Problem 1. State a careful definition of $\lim _{x \rightarrow a^{+}} f(x)=+\infty$. Then use the definition to prove directly that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$.

Answer:

Define $\lim _{x \rightarrow a^{+}} f(x)=+\infty$ if for every $M \in \mathbb{R}$, there is a $\delta>0$ such that for all x, if $0<x-a<\delta$, then $f(x)$ is defined and $f(x)>M$.

To show that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$, let $M \in \mathbb{R}$. In case $M \leq 0, \delta$ can be arbitrary because $\frac{1}{x}>0$ for all $x>0$. So, consider the case where $M>0$. Let $\delta=\frac{1}{M}$, and suppose that x satisfies $0<x-0<\delta$. We must show that $\frac{1}{x}>M$. But $0<x-0<\delta$ means x is positive and $x<\frac{1}{M}$. Since M and x are positive, multiplying the inequality by M and dividing by x gives $M<\frac{1}{x}$, as we wanted to show.

Problem 2. Let X and Y be non-empty, bounded subsets of \mathbb{R}. Suppose that for every $x \in X$ and for every $y \in Y, x<y$. Prove that $\operatorname{lub}(X) \leq g l b(Y)$. Is it always true that $l u b(X)<g l b(Y) ?$ (Prove or give a counterexample!)

Answer:

Consider any $x \in X$. Since $x<y$ for all $y \in Y, x$ is a lower bound for y. By defnition of greatest lower bound, this implies that $x<g l b(Y)$. Since that is true for all $x \in X, g l b(Y)$ is an upper bound for X. By definition of least upper bound, this implies that $l u b(X)<g l b(Y)$,

It is not always the case that $l u b(X)<g l b(Y)$. For a counterexample, let $X=[0,1)$ and let $Y=(1,2]$. Then $x<y$ for all $x \in X$ and $y \in Y$, but $\operatorname{lub}(X)=g l b(Y)$,
(Alternative proof: Let $\varepsilon>0$. We know that there is some $x \in X$ such that $x>$ $\operatorname{lub}(X)-\varepsilon$, and there is some $y \in Y$ such that $y<g l b(Y)+\varepsilon$. Since $x \in X$ and $y \in Y$, we know by assumption that $x<y$. So we have $\operatorname{lub}(X)-\varepsilon<x<y<g l b(Y)+\varepsilon$, and therefore $l u b(X)<g l b(Y)+2 \varepsilon$. Since this is true for any $\varepsilon>0, \operatorname{lub}(X) \leq g l b(Y)$.)

Problem 3. Let A and B be subsets of \mathbb{R}. Suppose that x is an accumulation point of the set $A \cup B$. Show that x is an accumulation point of A or x is an accumulation point of B (or both). (Hint: Try a proof by contradiction.)

Answer:

Suppose, for the sake of contradiction, that x is not an accumulation point of A and x is not an accumulation point of B. Since x is not an accumulation point of A, there is an $\eta>0$ such that $A \cap(x-\eta, x+\eta)$ contains no point of A other than, possibly, x. Since x is not an accumulation point of B, there is a $\zeta>0$ such that $A \cap(x-\zeta, x+\zeta)$ contains no point of A other than, possibly, x. Let $\varepsilon=\min (\eta, \zeta)$. Then $(x-\varepsilon, x+\varepsilon)$ contains no point of A other than x, and it also contains no point of B other than x, That is, $(x-\varepsilon, x+\varepsilon)$ contains no point of $A \cup B$ other than x. By definition of accumulation point, this means that x is not an accumulation point of $A \cup B$. But that contradicts the hypothesis.

Problem 4. Let f and g be functions. Then we can define a new function $\max (f, g)$ whose value at x is given by $\max (f(x), g(x))$.
(a) Show that for any numbers a and $b, \max (a, b)=\frac{1}{2}(|a-b|+a+b)$. (Hint: Consider two cases.)
(b) Now, suppose that f and g are continuous on an interval I. Show that the function $\max (f, g)$ is also continuous on I. Be clear about what continuity rules or theorems you use.

Answer:

(a) Consider the cases $a<b$ and $a \geq b$. In the case $a<b, \max (a, b)=b$. We have $a-b<0$, and therefore $|a-b|=b-a$. So in this case, $\frac{1}{2}(|a-b|+a+b)=\frac{1}{2}(b-a+a+b)=\frac{1}{2}(2 b)=$ $b=\max (a, b)$. And in the case $a \geq b, \max (a, b)=a$. We have $a-b>0$, and therefore $|a-b|=a-b$. So in this case, $\frac{1}{2}(|a-b|+a+b)=\frac{1}{2}(a-b+a+b)=\frac{1}{2}(2 a)=a=\max (a, b)$.
(b) By part (a), the function $\max (f, g)$ is given by $\frac{1}{2}(|f-g|+f+b)$. We know the difference of two continuous functions is continuous, the absolute value function is continuous, and the composition of continuous functions is continuous. So, $|f-g|$ is a continuous function. Then, since the sum of continuous functions is continuous, we know $|f-g|+f+g$ is continuous. Finally, since a constant multiple of a continuous function is continuous, we get that $\frac{1}{2}(|f-g|+f+b)$. That is, $\max (f, g)$ is continuous.

Problem 5. Let S be a subset of \mathbb{R}. Recall that S is said to be dense in \mathbb{R} if for any open interval (a, b), the intersection of S with the set (a, b) is not empty. (That is, there is at least one $s \in S$ such that $a<s<b$.) Prove that S is dense in \mathbb{R} if and only if every point of \mathbb{R} is an accumulation point of S.

