Problem 1. Let f be the polynomial $f(x)=2-5 x^{2}+3 x^{3}-x^{4}$. Use Taylor's Theorem to write f as a polynomial in powers of $(x+1)$. (That is, find the Taylor polynomial, $p_{4,-1}(x)$, of degree 4 at -1 for f.)

Answer:

Note that since $f^{(5)}(x)=0$, the remainder term $r_{4,1}(x)$ is zero. So f is equal to its fourth degree Taylor polynomial at any point.

$$
\begin{array}{rlrl}
f(x) & =2-5 x^{2}+3 x^{3}-x^{4} & f(-1) & =-7 \\
f^{\prime}(x) & =-10 x+9 x^{2}-4 x^{3} & f^{\prime}(-1) & =23 \\
f^{\prime \prime}(x) & =-10+18 x-12 x^{2} & f^{\prime \prime}(-1) & =-40 \\
f^{\prime \prime \prime}(x) & =18-24 x & f^{\prime \prime \prime}(-1) & =42 \\
f^{\prime \prime \prime \prime}(x) & =-24 & f^{\prime \prime \prime \prime}(-1) & =-24
\end{array}
$$

Then, $p_{4,-1}(x)=f(1)+f^{\prime}(1)(x+1)+\frac{1}{2} f^{\prime \prime}(1)(x+1)^{2}+\frac{1}{6} f^{\prime \prime \prime}(1)(x+1)^{3}+\frac{1}{24} f^{\prime \prime \prime \prime}(1)(x+1)^{4}$

$$
=-7+23(x+1)-20(x+1)^{2}+7(x+1)^{3}-(x+1)^{4}
$$

Problem 2. Find the general Taylor polynomial at $0, p_{n, 0}(x)$, for the function $\ln (x+1)$.

Answer:

Let $f(x)=\ln (x+1)$. We need to compute $f^{(k)}(0)$ for all $k \geq 0$. We have

$$
\begin{array}{rlrl}
f(x) & =\ln (x+1) & f(0) & =0 \\
f^{\prime}(x) & =\frac{1}{x+1} & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =\frac{-1}{(x+1)^{2}} & f^{\prime \prime}(0) & =-1 \\
f^{\prime \prime \prime}(x) & =\frac{2}{(x+1)^{3}} & f^{\prime \prime \prime}(0) & =2 \\
f^{(4)}(x) & =\frac{-3 \cdot 2}{(x+1)^{4}} & f^{(4)}(0) & =-3 \cdot 2 \\
f^{(5)}(x) & =\frac{4!}{(x+1)^{5}} & f^{(5)}(0) & =4! \\
f^{(6)}(x) & =\frac{-5!}{(x+1)^{6}} & f^{(6)}(0) & =-5! \\
\vdots & & \vdots \\
f^{(n)}(x) & =\frac{(-1)^{n+1}(n-1)!}{(x+1)^{n}} & f^{(k)}(0) & =(-1)^{n+1}(n-1)!
\end{array}
$$

We see that $\frac{f^{(k)}(0)}{k!}=\frac{(-1)^{k+1}(k-1)!}{k!}=\frac{(-1)^{k+1}}{k}$. So for the $n^{\text {th }}$ Taylor polynomial at 0 , we get

$$
p_{n, 0}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!}(x-0)^{k}=\sum_{k=1}^{n} \frac{(-1)^{k+1} x^{k}}{k}
$$

Problem 3 (from 4.2.14 from the textbook). We have shown that the $n^{\text {th }}$ Taylor polynomial for e^{x} at 0 is $p_{n, 0}(x)=\sum_{k=1}^{n} \frac{1}{n!} x^{n}$. Show that e is irrational by using proof by contradiction. Suppose, for the sake of contradiction, that $e=\frac{p}{q}$ for some integers p and q.
(a) Use the Lagrange form of the remainder term from Taylor's Theorem to show that there is a $c \in[0,1]$ such that $\frac{p}{q}-\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)=\frac{e^{c}}{(n+1)!}$.
(b) Multiply both sides of the equation in (a) by n !, and show that left side of the resulting equation is an integer when $n \geq q$.
(c) Show that the right side of the equation that you got in part (b) is not an integer when $n>e$. Conclude that e is irrational.

Answer:

(a) Suppose, for the sake of contradiction, that $e=\frac{p}{q}$, where p and q are integers. Since the $n^{\text {th }}$ Taylor polynomial for e^{x} at 0 is $p_{n, 0}(x)=\sum_{k=1}^{n} \frac{1}{k!} x^{k}$, and we know that $\frac{p}{q}=e^{1}=p_{n, 0}(1)+r_{n, 0}(1)$, we see that $\frac{p}{q}-\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)$ is the remainder term, $r_{n, 0}(1)$. Using the Lagrange form of the remainder $\left(r_{n, 0}(x)=\frac{f^{n+1}(c)}{(n+1)!} x^{n+1}\right)$, we get that there is a $c \in[0,1]$ such that $r_{n, 0}(1)=\frac{f^{n+1}(c)}{(n+1)!}=\frac{e^{c}}{(n+1)!}$.
(b) Multiplying both sides of the equation by n ! gives $p \cdot \frac{n!}{q}-\left(\frac{n!}{0!}+\frac{n!}{1!}+\cdots+\frac{n!}{n!}\right)=\frac{e^{c}}{n+1}$. If $n \geq q$, then q is one of the factors in the product $n!=1 \cdot 2 \cdot 3 \cdots n$, so $\frac{n!}{q}$ is also an integer. All the other terms on the left side are integers, so the left side of the equation is an integer when $n \geq q$.
(c) Note that since $0 \leq c \leq 1$ and e^{x} is an increasing function, we have $e^{c} \leq e^{1}=e$. If $n>e$, then the fraction $\frac{e^{c}}{n+1}$ is strictly between 0 and 1 and so is not an integer. For any $n>\max (q, e)$, the non-integer on the right side of the equation cannot equal the integer on the left side. This contradiction shows that e cannot be rational.

