
Math 331, Fall 2022 Take-home Test #1 Sample Answers

Problem 1. State a careful definition of lim
x→a+

f(x) = +∞. Then use the definition to prove

directly that lim
x→0+

1

x
= +∞.

Answer:

Define lim
x→a+

f(x) = +∞ if for every M ∈ R, there is a δ > 0 such that for all x, if

0 < x− a < δ, then f(x) is defined and f(x) > M .
To show that lim

x→0+

1
x

= +∞, let M ∈ R. In case M ≤ 0, δ can be arbitrary because

1
x
> 0 for all x > 0. So, consider the case where M > 0. Let δ = 1

M
, and suppose that x

satisfies 0 < x− 0 < δ. We must show that 1
x
> M . But 0 < x− 0 < δ means x is positive

and x < 1
M

. Since M and x are positive, multiplying the inequality by M and dividing by
x gives M < 1

x
, as we wanted to show.

Problem 2. Let X and Y be non-empty, bounded subsets of R. Suppose that for every
x ∈ X and for every y ∈ Y , x < y. Prove that lub(X) ≤ glb(Y ). Is it always true that
lub(X) < glb(Y ) ? (Prove or give a counterexample!)

Answer:

Consider any x ∈ X. Since x < y for all y ∈ Y , x is a lower bound for y. By defnition of
greatest lower bound, this implies that x < glb(Y ). Since that is true for all x ∈ X, glb(Y ) is
an upper bound for X. By definition of least upper bound, this implies that lub(X) < glb(Y ),

It is not always the case that lub(X) < glb(Y ). For a counterexample, let X = [0, 1) and
let Y = (1, 2]. Then x < y for all x ∈ X and y ∈ Y , but lub(X) = glb(Y ),

(Alternative proof: Let ε > 0. We know that there is some x ∈ X such that x >
lub(X)− ε, and there is some y ∈ Y such that y < glb(Y ) + ε. Since x ∈ X and y ∈ Y , we
know by assumption that x < y. So we have lub(X)− ε < x < y < glb(Y ) + ε, and therefore
lub(X) < glb(Y ) + 2ε. Since this is true for any ε > 0, lub(X) ≤ glb(Y ).)

Problem 3. Let A and B be subsets of R. Suppose that x is an accumulation point of the
set A ∪ B. Show that x is an accumulation point of A or x is an accumulation point of B
(or both). (Hint: Try a proof by contradiction.)

Answer:

Suppose, for the sake of contradiction, that x is not an accumulation point of A and x
is not an accumulation point of B. Since x is not an accumulation point of A, there is an
η > 0 such that A ∩ (x − η, x + η) contains no point of A other than, possibly, x. Since x
is not an accumulation point of B, there is a ζ > 0 such that A ∩ (x− ζ, x+ ζ) contains no
point of A other than, possibly, x. Let ε = min(η, ζ). Then (x− ε, x+ ε) contains no point
of A other than x, and it also contains no point of B other than x, That is, (x − ε, x + ε)
contains no point of A ∪ B other than x. By definition of accumulation point, this means
that x is not an accumulation point of A ∪B. But that contradicts the hypothesis.



Problem 4. Let f and g be functions. Then we can define a new function max(f, g) whose
value at x is given by max(f(x), g(x)).

(a) Show that for any numbers a and b, max(a, b) = 1
2

(
|a − b| + a + b

)
. (Hint: Consider

two cases.)

(b) Now, suppose that f and g are continuous on an interval I. Show that the function
max(f, g) is also continuous on I. Be clear about what continuity rules or theorems
you use.

Answer:

(a) Consider the cases a < b and a ≥ b. In the case a < b, max(a, b) = b. We have a−b < 0,
and therefore |a−b| = b−a. So in this case, 1

2

(
|a−b|+a+b

)
= 1

2

(
b−a+a+b

)
= 1

2
(2b) =

b = max(a, b). And in the case a ≥ b, max(a, b) = a. We have a− b > 0, and therefore
|a−b| = a−b. So in this case, 1

2

(
|a−b|+a+b

)
= 1

2

(
a−b+a+b

)
= 1

2
(2a) = a = max(a, b).

(b) By part (a), the function max(f, g) is given by 1
2

(
|f − g| + f + b

)
. We know the

difference of two continuous functions is continuous, the absolute value function is
continuous, and the composition of continuous functions is continuous. So, |f − g| is
a continuous function. Then, since the sum of continuous functions is continuous, we
know |f − g|+ f + g is continuous. Finally, since a constant multiple of a continuous
function is continuous, we get that 1

2

(
|f − g|+f + b

)
. That is, max(f, g) is continuous.

