_{2}-x_{1}}$. Since $F^{\prime}(c)>0$, we have $\frac{F\left(x_{2}\right)-F\left(x_{1}\right)}{x_{2}-x_{1}}>0$. And then, since $x_{2}-x_{1}>0$, we can multiply that inequaltity by $x_{2}-x_{1}$ to get $F\left(x_{2}\right)-F\left(x_{1}\right)>0$. That is, $F\left(x_{2}\right)>F\left(x_{1}\right.$.]
[Or, for a different proof, let $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$. We must show $F\left(x_{1}\right)<F\left(x_{2}\right)$. But $F\left(x_{1}\right)<F\left(x_{2}\right)=\int_{x_{1}}^{x_{2}} f>0$ using the fact that f is continuous and the result in Problem 4c below.]

Problem 3 (Textbook problem 3.4.11). Assume that f is integrable on $[a, b]$. Suppose that J is a real number such that $L(f, P) \leq J \leq U(f, P)$ for every partition P of $[a, b]$. Show that $J=\int_{a}^{b} f$. [Hint: Use properties of sup and inf, that is of lub and glb, and the definition of integrable.]

Answer:

Since f is integrable on $[a, b]$, we know that $\int_{a}^{b} f=\sup _{P} L(f, P)=\inf _{P} U(f, P)$.
Since $J \geq L(f, P)$ for every partition P of $[a, b]$, we see that J is an upper bound for the set $\{L(f, P) \mid P$ is a partition of $[a, b]\}$. So, J is greater than or equal to the sup of this set, which is $\int_{a}^{b} f$. That is, $J \geq \int_{a}^{b} f$.

Since $J \leq U(f, P)$ for every partition P of $[a, b]$, we see that J is a lower bound for the set $\{U(f, P) \mid P$ is a partition of $[a, b]\}$. So, J is less than or equal to the inf of this set, which is $\int_{a}^{b} f$. That is, $J \leq \int_{a}^{b} f$.

So we have $\int_{a}^{b} f \leq J \leq \int_{a}^{b} f$, which means $J=\int_{a}^{b} f$.

Problem 4. Prove the following statements.
(a) Assume that f is an integrable function on $[a, b]$ and $f(x) \geq 0$ for all $x \in[a, b]$. Prove directly, using the definition of the integral, that $\int_{a}^{b} f \geq 0$.
(b) Assume that f and g are integrable on $[a, b]$ and that $f(x) \geq g(x)$ for all $x \in[a, b]$. Prove that $\int_{a}^{b} f \geq \int_{a}^{b} g$, using part (a) and the linearity of the integral (Theorems 3.5.6 and 3.5.7).
(c) Assume that f is continuous on $[a, b]$, that $f(x) \geq 0$ for all $x \in[a, b]$, and that $f(c)>0$, where c is some number in (a, b). Show that $\int_{a}^{b} f>0$. [Hint: A previous homework problem already showed that there is a $\delta>0$ such that $f(x)>\frac{f(c)}{2}$ for all $x \in(c-\delta, c+\delta)$.

Answer:

