This homework is due on Wednesday, November 2.
Note that problems 1 and 2 are not proofs and are not eligible for revision.

Problem 1. Let f be the polynomial $f(x)=2-5 x^{2}+3 x^{3}-x^{4}$. Use Taylor's Theorem to write f as a polynomial in powers of $(x+1)$. (That is, find the Taylor polynomial, $p_{4,-1}(x)$, of degree 4 at -1 for f.)

Problem 2. Find the general Taylor polynomial at $0, p_{n, 0}(x)$, for the function $\ln (x+1)$.

Problem 3 (from 4.2.14 from the textbook). We have shown that the $n^{\text {th }}$ Taylor polynomial for e^{x} at 0 is $p_{n, 0}(x)=\sum_{k=1}^{n} \frac{1}{n!} x^{n}$. Show that e is irrational by using proof by contradiction. Suppose, for the sake of contradiction, that $e=\frac{p}{q}$ for some integers p and q.
(a) Use the Lagrange form of the remainder term from Taylor's Theorem to show that there is a $c \in[0,1]$ such that $\frac{p}{q}-\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)=\frac{e^{c}}{(n+1)!}$.
(b) Multiply both sides of the equation in (a) by n !, and show that left side of the resulting equation is an integer when $n \geq q$.
(c) Show that the right side of the equation that you got in part (b) is not an integer when $n>e$. Conclude that e is irrational.

Problem 4. Suppose that f is a function defined for all $x \geq 1$ and that $\lim _{x \rightarrow+\infty} f(x)=L$. Define a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ by $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} a_{n}=L$.

Problem 5. Prove that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence that is not bounded above, then $\lim _{n \rightarrow \infty} x_{n}=+\infty$.

Problem 6 (From Textbook problem 4.2.5). Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be defined inductively as follows:

$$
a_{1}=1, \quad a_{n}=1+\frac{a_{n-1}}{4} \text { for } n>1
$$

(a) Show by induction that a_{n} is bounded above by $4 / 3$.
(b) Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent by showing that it is increasing.
(c) Show that $\lim _{n \rightarrow \infty} a_{n}=4 / 3$. [Hint: Use the fact that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}$ and the recursive definition of a_{n}.]

Problem 7. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are sequences, and $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent with $\lim _{n \rightarrow \infty} a_{n}=L$. Suppose in addition that $\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|=0$. Show that $\left\{b_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} b_{n}=L$.

