Problem 1. (a) Suppose that the function $F(x)$ is differentiable at a. Show directly from the definition of derivative that the function $G(x)=F(x)^{2}$ is differentiable at a and $G^{\prime}(a)=$ $2 F(a) F^{\prime}(a)$. [Hint: You only need to factor $F(x)^{2}-F(a)^{2}$ in the definition.]
(b) We know that $f(x) g(x)=\frac{1}{4}\left((f(x)+g(x))^{2}-(f(x)-g(x))^{2}\right)$ from a previous homework problem. Using only this fact, the result from part (a), and the sum, difference, and constant multiple rules for derivatives, find the formula for the derivative of $f(x) g(x)$,

Answer:

(a) Since F is differentiable at $a, \lim _{x \rightarrow a} \frac{F(x)-F(a)}{x-a}=F^{\prime}(a)$. Furthermore, differentiability implies continuity, so F it is continuous at a, meaning $\lim _{x \rightarrow a} F(x)=F(a)$. Therefore,

$$
\begin{aligned}
G^{\prime}(a) & =\lim _{x \rightarrow a} \frac{F(x)^{2}-F(a)^{2}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(F(x)+F(a))(F(x)-F(a))}{x-a} \\
& =\lim _{x \rightarrow a}(F(x)+F(a)) \frac{F(x)-F(a)}{x-a} \\
& =\left(\lim _{x \rightarrow a} F(x)+\lim _{x \rightarrow a} F(a)\right) \cdot \lim _{x \rightarrow a} \frac{F(x)-F(a)}{x-a} \\
& =(F(a)+F(a)) \cdot F^{\prime}(a) \\
& =2 F(a) F^{\prime}(a)
\end{aligned}
$$

(b) We can then compute

$$
\begin{aligned}
(f(x) g(x))^{\prime} & =\left(\frac{1}{4}\left((f(x)+g(x))^{2}-(f(x)-g(x))^{2}\right)\right)^{\prime} \\
& =\frac{1}{4}\left((f(x)+g(x))^{2}-(f(x)-g(x))^{2}\right)^{\prime} \\
& =\frac{1}{4}\left(\left((f(x)+g(x))^{2}\right)^{\prime}-\left((f(x)-g(x))^{2}\right)^{\prime}\right) \\
& =\frac{1}{4}\left(\left(2(f(x)+g(x))(f(x)+g(x))^{\prime}\right)-\left(2(f(x)-g(x))(f(x)-g(x))^{\prime}\right)\right) \\
& =\frac{1}{4}\left(\left(2(f(x)+g(x))\left(f^{\prime}(x)+g^{\prime}(x)\right)\right)-\left(2(f(x)-g(x))\left(f^{\prime}(x)-g^{\prime}(x)\right)\right)\right) \\
& =\frac{1}{4}\left(\left(2 f(x) f^{\prime}(x)+2 f(x) g^{\prime}(x)+2 g(x) f^{\prime}(x)+2 g(x) g^{\prime}(x)\right)-\right. \\
& \left.\left(2 f(x) f^{\prime}(x)-2 f(x) g^{\prime}(x)-2 g(x) f^{\prime}(x)+2 g(x) g^{\prime}(x)\right)\right) \\
& =\frac{1}{4}\left(4 f(x) g^{\prime}(x)+4 g(x) f^{\prime}(x)\right) \\
& =f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{aligned}
$$

Problem 2. Let f and g be differentiable functions on $[a, b]$. Suppose that $f(a)=g(a)$ and $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(a, b)$. Prove that $f(b)>g(b)$. [Hint: Consider the function $h(x)=f(x)-g(x)$ and apply the Mean Value Theorem.]

Answer:

Let $h(x)=f(x)-g(x)$. Note that $h(a)=f(a)-g(a)=0$, and $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)>0$ for all $x \in(a, b)$. h is differentiable on $[a, b]$, so the Mean Value Theorem applies to h. That is, there is a $c \in(a, b)$ such that $h^{\prime}(c)=\frac{h(b)-h(a)}{b-a}$. We know $b-a>0$ and $h^{\prime}(c)>0$, so $h(b)-h(a)=(b-a) f^{\prime}(c)>0$. Since $h(a)=0$, we get that $h(b)>0$. That is, $f(b)-g(b)>0$, and $f(b)>g(b)$.