Problem 4. Suppose that f is a function defined for all $x \geq 1$ and that $\lim _{x \rightarrow+\infty} f(x)=L$. Define a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ by $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} a_{n}=L$.

Answer:

Let $\varepsilon>0$. We must find $N \in \mathbb{N}$ such that for $n \in N, n \geq N$ implies $\left|a_{n}-L\right|<\varepsilon$. Since $\lim _{x \rightarrow+\infty} f(x)=L$, there is an $M \in \mathbb{R}$ such that for $x \in \mathbb{R}, x>M$ implies $|f(x)-L|<\varepsilon$. Let N be any integer greater than M, then for an integer $n>N,\left|a_{n}-L\right|=|f(n)-L|<\varepsilon$.

Problem 5. Prove that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence that is not bounded above, then $\lim _{n \rightarrow \infty} x_{n}=+\infty$.

Answer:

Let $M \in \mathbb{R}$. We want to find an $N \in \mathbb{N}$ such that for all $n \geq N, x_{n}>M$. Since the sequence is not bounded above, M cannot be an upper bound for $\left\{x_{1}, x_{2}, \ldots\right\}$. So, there is an an $N \in \mathbb{N}$ such that $x_{N}>M$. But for any $n>N$, we know $x_{n} \geq x_{N}$ since $\left\{x_{n}\right\}_{n=1}^{\infty}$ is increasing. So let $n>N$. Then we have $x_{n} \geq x_{N}>M$. That is, $x_{n}>M$ for any $n>N$, as we wanted to show.

Problem 6 (From Textbook problem 4.2.5). Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be defined inductively as follows:

$$
a_{1}=1, \quad a_{n}=1+\frac{a_{n-1}}{4} \text { for } n>1
$$

(a) Show by induction that a_{n} is bounded above by $4 / 3$.
(b) Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent by showing that it is increasing.
(c) Show that $\lim _{n \rightarrow \infty} a_{n}=4 / 3$. [Hint: Use the fact that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}$ and the recursive definition of a_{n}.]

Answer:

(a) $a_{n}=1$, so $a_{n}<4 / 3$ for $n=1$. Suppose that we know $a_{k}<4 / 3$ for some $k \geq 1$. To complete the induction, we must show that $a_{k+1}<4 / 3$. But $a_{k+1}=1+\frac{a_{k}}{4}<1+\frac{4 / 3}{4}=$ $1+1 / 3=4 / 3$.
(b) Since $a_{n}<4 / 3$, we see that $a_{n+1}-a_{n}=\left(1+\frac{a_{n}}{4}\right)-a_{n}=1-\frac{3}{4} a_{n}>1-\frac{3}{4} \cdot \frac{4}{3}=0$. So $a_{n+1}>a_{n}$, which means $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing. Since the sequence is increasing and bounded above, it is convergent.
(c) Let $z=\lim _{n \rightarrow \infty} a_{n}$. Then $z=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(1+\frac{a_{n}}{4}\right)=1+\frac{1}{4} \cdot \lim _{n \rightarrow \infty} a_{n}=1+\frac{1}{4} z$. Solving for z, we get $z-\frac{1}{4} z=1$, or $\frac{3}{4} z=1$, or $z=\frac{4}{3}$.

Problem 7. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are sequences, and $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent with $\lim _{n \rightarrow \infty} a_{n}=L$. Suppose in addition that $\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|=0$. Show that $\left\{b_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} b_{n}=L$.

Answer:

To show $\lim _{n \rightarrow \infty} b_{n}=L$, let $\varepsilon>0$. We must find an $N \in \mathbb{N}$ such that for all $n \geq N$, $\left|b_{n}-L\right|<\varepsilon$. Since $\lim _{n \rightarrow \infty} a_{n}=L$, there is an $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1},\left|a_{n}-L\right|<\frac{\varepsilon}{2}$. Since $\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|=0$, there is an $N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2},\left|a_{n}-b_{n}\right|<\frac{\varepsilon}{2}$. Let $N=\max \left(N_{1}, N_{2}\right)$. Then for all $n \geq N$, we have $\left|b_{n}-L\right|=\left|\left(b_{n}-a_{n}\right)+\left(a_{n}-L\right)\right| \leq$ $\left|b_{n}-a_{n}\right|+\left|a_{n}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

