This homework covers Sectsion 3.4 to 3.6. It is due on Monday, October 24.

Problem 1. We showed that if f is integrable on $[a, b]$, then $|f|$ is also integrable on $[a, b]$. Now, suppose we know that $|g|$ is integrable on $[a, b]$. Is it necessarily true that g is integrable on $[a, b]$? [Hint: Consider a simple modification of the Dirichlet function.]

Problem 2. Suppose f is a continuous function on $[a, b]$ and $f(x)>0$ for $x \in[a, b]$. Define $F(x)=\int_{a}^{x} f$. Prove that F is strictly increasing on $[a, b]$. [Hint: This is trivial, using two facts that have already been proved.]

Problem 3 (Textbook problem 3.4.11). Assume that f is integrable on $[a, b]$. Suppose that J is a real number such that $L(f, P) \leq J \leq U(f, P)$ for every partition P of $[a, b]$. Show that $J=\int_{a}^{b} f$. [Hint: Use properties of sup and inf, that is of lub and glb, and the definition of integrable.]

Problem 4. Prove the following statements.
(a) Assume that f is an integrable function on $[a, b]$ and $f(x) \geq 0$ for all $x \in[a, b]$. Prove directly, using the definition of the integral, that $\int_{a}^{b} f \geq 0$.
(b) Assume that f and g are integrable on $[a, b]$ and that $f(x) \geq g(x)$ for all $x \in[a, b]$. Prove that $\int_{a}^{b} f \geq \int_{a}^{b} g$, using part (a) and the linearity of the integral (Theorems 3.5.6 and 3.5.7).
(c) Assume that f is continuous on $[a, b]$, that $f(x) \geq 0$ for all $x \in[a, b]$, and that $f(c)>0$, where c is some number in (a, b). Show that $\int_{a}^{b} f>0$. [Hint: A previous homework problem already showed that there is a $\delta>0$ such that $f(x)>\frac{f(c)}{2}$ for all $x \in(c-\delta, c+\delta)$.

Problem 5 (Textbook problem 3.6.3). Suppose that f and g are continuously differentiable functions on $[a, b]$. So, f, g, f^{\prime} and g^{\prime} are all continuous. Prove the Integration by Parts formula

$$
\int_{a}^{b} f(x)^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

[Hint: One way to do this is to define, for $x \in[a, b], P(x)=\int_{a}^{x} f(t) g^{\prime}(t) d t$ and $Q(x)=$ $\left.f(t) g(t)\right|_{a} ^{x}-\int_{a}^{x} f^{\prime}(t) g(t) d t=f(x) g(x)-f(a) g(a)-\int_{a}^{x} f^{\prime}(t) g(t) d t$. Show that $P^{\prime}(x)=Q^{\prime}(x)$ and $P(a)=Q(a)$, and explain why this means $P(x)=Q(x)$ for all $x \in[a, b]$.

