
Math 331, Fall 2022 Take-home Test #2

Problem 1. (a) Suppose that the function F (x) is differentiable at a. Show directly from
the definition of derivative that the function G(x) = F (x)2 is differentiable at a and G′(a) =
2F (a)F ′(a). [Hint: You only need to factor F (x)2 − F (a)2 in the definition.]

(b) We know that f(x)g(x) = 1
4

(
(f(x)+g(x))2−(f(x)−g(x))2

)
from a previous homework

problem . Using only this fact, the result from part (a), and the sum, difference, and constant
multiple rules for derivatives, find the formula for the derivative of f(x)g(x),

Answer:

(a) Since F is differentiable at a, limx→a
F (x)−F (a)

x−a = F ′(a). Furthermore, differentiability
implies continuity, so F it is continuous at a, meaning limx→a F (x) = F (a). Therefore,

G′(a) = lim
x→a

F (x)2 − F (a)2

x− a

= lim
x→a

(
F (x) + F (a)

)(
F (x)− F (a)

)
x− a

= lim
x→a

(
F (x) + F (a)

)F (x)− F (a)

x− a

=
(

lim
x→a

F (x) + lim
x→a

F (a)
)
· lim
x→a

F (x)− F (a)

x− a

=
(
F (a) + F (a)

)
· F ′(a)

= 2F (a)F ′(a)

(b) We can then compute(
f(x)g(x)

)′
=
(1

4
((f(x) + g(x))2 − (f(x)− g(x))2)

)′
=

1

4

(
(f(x) + g(x))2 − (f(x)− g(x))2

)′
=

1

4

((
(f(x) + g(x))2

)′ − ((f(x)− g(x))2
)′)

=
1

4

((
2(f(x) + g(x))(f(x) + g(x))′

)
−
(
2(f(x)− g(x))(f(x)− g(x))′

))
=

1

4

((
2(f(x) + g(x))(f ′(x) + g′(x))

)
−
(
2(f(x)− g(x))(f ′(x)− g′(x))

))
=

1

4

((
2f(x)f ′(x) + 2f(x)g′(x) + 2g(x)f ′(x) + 2g(x)g′(x)

)
−(

2f(x)f ′(x)− 2f(x)g′(x)− 2g(x)f ′(x) + 2g(x)g′(x)
))

=
1

4

(
4f(x)g′(x) + 4g(x)f ′(x)

)
= f(x)g′(x) + g(x)f ′(x)



Problem 2. Let f and g be differentiable functions on [a, b]. Suppose that f(a) = g(a)
and f ′(x) > g′(x) for all x ∈ (a, b). Prove that f(b) > g(b). [Hint: Consider the function
h(x) = f(x)− g(x) and apply the Mean Value Theorem.]

Answer:

Let h(x) = f(x)− g(x). Note that h(a) = f(a)− g(a) = 0, and h′(x) = f ′(x)− g′(x) > 0
for all x ∈ (a, b). h is differentiable on [a, b], so the Mean Value Theorem applies to h. That

is, there is a c ∈ (a, b) such that h′(c) = h(b)−h(a)
b−a . We know b − a > 0 and h′(c) > 0, so

h(b)−h(a) = (b−a)f ′(c) > 0. Since h(a) = 0, we get that h(b) > 0. That is, f(b)−g(b) > 0,
and f(b) > g(b).

Problem 3. Let f be an integrable function on [a, b]. Suppose that A ≤ f(x) ≤ B for all

x ∈ [a, b]. Show, from the definition of the integral, that A · (b − a) ≤
∫ b

a
f ≤ B · (b − a).

(Hint: Use the trivial partition P = {x0, x1} where x0 = a, x1 = b.)

Answer:

We know that for any partition P of [a, b], L(f, P ) ≤
∫ b

a
≤ U(f, P ). Consider the trivial

partition P = {x0, x1} where x0 = a, x1 = b. Then L(f, P ) = m · (x1 − x0) = m · (b − a),
where m = inf{f(x) | x ∈ [a, b]}, and U(f, P ) = M · (x1 − x0) = M · (b − a), where
M = sup{f(x) | x ∈ [a, b]}.

Saying A ≤ f(x) for all x ∈ [a, b] means that A is a lower bound for {f(x) | x ∈ [a, b]}.
So A ≤ inf{f(x) | x ∈ [a, b]}. That is A ≤ m. Similarly, B is an upper bound for
{f(x) | x ∈ [a, b]}, and B ≥M . So we have

A · (b− a) ≤ m · (b− a) = L(f, P ) ≤
∫ b

a

f ≤ U(f, P ) = M · (b− a) ≤ B · (b− a)

Problem 4. Suppose that f is integrable on [a, b]. Define F (x) =
∫ x

a
f for x ∈ [a, b], and

define G(x) =
∫ x

a
F for x ∈ [a, b]. How do we know

∫ x

a
F exists? Show that G is differentiable

on [a, b].

