
Math 331, Fall 2022 Sample Answers for Homework 8

Problem 1. Let f be the polynomial f(x) = 2− 5x2 + 3x3 − x4. Use Taylor’s Theorem to
write f as a polynomial in powers of (x+ 1). (That is, find the Taylor polynomial, p4,−1(x),
of degree 4 at −1 for f .)

Answer:

Note that since f (5)(x) = 0, the remainder term r4,1(x) is zero. So f is equal to its fourth
degree Taylor polynomial at any point.

f(x) = 2− 5x2 + 3x3 − x4 f(−1) = −7

f ′(x) = −10x + 9x2 − 4x3 f ′(−1) = 23

f ′′(x) = −10 + 18x− 12x2 f ′′(−1) = −40

f ′′′(x) = 18− 24x f ′′′(−1) = 42

f ′′′′(x) = −24 f ′′′′(−1) = −24

Then, p4,−1(x) = f(1) + f ′(1)(x + 1) + 1
2
f ′′(1)(x + 1)2 + 1

6
f ′′′(1)(x + 1)3 + 1

24
f ′′′′(1)(x + 1)4

= −7 + 23(x + 1)− 20(x + 1)2 + 7(x + 1)3 − (x + 1)4

Problem 2. Find the general Taylor polynomial at 0, pn,0(x), for the function ln(x + 1).

Answer:

Let f(x) = ln(x + 1). We need to compute f (k)(0) for all k ≥ 0. We have

f(x) = ln(x + 1) f(0) = 0

f ′(x) = 1
x+1

f ′(0) = 1

f ′′(x) = −1
(x+1)2

f ′′(0) = −1

f ′′′(x) = 2
(x+1)3

f ′′′(0) = 2

f (4)(x) = −3·2
(x+1)4

f (4)(0) = −3 · 2

f (5)(x) = 4!
(x+1)5

f (5)(0) = 4!

f (6)(x) = −5!
(x+1)6

f (6)(0) = −5!

...
...

f (n)(x) = (−1)n+1(n−1)!
(x+1)n

f (k)(0) = (−1)n+1(n− 1)!

We see that f (k)(0)
k!

= (−1)k+1(k−1)!
k!

= (−1)k+1

k
. So for the nth Taylor polynomial at 0, we get

pn,0(x) =
n∑

k=0

f (k)(0)

k!
(x− 0)k =

n∑
k=1

(−1)k+1xk

k



Problem 3 (from 4.2.14 from the textbook). We have shown that the nth Taylor polynomial
for ex at 0 is pn,0(x) =

∑n
k=1

1
n!
xn. Show that e is irrational by using proof by contradiction.

Suppose, for the sake of contradiction, that e = p
q

for some integers p and q.

(a) Use the Lagrange form of the remainder term from Taylor’s Theorem to show that
there is a c ∈ [0, 1] such that p

q
−
(
1
0!

+ 1
1!

+ · · ·+ 1
n!

)
= ec

(n+1)!
.

(b) Multiply both sides of the equation in (a) by n!, and show that left side of the
resulting equation is an integer when n ≥ q.

(c) Show that the right side of the equation that you got in part (b) is not an integer
when n > e. Conclude that e is irrational.

Answer:

(a) Suppose, for the sake of contradiction, that e = p
q
, where p and q are integers.

Since the nth Taylor polynomial for ex at 0 is pn,0(x) =
∑n

k=1
1
k!
xk, and we know that

p
q

= e1 = pn,0(1) + rn,0(1), we see that p
q
−
(
1
0!

+ 1
1!

+ · · ·+ 1
n!

)
is the remainder term, rn,0(1).

Using the Lagrange form of the remainder (rn,0(x) = fn+1(c)
(n+1)!

xn+1), we get that there is a

c ∈ [0, 1] such that rn,0(1) = fn+1(c)
(n+1)!

= ec

(n+1)!
.

(b) Multiplying both sides of the equation by n! gives p · n!
q
−
(
n!
0!

+ n!
1!

+ · · ·+ n!
n!

)
= ec

n+1
.