Problem 3. Let f be an integrable function on $[a, b]$. Suppose that $A \leq f(x) \leq B$ for all $x \in[a, b]$. Show, from the definition of the integral, that $A \cdot(b-a) \leq \int_{a}^{b} f \leq B \cdot(b-a)$. (Hint: Use the trivial partition $P=\left\{x_{0}, x_{1}\right\}$ where $x_{0}=a, x_{1}=b$.)

Answer:

We know that for any partition P of $[a, b], L(f, P) \leq \int_{a}^{b} \leq U(f, P)$. Consider the trivial partition $P=\left\{x_{0}, x_{1}\right\}$ where $x_{0}=a, x_{1}=b$. Then $L(f, P)=m \cdot\left(x_{1}-x_{0}\right)=m \cdot(b-a)$, where $m=\inf \{f(x) \mid x \in[a, b]\}$, and $U(f, P)=M \cdot\left(x_{1}-x_{0}\right)=M \cdot(b-a)$, where $M=\sup \{f(x) \mid x \in[a, b]\}$.

Saying $A \leq f(x)$ for all $x \in[a, b]$ means that A is a lower bound for $\{f(x) \mid x \in[a, b]\}$. So $A \leq \inf \{f(x) \mid x \in[a, b]\}$. That is $A \leq m$. Similarly, B is an upper bound for $\{f(x) \mid x \in[a, b]\}$, and $B \geq M$. So we have

$$
A \cdot(b-a) \leq m \cdot(b-a)=L(f, P) \leq \int_{a}^{b} f \leq U(f, P)=M \cdot(b-a) \leq B \cdot(b-a)
$$

Problem 4. Suppose that f is integrable on $[a, b]$. Define $F(x)=\int_{a}^{x} f$ for $x \in[a, b]$, and define $G(x)=\int_{a}^{x} F$ for $x \in[a, b]$. How do we know $\int_{a}^{x} F$ exists? Show that G is differentiable on $[a, b]$.

Answer:

We know that $\mathrm{F}(\mathrm{x})$ is continuous [Theorem 3.6.1] and therefore integrable [Theorem 3.5.1] on $[a, x]$ for any $x \in(a, b]$. That is, $\int_{a}^{x} F$ exists.

Furthermore, since F is a continuous function on $[a, b]$, and $G(x)=\int_{a}^{x} F$ for $x \in[a, b]$, we know by the Second Fundamental Theorem of Calculus that G is differentiable on $[a, b]$ (and that $\left.G^{\prime}(x)=F(x)\right)$.

Problem 5. Let $\sum_{k=1}^{\infty} a_{k}$ be a convergent series of non-negative terms. Prove that the series $\sum_{k=1}^{\infty} a_{k}^{2}$ also converges. [Hints: $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$, and remember that you only need to show $\sum_{k=N}^{\infty} a_{k}^{2}$ converges for some N.]

Answer:

Since $\sum_{k=1}^{\infty} a_{k}$ converges, we know that $\lim _{n \rightarrow \infty} a_{k}=0$. By the definition of limit of a sequence (taking $\varepsilon=1$ in that definition), there is an $N \in \mathbb{N}$ such that for any $k \geq N$, $\left|a_{k}-0\right|<1$. Now, a_{k} is non-negative, so we have $0 \leq a_{k}<1$ for all $k \geq N$. Furthermore, $0 \leq a_{k}<1$ implies $a_{k}^{2} \leq a_{k}$. We know that $\sum_{k=N}^{\infty} a_{k}$ converges because $\sum_{k=1}^{\infty} a_{k}$ converges. By the comparison test, since $a_{k}^{2} \leq a_{k}$ for $k \geq N$, we get that $\sum_{k=N}^{\infty} a_{k}^{2}$ converges. Finally, that implies that $\sum_{k=1}^{\infty} a_{k}^{2}$ converges

Problem 6 (Textbook problem 4.5.7, 8). (a) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions defined on an interval I. Assume that each f_{n} is bounded; that is, there are constants M_{n} such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in I$. Prove: If $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f, then f must also be bounded on I.
(b) Show that the hypothesis of uniform convergence is necessary by finding a sequence of bounded functions that converges pointwise to a function that is not bounded. ([Hint: Take $I=[0, \infty)$ and look for a simple example.]