(a) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be any partition of $[a, b]$, and let $M_{i}=\inf \left\{f(x) \mid x_{i-1} \leq\right.$ $\left.x \leq x_{i}\right\}$, as usual. Since $f(x) \geq 0$ for all $x \in\left[x_{i-1}, x_{i}\right]$, we know that $M_{i} \geq 0$. Therefore $U(f, P)$, which is $\sum_{i=1}^{n} M_{i} \cdot\left(x_{i}-x_{i-1}\right)$, is a sum of non-negative terms. So $U(f, P) \geq 0$. Since this is true for all partitions of $[a, b]$, zero is a lower bound for the set $\{U(f, P) \mid P$ is a partition of $[a, b]\}$, which implies that $\inf _{P} U(f, P) \geq 0$. But $\inf _{P} U(f, P)=\int_{a}^{b} f$, so we have $\int_{a}^{b} f \geq 0$.
(b) We know $f(x) \geq g(x)$, and therefore $f(x)-g(x) \geq 0$, for all $x \in[a, b]$. By part (a), $\int_{a}^{b}(f-g) \geq 0$. By the linearity of the integral, $\int_{a}^{b}(f-g)=\left(\int_{a}^{b} f\right)-\left(\int_{a}^{b} g\right)$. Combining these facts, $\left(\int_{a}^{b} f\right)-\left(\int_{a}^{b} g\right) \geq 0$, and therefore $\int_{a}^{b} f \geq \int_{a}^{b} g$.
(c) By continuity of f at c, there is a $\delta>0$ such that $f(x)>\frac{f(c)}{2}$ for all $x \in(c-\delta, c+\delta)$. [For the proof: Since $\frac{f(c)}{2}>0$ and f is continuous at c, there is a $\delta>0$ such that $|x-c|<\delta$ implies $|f(x)-f(c)|<\frac{f(c)}{2}$. That is, for $x \in(c-\delta, c+\delta)$, we get $-\frac{f(c)}{2}<f(x)-f(c)<\frac{f(c)}{2}$ and therefore $\frac{f(c)}{2}<f(x)$.] By making δ smaller if necessary, we can assume $(c-\delta, c+\delta) \subset[a, b]$. If we let $g(x)$ be the function that is equal to $\frac{f(c)}{2}$ for $c-\delta<x<c+\delta$ and is zero elsewhere, then $f(x) \geq g(x)$ for all $x \in[a, b]$, and $\int_{a}^{b} g=2 \delta \frac{f(c)}{2}>0$. So $\int_{a}^{b} f \geq \int_{a}^{b} g>0$.

Problem 5. Suppose that f and g are continuously differentiable functions on $[a, b]$. So, f, g, f^{\prime} and g^{\prime} are all continuous. Prove the Integration by Parts formula

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

[Hint: One way to do this is to define, for $x \in[a, b], P(x)=\int_{a}^{x} f(t) g^{\prime}(t) d t$ and $Q(x)=$ $\left.f(t) g(t)\right|_{a} ^{x}-\int_{a}^{x} f^{\prime}(t) g(t) d t=f(x) g(x)-f(a) g(a)-\int_{a}^{x} f^{\prime}(t) g(t) d t$. Show that $P^{\prime}(x)=Q^{\prime}(x)$ and $P(a)=Q(a)$, and explain why this means $P(x)=Q(x)$ for all $x \in[a, b]$. Finally, use $P(b)=Q(b)$.

Answer:

Note that since f, g, f^{\prime} and g^{\prime} are all continuous, it follows that $f g^{\prime}$ and $f^{\prime} g$ are also continuous and hence integrable. So, the integrals in this problem are defined.

Let $P(x)$ and $Q(x)$ be as in the hint. By the Second Fundamental Theorem of Calculus, $P^{\prime}(x)=f(x) g^{\prime}(x)$ for all $x \in[a, b]$. Again applying the Second Fundamental Theorem and the prduct and sum rules for differentiation,

$$
\begin{aligned}
Q^{\prime}(x) & =\frac{d}{d x}\left(f(x) g(x)-f(a) g(a)-\int_{a}^{x} f^{\prime}(t) g(t) d x\right) \\
& =\frac{d}{d x}(f(x) g(x))-\frac{d}{d x}(f(a) g(a))-\frac{d}{d x} \int_{a}^{x} f^{\prime}(t) g(t) d x \\
& =\left(f(x) g^{\prime}(x)+f^{\prime}(x) g(x)\right)-0-f^{\prime}(x) g^{\prime}(x) \\
& =f(x) g^{\prime}(x) \\
& =P^{\prime}(x)
\end{aligned}
$$

Since P and Q have the same derivative on $[a, b]$, they differ by a constant on that interval. Since $P(a)=Q(a)=0$, The two functions are the same. Evaluating them at $x=b$ gives

$$
\int_{a}^{b} f(t) g^{\prime}(t) d t=\left.f(t) g(t)\right|_{a} ^{b}-\int_{a}^{b} f(t) g^{\prime}(t) d t
$$

as we wanted to show.