If n ≥ q, then q is one of the factors in the product n! = 1 · 2 · 3 · · ·n, so n!
q

is also an integer.
All the other terms on the left side are integers, so the left side of the equation is an integer
when n ≥ q.

(c) Note that since 0 ≤ c ≤ 1 and ex is an increasing function, we have ec ≤ e1 = e. If
n > e, then the fraction ec

n+1
is strictly between 0 and 1 and so is not an integer. For any

n > max(q, e), the non-integer on the right side of the equation cannot equal the integer on
the left side. This contradiction shows that e cannot be rational.

Problem 4. Suppose that f is a function defined for all x ≥ 1 and that lim
x→+∞

f(x) = L.

Define a sequence {an}∞n=1 by an = f(n) for all n ∈ N. Prove that lim
n→∞

an = L.

Answer:

Let ε > 0. We must find N ∈ N such that for n ∈ N , n ≥ N implies |an − L| < ε. Since
lim

x→+∞
f(x) = L, there is an M ∈ R such that for x ∈ R, x > M implies |f(x)− L| < ε. Let

N be any integer greater than M , then for an integer n > N , |an − L| = |f(n)− L| < ε.

Problem 5. Prove that if {xn}∞n=1 is an increasing sequence that is not bounded above,
then lim

n→∞
xn = +∞.

Answer:

Let M ∈ R. We want to find an N ∈ N such that for all n ≥ N , xn > M . Since the
sequence is not bounded above, M cannot be an upper bound for {x1, x2, . . . }. So, there is
an an N ∈ N such that xN > M . But for any n > N , we know xn ≥ xN since {xn}∞n=1 is
increasing. So let n > N . Then we have xn ≥ xN > M . That is, xn > M for any n > N , as
we wanted to show.



Problem 6 (From Textbook problem 4.2.5). Let {an}∞n=1 be defined inductively as follows:

a1 = 1, an = 1 +
an−1

4
for n > 1

(a) Show by induction that an is bounded above by 4/3.

(b) Show that {an}∞n=1 is convergent by showing that it is increasing.

(c) Show that lim
n→∞

an = 4/3. [Hint: Use the fact that lim
n→∞

an = lim
n→∞

an+1 and the recursive

definition of an.]

Answer:

(a) an = 1, so an < 4/3 for n = 1. Suppose that we know ak < 4/3 for some k ≥ 1. To

complete the induction, we must show that ak+1 < 4/3. But ak+1 = 1 + ak
4
< 1 + 4/3

4
=

1 + 1/3 = 4/3.

(b) Since an < 4/3, we see that an+1 − an =
(
1 + an

4

)
− an = 1− 3

4
an > 1− 3

4
· 4
3

= 0. So
an+1 > an, which means {an}∞n=1 is increasing. Since the sequence is increasing and
bounded above, it is convergent.

(c) Let z = lim
n→∞

an. Then z = lim
n→∞

an+1 = lim
n→∞

(
1 + an

4

)
= 1 + 1

4
· lim
n→∞

an = 1 + 1
4
z. Solving

for z, we get z − 1
4
z = 1, or 3

4
z = 1, or z = 4

3
.

Problem 7. Suppose that {an}∞n=1 and {bn}∞n=1 are sequences, and {an}∞n=1 is convergent
with lim

n→∞
an = L. Suppose in addition that lim

n→∞
|an − bn| = 0. Show that {bn}∞n=1 is

convergent and lim
n→∞

bn = L.

Answer:

To show lim
n→∞

bn = L, let ε > 0. We must find an N ∈ N such that for all n ≥ N ,

|bn − L| < ε. Since lim
n→∞

an = L, there is an N1 ∈ N such that for all n ≥ N1, |an − L| < ε
2
.

Since lim
n→∞

|an − bn| = 0, there is an N2 ∈ N such that for all n ≥ N2, |an − bn| < ε
2
. Let

N = max(N1, N2). Then for all n ≥ N , we have |bn − L| = |(bn − an) + (an − L)| ≤
|bn − an|+ |an − L| < ε

2
+ ε

2
= ε.