Answer:

(a) We know from the definition of uniform convergence (taking $\varepsilon=1$ in that definition), that there is an $n \in N$ such that for all $n \geq N$ and all $x \in I,\left|f_{n}(x)-f(x)\right|<1$. In particular, $\left|f(x)-f_{N}(x)\right|<1$. We know by assumption that $\left|f_{N}(x)\right| \leq M_{N}$ for all $x \in I$. So we get for all $x \in I$,

$$
\begin{aligned}
|f(x)| & =\left|f(x)-f_{N}(x)+f_{N}(x)\right| \\
& \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)\right| \\
& <1+M_{N}
\end{aligned}
$$

That is, we have shown that $1+M_{N}$ is a bound for f on I.
(b) Define a sequence of functions on the interval $I=[0, \infty)$ by $f_{n}(x)=\left\{\begin{array}{ll}x & \text { if } x<n \\ n & \text { if } x \geq n\end{array}\right.$. Then $f_{n}(x) \leq n$ for all $x \geq 0$, so f_{n} is bounded by n on I. It is clear that $\lim _{n \rightarrow \infty} f_{n}(x)=x$ for all $x \in I$, because in fact $f_{n}(x)=x$ for all $n>x$. So the pointwise limit of $\left\{f_{n}\right\}$ is the function $f(x)=x$, which is not bounded on $[0, \infty)$.

Problem 7. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq r|x-y|$ for all $x, y \in \mathbb{R}$, where r is a constant in the interval $0 \leq r<1$. Such a function is said to be a contraction on \mathbb{R}. Note that a contraction is simply a Lipschitz function with Lipschitz constant strictly less than 1 , so we already know that f is continuous.
(a) Let t be any real number. Define a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ by $a_{0}=t$, $a_{n}=f\left(a_{n-1}\right)$ for $n>0$. That is $a_{0}=t, a_{1}=f(t), a_{2}=f(f(t)), a_{3}=f(f(f(t))), \ldots, a_{n}=f^{n}(t), \ldots$, where f^{n} is the composition of f with itself n times. Show that the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is contracting, and hence is convergent.
(b) Let $z=\lim _{n \rightarrow \infty} a_{n}$. Show that $f(z)=z$, that is, z is a fixed point of f. [Hint: Write $f(z)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f\left(\lim _{n \rightarrow \infty} f^{n}(t)\right)$. and use the fact that f is continuous.]
(Note: Recall that a fixed point of a function f is a point y such that $f(y)=y$. It is clear that a contraction can have at most one fixed point. This problem shows that a contraction always does have a fixed point. Furthermore, if t is any real number, then the sequence $\left\{f^{n}(t)\right\}_{n=0}^{\infty}$ converges to that unique fixed point. This is the Contraction Mapping Theorem for \mathbb{R}.)

Answer:

(a) Note that $f^{n+1}(t)=f\left(f^{n}(t)\right)$ and $f^{n+2}(t)=f\left(f^{n-1}(t)\right)$. We can calculate

$$
\begin{aligned}
\left|a_{n+2}-a_{n+1}\right| & =\left|f^{n+2}(t)-f^{n+1}(t)\right| \\
& =\left|f\left(f^{n+1}(t)\right)-f\left(f^{n}(t)\right)\right| \\
& \leq r\left|f^{n+1}(t)-f^{n}(t)\right| \\
& =r\left|a_{n+1}-a_{n}\right|
\end{aligned}
$$

That is, $\left\{a_{n}\right\}_{n=1}^{\infty}$ is contracting with contraction factor r. By the contraction principle, $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges.
(b) Let $z=\lim _{n \rightarrow \infty} a_{n}$. Then

$$
\begin{aligned}
f(z) & =f\left(\lim _{n \rightarrow \infty} a_{n}\right) \\
& =\lim _{n \rightarrow \infty} f\left(a_{n}\right), \text { since } f \text { is continuous } \\
& =\lim _{n \rightarrow \infty} f\left(f^{n}(t)\right), \text { since } a_{n}=f^{n}(t) \\
& =\lim _{n \rightarrow \infty} f^{n+1}(t) \\
& =\lim _{n \rightarrow \infty} a_{n+1} \\
& =\lim _{n \rightarrow \infty} a_{n} \\
& =z
\end{aligned}
$$