Answer:

$\Longrightarrow)$ Suppose that S is a dense subset of \mathbb{R}. Let $x \in \mathbb{R}$. We must show that x is an accumulation point of S. Let $\varepsilon>0$. We want to find $s \in S$ such that $0<|x-s|<\varepsilon$. Since S is dense, there is some $s \in S$ such that s is in the open interval $(x, x+\varepsilon)$. So, $s \neq x$ (giving $0<\mid x-s$), and $x<s<x+\varepsilon$ (giving $|x-s|<\varepsilon$).
$\Longleftarrow)$ Suppose that every point of \mathbb{R} is an accumulation point of S. We must show S is dense in \mathbb{R}. Let $a, b \in \mathbb{R}$ with $a<b$. We must find some $s \in S$ such that $a<s<b$. Let $x=\frac{b+a}{2}$, the midpoint of (a, b), and let $\varepsilon=\frac{b-a}{2}$, half the length of (a, b). Since x is an accumulation point of S, there is some $s \in S$ such that $0<|x-s|<\varepsilon$. So $\left|s-\frac{b+a}{2}\right|<\frac{b-a}{2}$. This is equivalent to

$$
\begin{aligned}
-\frac{b-a}{2} & <s-\frac{b+a}{2}<\frac{b-a}{2} \\
\frac{b+a}{2}-\frac{b-a}{2} & <s<\frac{b+a}{2}+\frac{b-a}{2} \\
\frac{b+a-b+a}{2} & <s<\frac{b+a+b-a}{2} \\
a & <s<b
\end{aligned}
$$

which is what we needed to show.

Problem 6. Let $f(x)$ be a continuous function on a closed, bounded interval $[a, b]$. In class, we used uniform continuity of f to show that f is bounded above. However, it is possible to prove that directly using the Heine-Borel Theorem. Follow this outline to prove that there is a number M such that $f(x) \leq M$ for all $x \in[a, b]$:

- Show that for any $z \in[a, b]$, there is a $\delta_{z}>0$ and a number M_{z} such that $f(x) \leq M_{z}$ for all $x \in\left(z-\delta_{z}, z+\delta_{z}\right)$. (This is an easy consequence of continuity. Just let $\varepsilon=1$ in the definition of continuity at z, and get $f(x)<f(z)+1$ for all x near enough to z.)
- Define an open cover of $[a, b]$ consisting of the intervals $\left(z-\delta_{z}, z+\delta_{z}\right)$, for all $z \in[a, b]$. (State why it is a cover.)
- Apply the Heine-Borel Theroem, and finish the proof.

Answer:

Suppose f is continuous on $[a, b]$. Let $z \in[a, b]$. By definition of continuity at z, letting ε in that definition equal 1 , there is a $\delta_{z}>0$ such that for all $x \in[a, b]$, if $|x-z|<\delta_{z}$, then $|f(x)-f(z)|<1$. Now, $|f(x)-f(z)|<1$ is equivalent to $-1<f(x)-f(z)<1$, or $f(z)-1<f(x)<f(z)+1$. Note in particular that $f(x)<f(z)+1$ for all $x \in\left(z-\delta_{x}, z+\delta_{z}\right)$. Let $M_{z}=f(x)+1$.

The set $\mathscr{C}=\left\{\left(z-\delta_{x}, z+\delta_{z}\right): z \in[a, b]\right\}$ is an open cover of $[a, b]$ since every $c \in[a, b]$ is in the open set $\left(c-\delta_{c}, c+\delta_{c}\right)$, which is one of the sets in \mathscr{C}.

By the Heine-Borel Theorem, there is a finite subcover of $[a, b]$ from \mathscr{C}. Let that subcover be $\mathscr{D}=\left\{\left(z_{i}-\delta_{z_{i}}, z_{i}+\delta_{z_{i}}\right): i=1,2, \ldots, k\right\}$, and let $M=\max \left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{k}}\right)$. We must show that $f(x) \leq M$ for all $x \in[a, b]$. Let $x \in[a, b]$. Since \mathscr{D} covers $[a, b], x \in\left(z_{i}-\delta_{z_{i}}, z_{i}+\delta_{z_{i}}\right)$ for some i, so we have $f(x)<M_{z_{i}} \leq M$.

Problem 7. Suppose that $f(x)$ and $g(x)$ are uniformly continuous on the interval I (which is not necessarily closed or bounded). Show directly from the definition of uniform continuity that $f(x)+g(x)$ is uniformly continuous on I.

Answer:

Suppose f and g are uniformly continuous on an interval I. We want to show that $f+g$ is uniformly continuous on I. Let $\varepsilon>0$.

Since f is uniformly continuous on I, there is a $\delta_{1}>0$ such that for every $x, y \in I$, if $|x-y|<\delta_{1}$, then $|f(x)-f(x)|<\frac{\varepsilon}{2}$.

Since g is uniformly continuous on I, there is a $\delta_{2}>0$ such that for every $x, y \in I$, if $|x-y|<\delta_{2}$, then $|g(x)-g(x)|<\frac{\varepsilon}{2}$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Let $x, y \in I$ such that $|x-y|<\delta_{1}$. We then have both $|f(x)-f(y)|<$ $\frac{\varepsilon}{2}$ and $|g(x)-g(y)|<\frac{\varepsilon}{2}$. So

$$
\begin{aligned}
|(f(x)+g(x))-(f(y)+g(y))| & =|(f(x)-f(y))+(g(x)-g(y))| \\
& \leq(|f(x)-f(y)|+|g(x)-g(y)| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

This shows that $f+g$ is uniformly continuous on I.

