Problem 1. (a) Suppose that the function F(x) is differentiable at a. Show directly from the definition of derivative that the function $G(x) = F(x)^2$ is differentiable at a and G'(a) = 2F(a)F'(a). [Hint: You only need to factor $F(x)^2 - F(a)^2$ in the definition.] (b) We know that $f(x)g(x) = \frac{1}{4}((f(x)+g(x))^2-(f(x)-g(x))^2)$ from a previous homework

(b) We know that $f(x)g(x) = \frac{1}{4}((f(x)+g(x))^2-(f(x)-g(x))^2)$ from a previous homework problem. Using only this fact, the result from part (a), and the sum, difference, and constant multiple rules for derivatives, find the formula for the derivative of f(x)g(x),

Answer:

(a) Since F is differentiable at a, $\lim_{x\to a} \frac{F(x)-F(a)}{x-a} = F'(a)$. Furthermore, differentiability implies continuity, so F it is continuous at a, meaning $\lim_{x\to a} F(x) = F(a)$. Therefore,

$$G'(a) = \lim_{x \to a} \frac{F(x)^2 - F(a)^2}{x - a}$$

= $\lim_{x \to a} \frac{(F(x) + F(a))(F(x) - F(a))}{x - a}$
= $\lim_{x \to a} (F(x) + F(a)) \frac{F(x) - F(a)}{x - a}$
= $(\lim_{x \to a} F(x) + \lim_{x \to a} F(a)) \cdot \lim_{x \to a} \frac{F(x) - F(a)}{x - a}$
= $(F(a) + F(a)) \cdot F'(a)$
= $2F(a)F'(a)$

(b) We can then compute

1

$$\begin{split} \left(f(x)g(x)\right)' &= \left(\frac{1}{4}((f(x)+g(x))^2 - (f(x)-g(x))^2)\right)' \\ &= \frac{1}{4}\left((f(x)+g(x))^2 - (f(x)-g(x))^2\right)' \\ &= \frac{1}{4}\left(((f(x)+g(x))^2)' - ((f(x)-g(x))^2)'\right) \\ &= \frac{1}{4}\left((2(f(x)+g(x))(f(x)+g(x))') - (2(f(x)-g(x))(f(x)-g(x))')\right) \\ &= \frac{1}{4}\left((2(f(x)+g(x))(f'(x)+g'(x))) - (2(f(x)-g(x))(f'(x)-g'(x)))\right) \\ &= \frac{1}{4}\left((2f(x)f'(x)+2f(x)g'(x)+2g(x)f'(x)+2g(x)g'(x)) - (2f(x)f'(x)-2f(x)g'(x)-2g(x)f'(x)+2g(x)g'(x))\right) \\ &= \frac{1}{4}\left(4f(x)g'(x)+4g(x)f'(x)\right) \\ &= f(x)g'(x)+g(x)f'(x) \end{split}$$

Problem 2. Let f and g be differentiable functions on [a, b]. Suppose that f(a) = g(a) and f'(x) > g'(x) for all $x \in (a, b)$. Prove that f(b) > g(b). [Hint: Consider the function h(x) = f(x) - g(x) and apply the Mean Value Theorem.]

Answer:

Let h(x) = f(x) - g(x). Note that h(a) = f(a) - g(a) = 0, and h'(x) = f'(x) - g'(x) > 0for all $x \in (a, b)$. h is differentiable on [a, b], so the Mean Value Theorem applies to h. That is, there is a $c \in (a, b)$ such that $h'(c) = \frac{h(b) - h(a)}{b - a}$. We know b - a > 0 and h'(c) > 0, so h(b) - h(a) = (b - a)f'(c) > 0. Since h(a) = 0, we get that h(b) > 0. That is, f(b) - g(b) > 0, and f(b) > g(b).