Answer:

We know that F(x) is continuous [Theorem 3.6.1] and therefore integrable [Theorem 3.5.1]
on [a, x] for any x ∈ (a, b]. That is,

∫ x

a
F exists.

Furthermore, since F is a continuous function on [a, b], and G(x) =
∫ x

a
F for x ∈ [a, b],

we know by the Second Fundamental Theorem of Calculus that G is differentiable on [a, b]
(and that G′(x) = F (x)).

Problem 5. Let
∑∞

k=1 ak be a convergent series of non-negative terms. Prove that the

series
∑∞

k=1 a
2
k also converges. [Hints:

(
1
2

)2
= 1

4
, and remember that you only need to show∑∞

k=N a2k converges for some N .]



Answer:

Since
∑∞

k=1 ak converges, we know that limn→∞ ak = 0. By the definition of limit of a
sequence (taking ε = 1 in that definition), there is an N ∈ N such that for any k ≥ N ,
|ak − 0| < 1. Now, ak is non-negative, so we have 0 ≤ ak < 1 for all k ≥ N . Furthermore,
0 ≤ ak < 1 implies a2k ≤ ak. We know that

∑∞
k=N ak converges because

∑∞
k=1 ak converges.

By the comparison test, since a2k ≤ ak for k ≥ N , we get that
∑∞

k=N a2k converges. Finally,
that implies that

∑∞
k=1 a

2
k converges

Problem 6 (Textbook problem 4.5.7, 8). (a) Let {fn}∞n=1 be a sequence of functions defined
on an interval I. Assume that each fn is bounded; that is, there are constants Mn such that
|fn(x)| ≤Mn for all x ∈ I. Prove: If {fn}∞n=1 converges uniformly to f , then f must also be
bounded on I.

(b) Show that the hypothesis of uniform convergence is necessary by finding a sequence
of bounded functions that converges pointwise to a function that is not bounded. ([Hint:
Take I = [0,∞) and look for a simple example.]

Answer:

(a) We know from the definition of uniform convergence (taking ε = 1 in that definition),
that there is an n ∈ N such that for all n ≥ N and all x ∈ I, |fn(x)−f(x)| < 1. In particular,
|f(x)− fN(x)| < 1. We know by assumption that |fN(x)| ≤MN for all x ∈ I. So we get for
all x ∈ I,

|f(x)| = |f(x)− fN(x) + fN(x)|
≤ |f(x)− fN(x)|+ |fN(x)|
< 1 + MN

That is, we have shown that 1 + MN is a bound for f on I.

(b) Define a sequence of functions on the interval I = [0,∞) by fn(x) =

{
x if x < n

n if x ≥ n
.

Then fn(x) ≤ n for all x ≥ 0, so fn is bounded by n on I. It is clear that limn→∞ fn(x) = x
for all x ∈ I, because in fact fn(x) = x for all n > x. So the pointwise limit of {fn} is the
function f(x) = x, which is not bounded on [0,∞).

Problem 7. Suppose that the function f : R → R satisfies |f(x) − f(y)| ≤ r|x − y| for all
x, y ∈ R, where r is a constant in the interval 0 ≤ r < 1. Such a function is said to be a
contraction on R. Note that a contraction is simply a Lipschitz function with Lipschitz
constant strictly less than 1, so we already know that f is continuous.

(a) Let t be any real number. Define a sequence {an}∞n=0 by a0 = t, an = f(an−1) for
n > 0. That is a0 = t, a1 = f(t), a2 = f(f(t)), a3 = f(f(f(t))), . . . , an = fn(t), . . . ,
where fn is the composition of f with itself n times. Show that the sequence {an}∞n=0

is contracting, and hence is convergent.



(b) Let z = lim
n→∞

an. Show that f(z) = z, that is, z is a fixed point of f . [Hint: Write

f(z) = f
(

lim
n→∞

an
)

= f
(

lim
n→∞

fn(t)
)
. and use the fact that f is continuous.]

(Note: Recall that a fixed point of a function f is a point y such that f(y) = y. It
is clear that a contraction can have at most one fixed point. This problem shows that
a contraction always does have a fixed point. Furthermore, if t is any real number, then
the sequence {fn(t)}∞n=0 converges to that unique fixed point. This is the Contraction
Mapping Theorem for R.)

Answer:

(a) Note that fn+1(t) = f(fn(t)) and fn+2(t) = f(fn−1(t)). We can calculate

|an+2 − an+1| = |fn+2(t)− fn+1(t)|
= |f(fn+1(t))− f(fn(t))|
≤ r|fn+1(t)− fn(t)|
= r|an+1 − an|

That is, {an}∞n=1 is contracting with contraction factor r. By the contraction principle,
{an}∞n=1 converges.

(b) Let z = lim
n→∞

an. Then

f(z) = f
(

lim
n→∞

an
)

= lim
n→∞

f(an), since f is continuous

= lim
n→∞

f(fn(t)), since an = fn(t)

= lim
n→∞

fn+1(t)

= lim
n→∞

an+1

= lim
n→∞

an

= z