Problem 5. Let S be a subset of R. Recall that S is said to be dense in R if for any open
interval (a, b), the intersection of S with the set (a, b) is not empty. (That is, there is at least
one s ∈ S such that a < s < b.) Prove that S is dense in R if and only if every point of R is
an accumulation point of S.

Answer:

=⇒) Suppose that S is a dense subset of R. Let x ∈ R. We must show that x is an
accumulation point of S. Let ε > 0. We want to find s ∈ S such that 0 < |x− s| < ε. Since
S is dense, there is some s ∈ S such that s is in the open interval (x, x + ε). So, s 6= x
(giving 0 < |x− s), and x < s < x+ ε (giving |x− s| < ε).
⇐=) Suppose that every point of R is an accumulation point of S. We must show S

is dense in R. Let a, b ∈ R with a < b. We must find some s ∈ S such that a < s < b.
Let x = b+a

2
, the midpoint of (a, b), and let ε = b−a

2
, half the length of (a, b). Since x is an

accumulation point of S, there is some s ∈ S such that 0 < |x− s| < ε. So
∣∣s− b+a

2

∣∣ < b−a
2

.
This is equivalent to

−b− a
2

< s− b+ a

2
<
b− a

2
b+ a

2
− b− a

2
< s <

b+ a

2
+
b− a

2
b+ a− b+ a

2
< s <

b+ a+ b− a
2

a < s < b

which is what we needed to show.



Problem 6. Let f(x) be a continuous function on a closed, bounded interval [a, b]. In class,
we used uniform continuity of f to show that f is bounded above. However, it is possible to
prove that directly using the Heine-Borel Theorem. Follow this outline to prove that there
is a number M such that f(x) ≤M for all x ∈ [a, b]:

� Show that for any z ∈ [a, b], there is a δz > 0 and a number Mz such that f(x) ≤ Mz

for all x ∈ (z− δz, z+ δz). (This is an easy consequence of continuity. Just let ε = 1 in
the definition of continuity at z, and get f(x) < f(z) + 1 for all x near enough to z.)

� Define an open cover of [a, b] consisting of the intervals (z− δz, z+ δz), for all z ∈ [a, b].
(State why it is a cover.)

� Apply the Heine-Borel Theroem, and finish the proof.

Answer:

Suppose f is continuous on [a, b]. Let z ∈ [a, b]. By definition of continuity at z, letting
ε in that definition equal 1, there is a δz > 0 such that for all x ∈ [a, b], if |x − z| < δz,
then |f(x) − f(z)| < 1. Now, |f(x) − f(z)| < 1 is equivalent to −1 < f(x) − f(z) < 1, or
f(z)−1 < f(x) < f(z)+1. Note in particular that f(x) < f(z)+1 for all x ∈ (z−δx, z+δz).
Let Mz = f(x) + 1.

The set C = {(z − δx, z + δz) : z ∈ [a, b]} is an open cover of [a, b] since every c ∈ [a, b] is
in the open set (c− δc, c+ δc), which is one of the sets in C .

By the Heine-Borel Theorem, there is a finite subcover of [a, b] from C . Let that subcover
be D = {(zi− δzi , zi + δzi) : i = 1, 2, . . . , k}, and let M = max(Mz1 ,Mz2 , . . . ,Mzk). We must
show that f(x) ≤M for all x ∈ [a, b]. Let x ∈ [a, b]. Since D covers [a, b], x ∈ (zi−δzi , zi+δzi)
for some i, so we have f(x) < Mzi ≤M .

Problem 7. Suppose that f(x) and g(x) are uniformly continuous on the interval I (which
is not necessarily closed or bounded). Show directly from the definition of uniform continuity
that f(x) + g(x) is uniformly continuous on I.

Answer:

Suppose f and g are uniformly continuous on an interval I. We want to show that f + g
is uniformly continuous on I. Let ε > 0.

Since f is uniformly continuous on I, there is a δ1 > 0 such that for every x, y ∈ I, if
|x− y| < δ1, then |f(x)− f(x)| < ε

2
.

Since g is uniformly continuous on I, there is a δ2 > 0 such that for every x, y ∈ I, if
|x− y| < δ2, then |g(x)− g(x)| < ε

2
.

Let δ = min(δ1, δ2). Let x, y ∈ I such that |x−y| < δ1. We then have both |f(x)−f(y)| <
ε
2

and |g(x)− g(y)| < ε
2
. So∣∣(f(x) + g(x))− (f(y) + g(y))

∣∣ =
∣∣(f(x)− f(y)) + (g(x)− g(y))

∣∣
≤ (|f(x)− f(y)|+ |g(x)− g(y)|

<
ε

2
+
ε

2
= ε

This shows that f + g is uniformly continuous on I.