Problem 3. Let f be an integrable function on [a, b]. Suppose that $A \leq f(x) \leq B$ for all $x \in [a, b]$. Show, from the definition of the integral, that $A \cdot (b - a) \leq \int_a^b f \leq B \cdot (b - a)$. (Hint: Use the trivial partition $P = \{x_0, x_1\}$ where $x_0 = a, x_1 = b$.)

Answer:

We know that for any partition P of [a, b], $L(f, P) \leq \int_a^b \leq U(f, P)$. Consider the trivial partition $P = \{x_0, x_1\}$ where $x_0 = a$, $x_1 = b$. Then $L(f, P) = m \cdot (x_1 - x_0) = m \cdot (b - a)$, where $m = \inf\{f(x) \mid x \in [a, b]\}$, and $U(f, P) = M \cdot (x_1 - x_0) = M \cdot (b - a)$, where $M = \sup\{f(x) \mid x \in [a, b]\}$.

Saying $A \leq f(x)$ for all $x \in [a, b]$ means that A is a lower bound for $\{f(x) \mid x \in [a, b]\}$. So $A \leq \inf\{f(x) \mid x \in [a, b]\}$. That is $A \leq m$. Similarly, B is an upper bound for $\{f(x) \mid x \in [a, b]\}$, and $B \geq M$. So we have

$$A \cdot (b-a) \le m \cdot (b-a) = L(f,P) \le \int_a^b f \le U(f,P) = M \cdot (b-a) \le B \cdot (b-a)$$

Problem 4. Suppose that f is integrable on [a, b]. Define $F(x) = \int_a^x f$ for $x \in [a, b]$, and define $G(x) = \int_a^x F$ for $x \in [a, b]$. How do we know $\int_a^x F$ exists? Show that G is differentiable on [a, b].

Answer:

We know that F(x) is continuous [Theorem 3.6.1] and therefore integrable [Theorem 3.5.1] on [a, x] for any $x \in (a, b]$. That is, $\int_a^x F$ exists.

Furthermore, since F is a continuous function on [a, b], and $G(x) = \int_a^x F$ for $x \in [a, b]$, we know by the Second Fundamental Theorem of Calculus that G is differentiable on [a, b](and that G'(x) = F(x)).

Problem 5. Let $\sum_{k=1}^{\infty} a_k$ be a convergent series of non-negative terms. Prove that the series $\sum_{k=1}^{\infty} a_k^2$ also converges. [Hints: $\left(\frac{1}{2}\right)^2 = \frac{1}{4}$, and remember that you only need to show $\sum_{k=N}^{\infty} a_k^2$ converges for some N.]

Answer:

Since $\sum_{k=1}^{\infty} a_k$ converges, we know that $\lim_{n\to\infty} a_k = 0$. By the definition of limit of a sequence (taking $\varepsilon = 1$ in that definition), there is an $N \in \mathbb{N}$ such that for any $k \geq N$, $|a_k - 0| < 1$. Now, a_k is non-negative, so we have $0 \leq a_k < 1$ for all $k \geq N$. Furthermore, $0 \leq a_k < 1$ implies $a_k^2 \leq a_k$. We know that $\sum_{k=N}^{\infty} a_k$ converges because $\sum_{k=1}^{\infty} a_k$ converges. By the comparison test, since $a_k^2 \leq a_k$ for $k \geq N$, we get that $\sum_{k=N}^{\infty} a_k^2$ converges. Finally, that implies that $\sum_{k=1}^{\infty} a_k^2$ converges

Problem 6 (*Textbook problem 4.5.7, 8*). (a) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions defined on an interval *I*. Assume that each f_n is bounded; that is, there are constants M_n such that $|f_n(x)| \leq M_n$ for all $x \in I$. Prove: If $\{f_n\}_{n=1}^{\infty}$ converges uniformly to *f*, then *f* must also be bounded on *I*.

(b) Show that the hypothesis of uniform convergence is necessary by finding a sequence of bounded functions that converges pointwise to a function that is not bounded. ([Hint: Take $I = [0, \infty)$ and look for a simple example.]

Answer:

(a) We know from the definition of uniform convergence (taking $\varepsilon = 1$ in that definition), that there is an $n \in N$ such that for all $n \geq N$ and all $x \in I$, $|f_n(x) - f(x)| < 1$. In particular, $|f(x) - f_N(x)| < 1$. We know by assumption that $|f_N(x)| \leq M_N$ for all $x \in I$. So we get for all $x \in I$,

$$|f(x)| = |f(x) - f_N(x) + f_N(x)| \leq |f(x) - f_N(x)| + |f_N(x)| < 1 + M_N$$

That is, we have shown that $1 + M_N$ is a bound for f on I.

(b) Define a sequence of functions on the interval $I = [0, \infty)$ by $f_n(x) = \begin{cases} x & \text{if } x < n \\ n & \text{if } x \ge n \end{cases}$ Then $f_n(x) \le n$ for all $x \ge 0$, so f_n is bounded by n on I. It is clear that $\lim_{n\to\infty} f_n(x) = x$ for all $x \in I$, because in fact $f_n(x) = x$ for all n > x. So the pointwise limit of $\{f_n\}$ is the function f(x) = x, which is not bounded on $[0, \infty)$.

Problem 7. Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) - f(y)| \le r|x - y|$ for all $x, y \in \mathbb{R}$, where r is a constant in the interval $0 \le r < 1$. Such a function is said to be a **contraction** on \mathbb{R} . Note that a contraction is simply a Lipschitz function with Lipschitz constant strictly less than 1, so we already know that f is continuous.

(a) Let t be any real number. Define a sequence $\{a_n\}_{n=0}^{\infty}$ by $a_0 = t$, $a_n = f(a_{n-1})$ for n > 0. That is $a_0 = t$, $a_1 = f(t)$, $a_2 = f(f(t))$, $a_3 = f(f(f(t)))$, \ldots , $a_n = f^n(t)$, \ldots , where f^n is the composition of f with itself n times. Show that the sequence $\{a_n\}_{n=0}^{\infty}$ is contracting, and hence is convergent.

(b) Let $z = \lim_{n \to \infty} a_n$. Show that f(z) = z, that is, z is a fixed point of f. [Hint: Write $f(z) = f\left(\lim_{n \to \infty} a_n\right) = f\left(\lim_{n \to \infty} f^n(t)\right)$. and use the fact that f is continuous.]

(Note: Recall that a **fixed point** of a function f is a point y such that f(y) = y. It is clear that a contraction can have at most one fixed point. This problem shows that a contraction always does have a fixed point. Furthermore, if t is any real number, then the sequence $\{f^n(t)\}_{n=0}^{\infty}$ converges to that unique fixed point. This is the **Contraction Mapping Theorem** for \mathbb{R} .)

Answer:

(a) Note that $f^{n+1}(t) = f(f^n(t))$ and $f^{n+2}(t) = f(f^{n-1}(t))$. We can calculate

$$\begin{aligned} a_{n+2} - a_{n+1} &|= |f^{n+2}(t) - f^{n+1}(t)| \\ &= |f(f^{n+1}(t)) - f(f^n(t))| \\ &\leq r |f^{n+1}(t) - f^n(t)| \\ &= r |a_{n+1} - a_n| \end{aligned}$$

That is, $\{a_n\}_{n=1}^{\infty}$ is contracting with contraction factor r. By the contraction principle, $\{a_n\}_{n=1}^{\infty}$ converges.

(b) Let $z = \lim_{n \to \infty} a_n$. Then

$$f(z) = f\left(\lim_{n \to \infty} a_n\right)$$

= $\lim_{n \to \infty} f(a_n)$, since f is continuous
= $\lim_{n \to \infty} f(f^n(t))$, since $a_n = f^n(t)$
= $\lim_{n \to \infty} f^{n+1}(t)$
= $\lim_{n \to \infty} a_{n+1}$
= $\lim_{n \to \infty} a_n$
= z